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ABSTRACT 

The complexity of activities and fluctuations 
in workload make prospective evaluation and design 
of inpatient care facilities difficult. This 
paper describes a simulation which allows the user 
to select a compromise between service availability 
and cost by comparing alternatives for different 
ward sizes, ancillary capacities and admission 
policies. Reporting includes not only occupancy 
and workload figures, but also statistics on over- 
loads and excess occupancy. The sequence of care 
administered to an inpatient is modeled as a 
Markov chain, whose states are patient level of 
dependency; ward workloads and ancillary usage 
depend on the patient's state. Different para- 
meters in the basic model represent the sequences 
of care corresponding to distinct diagnosis classes; 
varying patient mixes can be simulated by adjusting 
arrival rates in the diagnosis categories. This 
paper focuses on the use of the simulation in 
comparing admission policies. 

INTRODUCTION 

The simulation described in this paper allows 
the administrator of an inpatient care facility 
to evaluate admitting policies, and the architect 
or designer to study the effects of different ward 
sizes and ancillary capacities as well. The 
administrator of an inpatient care facility wishes 
to maintain the most nearly even flow of resources 
within the facility, so as to minimize the unit 
cost of operations. Choice of admitting policies 
is one of the decisions available to him. The 
architect or designer may adjust ward complements 
and size of ancillary facilities, but is under 
pressure to plan for greatest utilization of 
expensive facilities while maintaining adequate 
service availability. In either case the number 
and kinds of patients moving through the facility 
are generated and governed by stochastic phenomena 
with considerable fluctuations in time. The 
planning and administrative functions must 
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recognize and cope with these fluctuations. The 
availability of beds and required services is a 
function of both the admitting policies and the 
sizes or capacities, and both must be considered in 
the design stage. 

Many studies have been directed toward the 
problem of determining the total namber of beds. 
Others have studied admissions systems. Analytic 
models, such as those of Flagle (3,4) and Young (15,16) 
provide insight, but do not have sufficient 
flexibility to study complex cases. Previous 
simulation models (2,12,13) which dealt with admission 
scheduling used models of inpatient care which lend 
themselves to studies of occupancy, but not work- 
loads. On the other hand, the more detailed models 
of patient care (7,14) have not yet been included 
in simulations. Milsum et al. survey admissions 
systems in (ii). This simulation is a discrete-time 
stochastic and dynamic model. Its salient features 
include division of the hospital into services, a 
Markov chain model of inpatient care, and a constraint 
on waiting time before admission. The model of 
patient care drives the flow of resources while the 
patient is in the hospital, and allows computations 
of the workload the patient generates as well as 
bed occupancy. Patient care is modeled as a static 
Markov chain, whose states are the patient levels of 
dependency (full care, intermediate care, and 
self-care) (i). The patient's level of dependency 
changes from day to day in accordance with the 
transition probabilities, which are assumed to be 
independent of the state of the hospital. The 
patient uses ancillary facilities (radiology, 
laboratory, pharmacy) at a rate that is dependent 
on his state. Surgery is treated the same way 
formally, But is interpreted as a probability of 
undergoing surgery on a given day. A separate 
set of transition probabilities and ancillary usage 
matrices is estimated for each diagnosis category, 
as explained in (6). 

The concept of maximum waiting time before 
admission recognizes realistic constraints on 
decision rules for admission. Young (16) divides 
patients referred for admission into two classes, 
urgent and elective, with elective patients 
deferrable indefinitely. Kolesar (8) studied 
analytic decision rules based on these two classes. 
In practice patients must be admitted before a 
certain number of days have elapsed, though the 
exact number will vary with the diagnosis category. 
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The maximum waiting time may not be expressed 
explicitly, but it can be determined empirically, 
perhaps by negotiation at the time admission is 
requested (13). Reducing the maximum waiting 
times, of course, reduces the room for maneuver 
in applying admission policies. 

The simulation hopefully strikes a balance 
between desirable detail, availability of meaningful 
data, and implementation effort. Some factors 
have been deliberately omitted or treated crudely, 
and those are described here. It is felt that 
leveling occupancy or workload from day-to-day 
can be decoupled, in practice, from load-leveling 
within a day; since the focus of the simulation 
is on occupancy and daily workload, the simulation 
is run in 24-hour time steps. For the same reason, 
ancillary usage has been treated as a continuous 
rate, with only surgery treated as a discrete 
event. Though the hospital is divided into services, 
beds have not been allocated within a service to 
private rooms, semi-private, etc.; the simulation 
work of Goldman et al. (5) showed that over- 
capacity occupancy and patient waiting time to 
admission are much more sensitive to the total 
number of beds than to the allocation scheme. 

THE COMPUTER SIMULATION MODEL 

The simulation is composed of two main programs, 
a patient generation program, and the simulation 
itself, which includes statistical reporting, as 
shown in ~llustration i. The patient generator 
creates the temporary entities for use in the 
simulation. The user specifies the average 
arrival rate for each diagnosis category by age 
and sex; this data may be empirical or predicted 
from existing demographic models (9,10). The user 
also supplies a matrix which specifies the dis- 
tribution of patients to services by age, sex, and 
diagnosis category, and the average maximum waiting 
time by diagnosis category. Patients are created 
by a Poisson process with average arrival rate as 
parameter. The maximum waiting time for a patient 
is picked from a negative exponential distribution 
with average maximum waiting time as a parameter. 
Once created, a patient is allocated randomly to 
one of the services according to the ward dis- 
tribution by age, sex, and diagnosis category. 
Each day's batch of referrals for admission is 
read onto a disk file, which can be re-used to 
compare directly the effect of different 
capacities and admissions policies. 

