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Abstract 

The game of Life I involves forms built out of simple birth and death 
rules which a computer puts through a series of rapid transforma- 
tions. This game was invented by John Horton Conway and recently 
introduced in Scientific American by Martin Gardner. Manycomputers 
have been programmed to play the game of Life. In this paper we 
shall show how to return the compliment by making Life forms that 
can imitate computers. Then we shall see that many remarkable con- 
sequences follow from the existence of such constructions. Further 
we shall see that in Life there exists the possibility of organisms 
with the ability to duplicate themselves~ to reproduce. It has 
even been suggested that the universe itself is space-time granular 
and that the future although completely deterministic is unpredic- 
table, being its own fastest simulation. 

i. Introduction 

Life* is based on cellular automata theory, 
a relatively unknown branch of mathematics, 
which is fast gaining exposure and prom- 
inence. Although this subject has been 
known for about 20 years it was only just 
recently, when John Horton Conway invented 
the game of Life based on this theory that 
cellular automata really gained popularity. 
In fact, extensions to this theory and also 
information theory were possible as a re- 
sult of Life. Interestingly, these develop- 
ments were made not on a theoretical basis 
but from empirical observations. 

Unfortunately Conway has never published 
anything about the game of Life. The only 
references to his work were those origin- 
ally given in Martin Gardner's Mathematical 
Games Section of the October 1970 and 
February 1971 issues of Scientific Ameri- 
can. Readers interested in further read- 
ing on cellular automata theory and re- 
lated subjects may find the bibliography 
given at the end of this paper helpful. 

Cellular automata theory defines a uni- 
versal cellular space in which an n-dimen- 
sional space is filled with regular n- 
dimensional polyhedrons. Sometimes this 
is referred to as a 'tesselation'. This 
simply means that our universe of concern 
is divided into unit cells which are 
identical. For instance, in three dimen- 

cal cells. In two dimensions, the space is 
a plane and may be divided in any of the 
ways shown in Figure i. Each cell within 
this space can itself have any number of 
different states including an empty (or 
quiescent) state. In two dimensions, four 
different states, for example, would be 
represented as shown in Figure 2. 

Each cell also has a set of neighbor cells 
that can influence its state. Any pattern 
of neighbors may be defined such as shown 
in Figure 3. 

Having chosen the basic parameters defining 
the physical cellular space we now intro- 
duce the element of time and the concept 
of change or evolution. 

A cell~s state will change according to a 
set of transition rules that apply simul- 
taneously to every cell in the space. The 
transition rules are a function of both the 
current state of the cell and also the col- 
lective state of its neighbors. Any given 

pattern of cells will therefore change its 
state in discrete steps by recursively 
applying the transition rules. 

Conway's game of Life is based on a space 
made up of squares just like an infinite 
sheet of graph paper. Each square or cell, 
as we shall call it, has only two possible 
states: either empty or full (occupied with 
a 'bit'). These two states can be thought 

sions, the space may be divided into cubi- of as off and on or as zero and one. The 
~Throughout this papem~ ~e game of Life will simply be referred to as Life. Association 
(of Life) with life in the sense of the real universe is not meant to be implied. 
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neighborhood consists of the eight squares 
immediately surrounding a cell (See Fig- 
ure 3). With only two possible states, 
the rules for transition need only con- 
sider and be defined for a cell going from 
empty to occupied (birth) or from occupied 
to empty (death). These possible combina- 
tions of state change are shown in Figure 
4. Notice that we need only define the 
combinations involving a change of state 
(shaded areas) and that the others are im- 
plied by whatever transition rules we es- 
tablish for the former. 

Initial patterns may be constructed with 
any desired arrangement of bits (i.e., 
occupied cells). The bits in the initial 
pattern may be connected in a rookwise 
fashion, a bishopwise fashion, kingwise 
fashion (combination), or not even connec- 
ted at all. Examples of these are shown 
in Figure 5. 

By applying Conway's special transition 
rules (which we have not yet defined) to 
an initial pattern of bits we will observe 
a change in the state of the entire pattern. 
This can be done recursively to determine 
the evolution of the population of bits. 

