
A SIMULATION MODEL TO AID IN THE DESIGN

AND TUNING OF HIERARCHICAL DATABASES

Wayne A. Hall

Honeywell Information Systems, Inc.

ABSTRACT

Bell Laboratories has developed a data management system for hierarchical databases. The system is
designed in such a way that its performance can be significantly affected by a number of parameters which
can be manipulated to "tune" an installation for minimum response time and lowest cost. In order to
study the relationships among these parameters, a simulation model was developed which has enabled the
preparation of published guidelines to be used by database designers and administrators. In addition,
the model itself is available for direct use on an interactive basis as a standard part of a utility
package provided as a component of the system. The work on which this paper is based was done while
the author was with Bell Telephone Laboratories in Holmdel, New Jersey.

I. Introduction

Bell Telephone Laboratories has developed a
data management system for hierarchical data-
bases which is expected to receive widespread
usage. Since the data base structure and usage
patterns will probably be unique for each ap-
plication, a considerable amount of effort must
be directed toward "tuning" each system to
handle its job most economically. The tuning
process begins when the database is designed
and continues throughout its llfe. Certain
parameters have been built into the system to
facilitate the tuning process; the intelligent
use of these parameters is the responsibility
of the database designer initially and of the
technical administrator after the system is in
use.

Many factors enter into the description of
the way in which a given application uses the
system. The relative importance of these fac-
tors and their relationship with the tuning
parameters is a rather complex subject. Thus,
in order to study the problem thoroughly, it
was decided to develop a discrete-event
simulation model which would serve three pur-
poses:

i. To identify the most significant factors
describing the usage and structure of a partic-
ular database.

2. To study the relationships among these
factors and the tuning parameters and develop
a set of general guidelines for the technical
administrator and designer.

3. To provide in itself an interactive tool
through which particular cases could be studied
directly.

This paper discusses the modeling approach
and the general design of the model. Represen-
tative results from the experiments performed
will be shown graphically in an Appendix. The
guidelines for technical administrators and
designers are not of general interest to non-
users, so they are not included herein.

2. Description of the Database System

The system is designed in such a way that
the pointers needed to traverse the hierarchy are
maintained physically apart from the data values.
In fact, each group (collection of nodes at the
same level which are of like "type"), has its
own "file" for pointers and another for its data
items. Let us introduce the following termin-
olosy:

i. data block: The data for each group is
logically structured as a matrix, where each
column represents a node and each row a partic-
ular data field.

2. subblock: one or more complete columns
in a data block; the number of columns is called
CPSUB (columns per subblock). Within a subblock,
data is physically stored rowwise, with all of
one subblock being stored contiguously.

3. family: Each group consists of one or
more families, where all nodes having the same
parent comprise a family.

4. reserved node: It is possible, for each
family, to reserve pointer space and columns in
the data block to accomodate nodes added in the
future. The number of nodes to be reserved for
each family in a group is called the bubble
factor.

Winter Simulation Conference 277

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800287.811188&domain=pdf&date_stamp=1974-01-01

D E S I G N AND T U N I N G OF HIERARCHICAL DATABASES . . . C o n t i n u e d

5. bubble-out: If a new node is to be
added to a family which has no remaining re-
served space, the pointer set for the entire
family must be copied out to the end of the
pointer file so that pointers associated with
the new node may be appended to it. This pro-
cess is called a 'bubble-out", and it results
in the reservation of space for (bubble factor -
I) subsequent additions. The space which con-
tains the original pointer set becomes wasted
"gas", and serves only to point to the family
pointer set's new location in the pointer file.

3. Optimizing Performance

"Optimization" can be thought of as the
minimization of two components - response time
and cost to the user. Since the system has been
designed to be "portable" (that is, it can be
installed on many tlme-sharing systems with very
little recoding), cost and performance will be
heavily influenced by characteristics of each
"host" system such as charging algorithms, type
of direct-access devices, etc. Hence the cost
function to be described below is general in
that the unit costs for such items as I/0 oper-
ations are indicated as coefficients whose values
will differ among various installations.
Specific values for these coefficients for a
given host system can be derived, provided that
one has a thorough understanding of the internal
operation of the data management system and of
the host system.