The input for the simulation program consists 
of the Markov chain transition probabilities and 
ancillary usage matrices for each diagnosis 
category, nominal ward capacities, ward workload 
factors, nominal ancillary facility capacities, 
ancillary workload factors, selection of admission 
policy, and report generation parameters. Within 
the simulation model, the permanent entities are 
the queue of patients desiring admission, the 
patient storage list, and the services. The major 
permanent entity is the patient storage list, which 
contains the attributes of all patients, admitted 
or waiting. The admission queue is a linked list 

of pointers into the patient list which designates 
those patients awaiting admission. The wards are 
represented by chained lists of pointers into the 
patient list which designate the patients on a 
particular service. 

The temporary entities within the simulation 
are the patients occupying the patient list. They 
have both permanent attributes, which are the ones 
with which they were created in the patient generator, 
and temporary attributes, which include the current 
state, number of days waited to admission, number 
of days in hospital, and current service, if any. 

The relationship between the entities and 
attributes of entities as time passes constitutes 
the processing within the simulation. The expanded 
flow diagram of the simulation, Illustration 2, 
shows that the processing is driven by the patients. 
At the end of each simulated day, patients currently 
in the hospital are assigned new states in accordance 
with the transition probabilities. If the state is 
zero, the patient is discharged, and removed from 
the patient list and all other linked lists con- 
taining references to him. New patients are read 
in daily from the patient file, added to the 
patient list, and their pointers integrated with 
those already on the admission queue. It is assumed 
that once a patient is referred for admission he 
will not renege, and will arrive when scheduled. 
The admission queue is ordered by least maximum 
waiting time, and flrst-in first-out for equal 
waiting times. Decision rules can then be applied 
to determine admissions. Those admitted have 
their pointers deleted from the admission queue 
and added to the appropriate service. 

The dally workload on each service is computed 
from the level of dependency of the patients and 
the workload factors. Daily ancillary workloads 
are computed from ancillary workload factors and 
the rate of ancillary usage for each patient, A 
statistical snapshot records the state of the system 
at the conclusion of each day. The processing 
cycles until the patient file is exhausted, at 
which point the statistics are reported. An 
arbitrary initial number of days may be skipped in 
gathering statistics to allow the system come to 
equilibrium. 

SIMULATION OUTPUTS 

There are many measures of effectiveness by 
which a policy or set of capacities can be judged, 
so a variety of statistics on workload, occupancy, 
and admissions are collected and printed. 
Generally, as much attention has been paid to 
exceptional conditions as to ordinary ones. 
Statistics of occupancy and over-occupancy are 
collected and printed, so that utilization of 
resources can he assessed. Similarly, ancillary 
workload and overload are collected and printed. 
Several statistics for the admissions process are 
printed. In addition to the average patient 
waiting time, the fraction of patients admitted 
before their maximum waiting time elapsed is also 
printed. Though not yet implemented, it is 

374 lanuary 14-16, 1974 



planned to vary admission rates by day of the 
week, and collect statistics by day, in order to 
accommodate the need for load-leveling within a 
week. 

As an example, the operation of a hospital is 
compared for identical patient sets but different 
admissions policies. The base policy, which 
represents no attempt to schedule, is to admit 
patients as soon as they are referred, irrespective 
of the state of the hospital. For comparison, 
the second policy is as follows: when in a given 
ward occupancy is above 90%, no patients other 
than emergency cases are admitted; otherwise, 
elective patients, if there are enough, are 
admitted to bring it up to that level. A patient 
is admitted on an emergency basis if his maximum 
waiting time elapses. The maximum waiting times 
by diagnosis category were estimated by two 
physicians. 

Tables I and 2 compare statistics of occupancy 
and workload on the medical service for the two 
cases, and Table 3 shows the statistics of the 
hematology lab workload, which serves all patients. 
The average utilization is nearly the same in both 
cases, because the patient set was identical. 
However, the variance in occupancy and workload 
shows a marked reduction, and the over-capacity 
statistics show no days on which ward capacity 
was exceeded. Table 4 shows the statistics of 
the admission queue for the second policy. The 
decision rule used here is only an example; one 
could use a decision rule based on ward workload 
instead of occupancy. 

The program was written in the NUALGOL 
(Norwegian University ALGOL) language for the 
UNIVAC 1106. The simulation occupies 35K words 
of permanent core storage locations, plus 
additional space for the variable data structures 
such as the patient list. The programruns in 
less than 5 minutes for a year's simulation of a 
400 bed facility. The program was written in 
modular form for flexibility and ease in debugging. 

TABLE 1 

Statistics of Occupancy - Medicine Service 

Occupancy Over-occupancy 

Mean Variance Mean Variance 

Policy i 113.0 93.7 2.7 4.7 

Policy 2 113.1 13.0 0 - 

TABLE 2 

Statistics of Workload - Medfcine Service 

Workload Units Overload 

Mean Variance Mean Variance 

104.0 100.3 5.6 21.6 

102.0 18.1 0 - 

Policy l 

Policy 2 
J 

TABLE 3 

Statistics of Workload - Hematology 

Workload Units Overload 

Mean Variance Mean Variance 

Policy 1 5.1 9.6 1.5 0.55 

Policy 2 5.0 8.0 0.i 0.08 

TABLE 4 

Admission Queue Statistics - Policy 2 

Fraction of patients admitted without delay 0.74 

Fraction admitted within max. waiting time 1.0 

'Average waiting time for deferred patients 3.9 days 
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