2. Life's Rules 

We\ave now ~ri~ly d~scussed cellular 
automata theory ingeneral and specified 
the concepts of a square grid, two states, 
and the elght-cell neighborhood for Life. 
Still to be defined are the special set 
of recurslve rules which make Life so in- 
teresting and unique. 

Conway took several years to select his 
rules w~th great care to avoid two ex- 
tremes: patterns that grow too quickly 
without limit and patterns where many 
would fade away. By striking a delicate 
balance he constructed a model of 
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surprising unpredictability and one that 
produces an incredible variety o~ ~ct~ity, 

Conway chose his transition rules to meet 
these general desiderata: 

i. There should be no initial pattern 
for which there is a simple proof 
that the population can grow with- 
out limit. 

ii. There should be initial patterns 
that apparently do grow without 
limit. 

iii° There should be simple initial pat- 
terns that grow and change for a 
considerable period of time before 
coming to an end in three possible 
ways: fading away completely (from 
overcrowding or from becoming too 
sparse), settling into a stable con- 

: figuration that remains unchaDged 
thereafter, or entering into an 
oscillating .phase which repeats an 
endless cycle Of two or more periods. 

In brief, the rules should be such as to 
make the behavior of the population un- 
predictable. Conway's genetic laws are 
delightfully simple. Recall that each 
cell has exactly eight neighboring cells; 
four adjacent orthogonally and four ad- 
jacent diagonally. 

The rules are: 

BIRTHS: each empty cell with exactly 
3 neighbors whose cells are 
full (contain a bit) is a 
birth cell. A bit is placed 
in it for the next move. 

DEATHS: each full cell (containing a 
bit) with 4 or more neighbors 
dies from overpopulation. 
Every full cell with 1 or no 
neighbors dies from isola- 
tion. The bit is removed 
from it for the next move. 
In other words, every bit 
with 2 or 3 neighbors sur- 
vives (remains) for the next 
move. 

When Conway first stated his rules, he 
presented a third law for survivals but 
here we have included it with the death 
rule since survivals are implied. It is 
very important to understand that all 
births and deaths occur simultaneously. 
Together they constitute a single move, 
or as we shall call it, a 'generation', 
in the complete Life history of an ini- 
tial configuration. 

Note that we are free to chose any pattern 
desired fo~'-this beginning or zero genera- 
tion. After this, the pattern is governed 
by Conway's rules. We will find the popu- 
lation constantly undergoing unusual, 
sometimes beautiful and always unexpected 

change. ~n a few cases the ~society' even- 
tu~ dies out C~l b~t~ V~hlng~, al~ 
though this may not happen until after many 
generations. Most starting patterns do not 
die ot£t but become either stable figures - 
Conway calls them 'still lifes' - that can- 
not change or patterns that oscillate for- 
ever. Patterns with no initial symmetry 
tend to become symmetrical. Once this hap- 
pens the symmetry can never be lost, al- 
though it may increase in richness. 

3. Life's Creations 

Let us see what happens to a variety of 
simple initial patterns. 

A single bit or any pair of bits, wherever 
placed, will obviously die on the first move. 

A beginning pattern of three bits also dies 
unless at least one bit has two neighbors. 
Figure 6 shows the triplets that do not 
fade on the first move. Their orientation 
is of course irrelevant. The first three 
(a,b,c) die on the second move. In connec- 
tion with (c) it is worth noting £hat single 
diagonal chain of bits, however long, loses 
its two end bits on each move until the 
chain finally disappears. 

The last two (d and e) are the trominoes 
(three rookwise-connected bits). Pattern 
(d) becomes a stable figure which Conway 
calls a 'block t on the second move. No- 
tice that there are no empty cells with 
three full neighbors for birth and that all 
of the occupied cells each have three 
neighbors and hence survive. The initial 
pattern (e) is unusual for it evolves into 
a figure somewhat different than the others- 
it forever changes between two individual 
phases: This particular pattern will os- 
cillate with a period of two alternating 
between horizontal and vertical rows of 
three. Conway calls this a 'blinker'. 

Figure 7 shows the Life histories of the 
five tetrominoes (four rookwise-connected 
b i t s ) .  T h e  b l o c k  ( a )  i s ,  a s  we h a v e  s e e n ,  
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a still life figure. Tetrominoes (b,c and 
d) all eventually reach a stable figure 
called the 'beehive' due to its hexagonal 
resemblance to the familiar honeycell. 
Conway noted that these two still lifes 
were the most frequently produced Life 
objects. Figure 8 shows some more common 
forms of still life. Tetromino (e) is the 
most interesting of the group. After nine 
moves it becomes four separate blinkers, 
an oscillator called 'traffic lights' It 
too, is a fairly common configuration. 