Let us define the following over some ar-
bitrary period in the active life of a database
system application:

RD: number of data-block records read

RM: number of pointer records read

WD: number of data-block records written

WM: number of pointer records written

BD: quantity of core allocated for buffer-
ing data records

BM: quantity of core allocated for buffer-
ing pointer records

NB: number of "bubble-outs" performed

GM: maximum "gas" (wasted pointer space)
accumulated

NC: number of "compresses" (pointer file
garbage collections) performed

In describing the configuration and usage
patterns of a particular application, three
basic classes of parameters are involved; they
will hereafter be referred to as "usage" para-
meters, "data base" parameters and "media"
parameters. All parameters are defined at the

level. The mnemonics shown will be used

in later sections.

Usage parameters:

i. Average number of requests per user
session (AVGRPS)

2. Relative frequencies of 3 types of
requests:

a. Retrievals plus changes to existing
data values (PRETRV)

b. Addition of a node to an existing
family (PNEWN)

c. Creation of a new family (PNEWF)

3. For a retrieval request, on the average
(these 3 values will be referred to
collectively as "retrieval density"):

a. Fraction of data words per node
(words per column) to be retrieved
(PCTV)

b. Fraction of families to be retrieved
from (PCTF)

c. For each family selected, the
average fraction of nodes in the
family to be retrieved from (PCTE)

Data base parameters:

i. Words per node in pointer record (WNPS)

2. Words of data per node (words per
column) (WPC)

3. Average number of nodes per family
(MEANF)

4. Number of families in the group (NFING)

Media parameters (the first 6 comprise the
"tuning" parameters):

i. Words per pointer record (MWPR)

2. Words per data record (DWPR)

3. Number of buffers (i record each) al-
located for pointer records (MBEA)

4. Number of buffers allocated for data
(DBEA)

5. Columns per subblock (CPSUB)

6. Bubble factor (BUBBLE)

7. "Gas" level for running "COMPRESS"
utility (CPLEVL), defined as a number
r, 0 < r ~ i, such that a pointer
record compress is run by the admini-
strator whenever the condition arises
that (total "gas")/(actlve nodes + total
"gas") ~ r

278 January 14-16, 1974

Given the foregoing, it is now possible to
define a cost/performance function:

f (U,D,M)=clRD + c2RM+ c3WD + c4WM+ cbBD
+ c6BM + c7NB + c8GM + c9NC

where U is the set of usage parameters
D is the set of database parameters
M is the set of media parameters
cl, c2...,c9 are the unit costs for a
given host system

It is important to note that RD, RM,...,NC
are actually themselves functions of U, D, and
M.

• The above function does not appear to con-
tain any mention of CPU time, which represents
a substantial part of the total cost of running
the database system. The model, as will be
shown later, does not attempt to represent CPU
activity explicitly. Other studies have
attacked this quantity directly. It is possible,
however, to include a CPU cost component in
certain of the cost coefficients, namely cl, c2,
c3, c4, c7, and c9, if it is deemed worthwhile
to expend the considerable amount of effort
required to determine accurate values for these
coefficients. The administrator or designer may
well be content to compare various sets of
parameter values to observe their effect on RD,
RM,...,NC rather than to predict costs explic-
itly.

The process of optimizing a system applica-
tion, then, consists of choosing those values
of the "media" parameters which, for given
values of the "usage" and "database" parameters,
will minimize the value of the cost function.
Considering the complexity of the interactions
involved, the development of a simulation model
through which these interactions could be
studied seemed to be the best way to aid the
administrator and designer in this process.

4. The Model

4.1 Choosing a Language

Before starting the development of the
model, the selection of a programming language
for its implementation had to be made. Three
major requirements seemed paramount:

i. Easy use of independent streams of
uniformly distributed random numbers.

2. Parameterization, or the ability to
supply data for each experiment as input.

3. Economy, since a large number of
experiments (at least 300) were envisioned.

Because there was no need to consider such
tlme-dependent problems as multiple concurrent
updates for the purposes of the study, it was
not necessary to include the element of time in
the model. This eliminated the need to con-
sider the use of a general-purpose simulation
language llke GPSS with its inherent

inefficiencies in favor of a more economical
language llke FORTRAN or PL/i; FORTRAN was
ultimately chosen.