One of the most remarkable of Conway's 
discoveries is the five-bit 'glider' (his 
term) shown in Figure 9. After two moves 
it has shifted and been reflected in a 
diagonal line. Geometers call this a glide 
reflection, hence the object's name. After 
two more moves the glider has righted it- 
self and moved one cell down and to the 
right from~~Tt~Tpos~i~." 

The speed a chess king moves in any direc- 
tion is called by Conway the 'speed of 
light'. Conway chose that phrase because 
it is the maximum speed at which any kind 
of movement can occur on the grid. We say, 
therefore, that a diagona~ chain decays at 
each end with the speed of light. Since 
the glider replicates itself in the same 
orientation after four moves, and has trav- 
eled one cell diagonally, one says that it 
glides across the field at a fourth the 

speed of light. Conway has proved that the 
maximum speed is a fourth the speed of light 
for a finite object moving diagonally. Move- 
ment of a finite object orthogonally (hori- 
zontally or vertically) into empty space, 
Conway has also shown, cannot exceed half 
the speed of light. Objects that move in 
any direction at any speed are extremely 
hard to find. 

In examining the twelve pentominoes (all 
patterns of five rookwise-connected bits) 
we find that five die before the fifthmove, 
two quickly reach a stable pattern of seven 
bits (Figure 8) and four in a short time be- 
come traffic lights. The only pentomino 
that does not end quickly (by vanishing, 
becoming stable or oscillating) is the 
R-pentomino (Figure i0). When Martin 
Gardner first presented Life in the October 
1970 issue of Scientific American, the fate 
of this particular object was not known - 
even to Conway. 

Gardner asked for help from his readers to 
settle this unsolved problem. Many readers 
set about writing computer programs to simu- 
late Life's rules using this seemingly un- 
obtrusive five-bit object as the initial 
pattern. Even with this additional help, 
only a few readers were able to successfully 
track the R-pentomino to its eventual fate. 
The confirmation, made by several readers, 
established that the R-pentomino reaches 
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a 'steady state' only after an astonishing 
1,103 generations~ By then six gliders 

have been produced and are traveling out- 
ward at a fourth the speed of light in 
thee different directions. The constella- 
ten (stable debris left in the center) con- 
sists of eight blocks, one boat, four bee- 
hives, one ship, one loaf, and four blinkers. 

4. Conway's Conjecture 

It thus appears that Conway did indeed es- 
tablish a set of rules that meet his ori- 
ginal desiderata. The R-pentomino was 
certainly unpredictable in its outcome, 
relative to the activity of other similar 
sized objects and especially to many who 
have attempted tracking it including Con- 
way and also, it apparently did seemingly 
show unlimited growth. Conway felt so 
strongly about his first desiderata that 
he put forth a conjecture which Martin 
Gardner presented in October 1970. In 
addition, he offered a $50 prize to anyone 
who, by the end of that year, could either 
prove or disprove it. More will now be 
said about this original conjecture. 

Conway was fully aware of earlier games 
and it was with them in mind when he seq- 
lected his recursive rules. By str~k~ng 
a delicate balance he designed a game of 
surprising unpredictability and one that 
produced such remarkable figures as oscil~ 
lators and moving gliders. He conjectured 
that no finite population could grow Gin 
number of members) without llm~t. Th~s 
was the deepest and most difficult ques- 
t/nn posed by the game when first presented 
in Gardner's first column. One way to dis- 
prove it would be to discover a configura- 
tion that continuously adds bits to the 
field. For instance, a 'gun' that re- 

peatedly shoots out moving objects such as 
the glider or a 'puffer train' that moves 
while leaving behind a trail of 'smokeJ. 

The prize was won in November 1970 by a 
group headed up by R. Wm. Gosper, Jr. in 
the Artificial Intelligence Lab at M.I.T. 
Gosper made a truly astounding discovery; 
he was able to construct an oscillating 
configuration that every 30 generations 
would create a glider~ (See Figure ii). 
Gosper's 'glider gun forms the basis of much 
of what will now be discussed. 

5. Glider Guns and Engagements 

With gliders being so plentiful via the gun 
it was only natural that 'Lifenthusiasts' 
would place gliders on various collision 
paths to see what happens. As it turned 
out, experimentors found that two gliders 
oriented in different ways would, upon col- 
liding, create different objects (stable 
and oscillating). 

Additionally, in many cases it wa~ possible 
to destroy an object by firing a pre- 
positioned glider at it. (See Figure 12). 
An exception involves the stable 'eater' 
shown in Figure 13. This uncommon object 
has the unique ability of destroying (i.e., 
eating) gliders fired at it from several 
different directions. This unusual prop- 
erty will be useful in some constructions 
to be described later. Furthermore in a 
few cases it was found possible to actually 
shift or move an object that had previously 
been formed by striking it with a well aimed 
glider. With these glider mechanics now 
available as building blocks we can con- 
struct just about anything, even the gun 
itself~ The sequence of steps involved in 
creating the gun is illustrated in Figure 14. 

Figure 11. The glider gun. 
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6. Making a Life Computer 

Many computers have been programmed to 
play the game of Life. We shall now show 
how to return the compliment by making 
Life patterns that can imitate computers. 
Then we shall see that many remarkable 
consequences follow from the existence of 
such constructions. 

a. components 

Good old-fashioned computers are made of 
pieces of wire, along which pulses of 
electricity travel. Somewhere in the com- 
puter is a mechanism called a clock pUlse 
~enerator, which generates pulses at regu~ 
lar intervals, and most of the working 
parts of the machine are made up of lo~ical 
gates, like those drawn in Figure 15. 

These gates act as follows. The OR gate 
has two input wires (A,B) and one output 
wire, which emits a pulse only when the 
gate has just received a pulse from either 

the A or the B input. The AND gate is simi- 
lar except that a pulse is emitted only when 
the gate has just received pulses at both 
the A and B inputs. A NOT gate has just 
one input, and emits a pulse only if it has 
not received one. We shall assume that a 
competent engineer can build a computer if 
he is given enough of these pieces. 

Our problem is to design a Life configura- 
tion which will act just like a computer. 
Certain ideas occur immediately. Rather 
than using electrical pulses, we can use 
gliders. Then we can do without wires - 
in effect the wires are the particular 
paths in the plane along which we intend 
to send the gliders. For the clock pulse 
generator we will use a glider gun. The 
remaining problems are simply to design the 
various pieces we shall need, and work out 
ways in which they can be 'wired together' 

With these ideas in mind, it is natural to 
study all the possible interactions of two 
gliders which meet at right angles to see 

A 

r r 

A 

Figure 15. Logical gates. 
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what use we can make of them. As we have 
already mentioned, there are many possi- 
bilities according to the exact arrange- 
ment and timing of the gliders. 

In many cases, the reaction is at first 
sight rather disappointing - the gliders 
collide to form an unstable pattern which 
then fades away completely. These are the 
vanish reactions, and they turn out to be 
surprisingly useful. We shall need to 
know only that there are several such re- 
actions with differing positions and 
timings, and in which the decay is so fast 
that later gliders in the same oncoming 
stream will not be affected. In our fig- 
ures, a star (see Figure 16) indicates a 
vanish reaction, and an arrow denotes a 
glider or glider-stream. 

Another useful reaction is the kick-back 
reaction, in which the decay product is 
another glider travelling backwards in a 
direction parallel to one of the two ori- 
ginal gliders, which we think of as having 
been kicked back by the other. This is 
indicated as in Figure 16. 

Almost all the working parts of our com- 
puter are made up by combining glider- 
streams with vanish and kick-back reac- 
tionsZ The only static parts will be 
glider guns and eaters, represented in 
the figures by the letters G and E. Re- 
member that instead of wires we have paths 
along which gliders may or may not be 
travelling in certain places - when one of 
these places does not contain a glider we 
call it a hole. In this way we can rep- 
resent an information stream in binary form. 

b. time and spatial control 

Glider-streams as they emerge from normal 
guns are so dense that it is impossible 
for two to interpenetrate without inter- 
fering. If our computer were to use 
streams at this density, we would not be 
able to draw its wiring-diagram in a plane 
with no wires ever being allowed to cross. 
Therefore we had better find some way to 
reduce the pulse-rate. A neat way is to 
use two kick-back reactions as in Figure 
17. For clarity, the rest of these figures 

have been rotated 45 degrees to show the 
streams in horizontal and vertical positions. 