4.2 Restrictions and Assumptions

The "tuning" parameters (CPSUB, BUBBLE,
DBEA, MBEA, MWPR, DWPR) may be manlpulated in-
dependently for each group in the hierarchical
structure. Each group normally has its own
buffer space for pointer records and data. The
data block and pointer set for each group are
distinct from those of all other groups.
Therefore, a model need only consider a single
group at a time, with the commonly made assump-
tion that buffers are not shared among groups.
Each user interacting with a database at a
given time has his own set of buffers, so input
to the model in the form of user requests can
be represented as a stream of strictly sequential
user sessions. As mentioned previously, details
of the host system are not considered; this means
among other things, that paging, I/0 buffering
other than that done by the database system it-
self, and all aspects of hardware behavior are
ignored. Thus not Only can the model be con-
ceptually fairly simple but it can also be
generally adaptable to any system application.

Certain assumptions were made in the design
of the model; we shall mention only the most
important ones here.

i. The number of requests per user session
is calculated for each session from an expo-
nential distribution whose mean is supplied as
an input parameter.

2. Three types of requests are considered
- retrievals, adding a node to an existing
family, and creating a new family. The model
does not differentiate between simple retrievals
and retrievals in which the value of one or
more retrieved data fields is modified.

3. Each experiment starts with an existing
data base configuration defined by inputs to the
model. An average family size is supplied, from
which the actual size of each family is deter-
mined from a geometric distribution.

4. When simulating the creation of a new
family, its size is determined as above, and
the insertion of data values for all fields for
each new node is simulated.

5. When adding a node to an existing
family, the family to be used is selected ran-
domly and all data values are stored.

6. Retrievals involving multiple fields
and/or multiple nodes are always taken in the
sequence of all selected fields for each selec-
ted node in each selected family in ascending
order of field index within ascending node index
within ascending family index. This corresponds
logically to a top-to-bottom ordering for fields
in the data block, and a left-to-rlght ordering
for nodes and families as they appeared in the
original pointer set at the beginning of the
experiment.

W i n t e r S i m u l a t i o n C o n f e r e n c e 2 79

DESIGN AND TUNING OF HIERARCHICAL DATABASES ... Continued

4.3 Program Structure

At this writing, several implementations
of the model exist, all having identical logic.
Currently implemented as batch programs are a
standard version accommodating up to i000
families, i000 nodes per f~m~ly, and i000 data
words per node which requires about 74K bytes
of IBM 370 memory. A larger version permits
up to 5000 of each of the above items and re-
quires about 224K. Both versions permit up to
500 pointer record buffers and 2000 data buffers.
The large version of the model is also available
through the standard utility package supplied as
a part of the database system. In this form it
can be easily used interactively by the
designer or administrator for the study of
specific problems, drawing some of its input
parameter values, if desired, from values
actually stored in control tables for the real
database itself. Execution times are highly
data-dependent.

4.4 Some Comments on Level of Detail

The model is not a large program. It
consists of a driving module and fifteen sub-
programs with a total of approximately 600
FORTRAN statements and uses a multiple-stream
random number generator to eliminate correlation
between stochastic processes which are in
reality independent. The input required for
each experiment consists of the eighteen items
defined in section 3 plus the number of user
sessions to be simulated.

When developing a model of this type, one
is often faced with the question of determining
the level of detail necessary to strike an
appropriate balance between accuracy of rep-
resentation and efficiency of execution for
various parts of the system being simulated.
This problem proved particularly acute in the
representation of the buffering of pointer
records and data records.

The buffering algorithm employed by the
system for both types of records consists of
always putting a particular record in the
buffer location computed by taking the remain-
der when its record sequence number is divided
by the total number of buffers allocated. For
example, if i00 data buffers were allocated for
a particular group, the 279th record in the
data block would be read into the 79th buffer
if it were not already there. If either the
79th, 179th, 379th,...record were in the buffer
and had been updated since the last time it
was read, it would be rewritten before bringing
in the new record. All updated records pre-
sent in the buffers at the end of a session are
flushed out. A considerable amount of effort
was directed toward devising a purely Monte
Carlo representation of this process, which
would not require keeping track of each
individual record. Several schemes for both
pointer records and data records were tried,
but none proved sufficiently accurate for the

needs of the study. Consequently the buffering
process has been modeled in a rather explicit
manner, which involves keeping track of exactly
which records are buffered at any given time, and
whether or not they have been updated. This
technique, while requiring more memory than a
strictly Monte Carlo approach, was considerably
easier to implement, much more efficient in terms
of CPU time, and somewhat more accurate.