Here guns Gz and G2 fire in parallel but 
• opposite directions, producing normal 
glider-streams. But there is a glider g 
which will travel West until at a it is 
kicked east by a glider from the Gz stream. 
The timing and phasing is Such that at b 
it will be kicked back towards a again, 
so it repeatedly "loops the loop", re- 
moving one glider from each of the two 
streams per cycle. After this, every Nth 
glider (say) is missing from each of these 
streams. We don't want the Gz-stream, and 
so feed it into an eater, but we feed the 
G2-stream into a vanish reaction with the 
stream from a third gun Gs. Every glider 
from G2 now dies, but every Nth glider from 
Gs escapes through one of the holes in the 
G~-stream! So the whole pattern acts as a 
"thin gun", producing just one Nth as many 
gliders as the normal gun. 

It turns out that to get the phasing right 
N must divide exactly by 4, but it can be 
arbitrarily large, and so we can make an 
arbitrarily thin stream. It is possible 
for two such streams to cross without in- 
teracting, as in the right hand part of 
the figure, provided things are properly 
timed. So from now on, we can use the 
work 'gun t to mean an arbitrarily thin guns - 
perhaps we would need a thinning factor of 
1000 for all of our design to work. 

Figure 18 shows how a glider stream can be 
repositioned accurately for its next in- 
tended use. We simply feed it through a 
number of guns (here 4), which fire at the 
same rate as the stream. Of course not 
every place in the input stream will be 
filled by a glider - it really consists of 
gliders mingled with holes. Any glider in 
the input kills a glider from the firstjgun 
Gi, yielding a hole in the emerging stream, 
while each hole in the original stream per- 
mits a glider from Gz to pass unmolested. 
The effect is that the stream is turned 
through a right angle and complemented - 
gliders being interchanged with holes. 

After an even number Of such reactions, the 
glider stream emerges unharmed, but delayed, 
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Figure 1 9. Moving a glider stream. 

and travelling in direction either paral- 
lel or opposite to its original one. Since 
there are plenty of available vanish reac- 
tions, we can control the delay. Although 
some delay is inevitable, we can adjust it 
arbitrarily. In the same way, we can use 
the various reactions to locate the output 
stream where we want it. 

How exactly do we control the spatial lo- 
cation of all the gliders for these mani- 
pulations? A mechanism can be designed, 
so as to produce gliders where and when we 
want them. The only restrictions are that 
they be produced far apart. (See Figure 
19). A glider is initially shot from a 
gun Gi. At the right moment, a second gun 
G2 is ordered to fire, followed some time 
later by another one Gs, and then Gz and 
Gs fire alternately for some time. 

The glider from G1 is kicked back by the 
first glider from Gs, then kicked again 
by the first glider from G2, back again 
by the second from Gs, and so on. In the 
process, it is gradually 'blown' away. 
Just when it gets to the right place, G2 
and G3 stop firing, and the glider from G, 
escapes. 

Many gliders can be sent along closely 
parallel paths in the same sort of way. 
We can even arrange to use the same three 
guns Gi, G2, Gs (controlled differently) 

to send all these gliders. Later on, we 
shall need this fact that many gliders can 
be sent to controlled positions in space 
using only a fixed number of guns, in our 
carefully designed computer. 

c. lo@ical ~ates and stream duplication 

In Figure 20 we show how to build the logi- 
cal gates using only vanish reactions. In 
the case of AND and OR gates, we are forced 
to make the output streams parallel to the 
input streams, while for the NOT gate the 
output is necessarily at right angles to 
the input. If we had an easy way to turn 
streams around corners without complement- 
ing them, or complement them without turn- 
ing around corners, all would be well. 
Fortunately, the solution to another prob- 
lem automatically solves this one. 

If we want to use the information carried 
by a glider stream in several different 
places, we shall need several copies of 
the stream. This is the hardest problem 
which we still have to solve. To get some 
clues, we examine what happens when we use 
one glider to kick back the first glider 
from a gun-stream. 