When simulating a retrieval request, the
portion of the group's data block actually re-
trieved is computed using the three components
of "retrieval density" defined in section 3. The
selection process is performed by a subroutine
using a uniform distribution. This routine is
called once to select the fields to be retrieved,
once to select families, and again, for each
chosen family, to select nodes. Since one of
the arguments is an index which identifies which
of the three types of selections is being made,
it is a simple matter to modify the routine to
represent other selection rules, such as arrang-
ing certain frequently retrieved fields in adja-
cent rows of the data block to minimize the number
of records which actually have to be read.

5. The Model in Use

5.1 Validation

Validation of the model was not a particu-
larly difficult process, since the system being
simulated was already operational. Detailed
comparisons were made between model output and
statistics obtained from a test application of
the database system, using a FORTRAN program to
supply the same sequence of user requests to the
real system as were generated during the corre-
sponding run of the model. The second portion
of the validation effort consisted of verifying
that the model produced certain relationships
already known to exist.

5.2 Experiments Performed

The primary intent of the model was to in-
vestigate the sensitivity of system performance
and cost to the various usage, database, and
media parameters defined previously. Accord-
ingly, extensive experimentation was carried
out to learn something about the influence of
these parameters on measures such as buffering
efficiency, buildup of "gas", etc. The majorlty
of these experiments consisted of holding all
but one parameter fixed in one of two "nominal"
sets of values, then varying a single parameter
over some range to observe its effect. The two
"nominal" cases were defined as follows:

280 January 14-16, 1974

Case I :

AVGRPS = 3.3
PRETRV = 1.0
PNEWN = 0
PNEWF = 0
PCTV = .5
PCTF = .5
PCTE = .5
WNPS = i
WPC = I0

MEANF = 16
NFING = 32
MWPR = 200
DWPR = 200
MBEA = I00
DBEA= 500
CPSUB = i
BUBBLE = 1
CPLEVL = 1.0

Case II: Same as (I) except:

PRETRV = .25
PNEW = .75
CPLEVL = .20

A complete listing of the experiments per-
formed is beyond the scope of this paper.
However, Appendix A shows the output obtained
for a particular set of parameters, and Appendix
B presents graphical results obtained from three
typical experiments. The first figure in Appen-
dix B shows that buffering efficiency (in terms
of the number of actual data record reads re-
quired for a given stream of user sessions) in-
creases rapidly as the record size becomes
larger. B-I indicates the effect on buffering
efficiency when columns per subblock is varied
for each of several values of the bubble factor.
Finally, B-2 gives an idea of the tradeoff
between frequent running of the COMPRESS utility
and pointer record reading activity for several
values of the bubble factor. The relationship
shown in this graph reflects the fact that as
"gas" builds up, pointer record I/O efficiency
decreases, combined with an increase in pointer
record reads associated with the running of
COMPRESS itself.

In addition to these experiments, the model
has received a "field trial" as a tool for
direct use by the data base designer/admlnista-
tot in a large Bell System management informa-
tion system project. It has provided useful
guidance in selecting an effective combination
of CPSUB, DWPR, and DBEA.

5.3 Results

The guidelines for technical administrators
and designers derived from the experiments with
the model have been published and are a part of
the standard documentation supplied with the
system.

For the sake of completeness, however, a
brief synops~s of the major concepts follows.

a. Records should be as large as possible,
and the more buffer space available, the better.
This is perhaps the most important consideration
of all, since the impact of most other para-
meters diminishes as record sizes and buffer
availability grow. Thus the penalty paid for
non-optimal values of other parameters becomes
of less consequence.

b. It is generally unwise to choose a com-
bination of columns per subblock and data
record size which results in a record containing
other than an equal number of fields for each
node in the record; i.e., the logical shape of

the record if it were laid out on the data block
should be strictly rectangular.

c. When building the database, if certain
fields are expected to be involved in a large
portion of retrieval requests, they should be
grouped in contlgous rows in the data block,
crossing as few record boundaries as possible.

d. In installations where a high percentage
of the requests are retrievals, CPSUB should be
high (equal to or a multiple of the data record
size) if retrievals are primarily rowwise (a
single field for one or more nodes), and low
(between 1 and (DWPR/WPC), for instance) if
columnwise retrievals (more than one field per
node) predominate.

e. If new nodes are added frequently, then a
low value of CPSUB is best for this process.
Consequently, if new nodes are added en masse
only at certain times, it might be wise to run a
utility program which changes CPSUB and restruc-
tures the data block accordingly before and after
this occurs.

f. If requests are almost entirely retriev-
als, the bubble fac6or should be I.

g. In a mixed retrieval/growth situation,
the more severe the limitation of data buffer
space, the higher the bubble factor should be (up
to a certain point).

h. It is generally true that the value of
the bubble factor which yields the most efficient
use~ of pointer record buffers is not the same as
the best value from the standpoint of data rec-
ords. In most cases it is probably more impor-
tant to optimize data record buffering.

i. For a given value of the COMPRESS level,
the number of times the compressing utility
should be run decreases much faster than linearly
with increasing bubble factor.

6. Conclusion

A discrete simulation model has been de-
scribed which has been used to develop a set of
guidelines for the designer and the technical
administrator of a hierarchical database system
application to aid in the "tuning" of the system
for optimal performance and lowest cost. The
model is also designed to be used directly as an
interactive tool for the study of specific pro-
blema. This dual function together with the
general adaptability of the model to any system
application represents a potentially useful tool
for the design and maintenance of present and
future databases.

Winter Simulation Conference 2 81

DESIGN AND TUNING OF HIERARCHICAL DATABASES ... Continued

APPENDIX A

Output From a Typical Experiment

EXPERIMENT # 1

BUBBLE FACTOR=] COTS. PER SUBBLOCK= t

571 nRIGINAL MODES; 32 FAMILIES IN GROUP
200 POINTER SET WORDS PER RECORD
200 DATA BLOCK WnRDS PER RECORD

9 POINTER REC3RD BUFFERS AND 30 DATA BUFFERS
3 WORDS PER NODE POINTER SET

10 FIELDS PER NODE
P{RETRIEVAL)= 0,850 P(NEW NODE IN FAMILY)= 0.130

P{NEW FAMILY)= 0.020
"COMPRESS" RUN WHENEVER GASI{GAS+ACTIVE NODES) EXCEEDS 0 , t 0

1784 REQUESTS SIMULATED; 500 SESSIONS
MEAN REQUESTS PER SESSION= 3.3
RETRIEVAL DENSITY=O,5000 OF FIELDS FOR

0.4000 CF NODES IN 0 . I000 OF FAMILIES

1384 ACTIVE NODES
22 NODES OF GAS REMAINING

NUMBER OF FAMILIES CHANGED FROM
198 BUBBLE-OUTS DCCtlRRFD

33 COMPRESSES PERFORMED;
5834 POINTER RECORDS READ;

11884 DATA BLOCK RECORDS READ;
MAX. POINTER BUFFER CONTENTS=
MAX. DATA BUFFER CONTENTS=

MAX, GAS BUILDUP=
32 TO 75

176 NODES

3914 NOOFS OF GAS REMOVED
730 WRITTEN

295 WRITTEN
g RECORDS

30 RECORDS

57746 NODES RETRIEVED FROM
291548 TOTAL VALUES RETRIEVED

282 lanuary 14-16, 1974

APPENDIX B

il
>

~d

~0

0~

0
L~

o~

0
L~

0

.025

.020

• 015

• 010

• 005

6500

6000

5500

'%

I I I |

i00 200 300 400

WORDS PER DATA RECORD

B-i J

l o o
H

ao ~

t ~

60 ~

q-

I
40

I
~ J

20

BUBBLE FACTOR

=16

5000

4500

4000

i

3500
I

I

!

L_
0

I f I I I
40 80 120 160 200

COLUMNS PER SUBBLOCK

W i n t e r S i m u l a t i o n C o n f e r e n c e 283

DESIGN AND TUNING OF HIERARCHICAL DATABASES ... Continued

B-2

1400

1300

1200

Ii00

0
U

i000

0

900

800

700

PRETRV = .3
PNEWN = .7

BUBBLE FACTOR = i
/" 16

8

J ~ L j 4

I I ! i

.05 .10 .15 .20

"COMPRESS" LEVEL

284 January 14-16, 1974

WAYNE A. HALL is a Principal Engineer in the
System Evaluation Department at Honeywell Infor =
matlon Systems in Billerica, Massachusetts.
Previously, he was a member of the Technical
Staff at Bell Telephone Laboratories, where the
work described in the paper was performed. His
experience has been in the simulation of various
types of computer systems and in the teaching of
simulation techniques and languages. He holds a
BA in mathematics from Lehigh University and a
M~ in computer science from Purdue.

276 January 14-16, 1974