Suppose that this gun-stream produces a 
glider every N generations, and we call it 
the full stream. Now it turns out that if 
N is 120 (% gun density), then when we kick 
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it with another glider, we remove just 
three gliders from the stream: This hap- 
pens as follows: 

i. The first glider (i) is kicked back 
along the full stream. 

ii. The second glider (2) then fuses 
with (1) to form a block. 

iii. The third glider (3) then anni- 
hilates this block. 

iv. All subsequent gliders from the 
full stream escape unharmed. 

We use this curious behaviour as follows. 
Suppose that our information carrying 
stream operates at i/i0 of the density of 
the full stream (say), so that the last 9 
of every 10 places on it will be empty, 
while the first place might or might not 
be full. If we use 0 for a hole, and 
block the places in ten's, our stream 
therefore looks like: 

... (000000000C) (000000000B) (000000000A) 

We first feed it into an OR gate with a 
stream of the type: 

... (00000000g0) (00000000g0) (00000000g0) 

the g's denoting gliders that are defini- 
tely present. The result is a stream: 

... (00000000gC) (00000000gB) (00000000gA) 

in which every information-carrying place 
is definitely followed by a glider g. 

This stream is used to kick a full stream 
whose gliders will be numbered for 
reference: 

• .. ( .......... ) ( ......... n) (10987654321) 

If the glider A (or B or C) is present, 
it vanquishes full stream gliders 1,2,3, 
and the following glider g escapes in the 
confusion. But if A is absent, the f~ll 
stream glider i escapes, and gliders 2,3,4 
are removed instead by the following glider 
g. So the stream which emerges is 
definitely empty except 

for the second of every ten places, and 
these places carry the original version of 
the input stream (which has not been turned 
through a right angle). The other stream 
manages ho carry the information from the 
input stream twice, in its first and fourth 
digits of each block, the first digit carry- 
ing the complement version. By feeding this 
stream into vanish reactions with other 
thin gun-streams, we can recover the original 
input stream either complemented or not, and 
freed from undesirable accompanying gliders: 
Figure 21 shows what happens to the four 
input blocks in such a system. 

From here on, it is just a matter of en- 
gineering to construct an arbitrarily 
powerful (albeit slow) computer. Our 
engineer has been given the tools - let 
him finish the job: We know that such 
computers can be programmed to do many jobs. 
The most important jobs our computer will 
be required to do all involve emitting 
sequences of gliders at precisely controlled 
positions and times. 

7. Nontrivial Self-replication 

It is known that both eaters and guns can 
be constructed by crashing suitable pat- 
terns of gliders. Using this fact, and 
also some additional information about 
the directions in which these gliders trav- 
el, we can now show that it is possible to 
build a computer simply by crashing some 
enormously large initial pattern of gliders. 
Moreover, we can design a computer whose 
sole aim in life is to 'throw' just such a 
pattern of gliders into the air. In this 
way, one computer can give birth to another, 
which can be if we like an exact copy of 
the first. Alternatively, we could arrange 
that the first computer eliminate itself 
after giving birth, then we would regard 
the second as a reincarnation of the first. 
We conclude: 

2. there are Life-patterns which be- 
have like self-replicating organisms. 

ii. there are Life patterns which move 
steadily in any desired direction, 
recovering their initial form after 
a number of generations. 

W i n t e r  S i m u l a t i o n  C o n f e r e n c e  457 



LIFE IS  UNIVERSAL! . . .  C o n t i n u e d  

Original Stream 

000000000D 

0 0 0 0 0 0 0 0  gO 
Thin Stream 

® 

i 0 Full Stream 

4- 

t 
(B present) 

0000000060 

0 0 0 0 0 0 0 g C10110 0 0 0 0 0 0 0 0 0 0 

~I ~ (B absent) 

(B present) ~ ~ (B absent) 
O0 
O0 
0 

Q OOOOOOOOOg O00000000A 
L , 

Thin Stream |Duplicate Stream 

6 
Figure 21. Duplication of an information stream. 

We have now shown that among the finite 
Life patterns there is a very small pro- 
portion which behave like self-replicating 
organisms. Moreover, it is presumably 
possible to design such patterns which will 
survive in th 9 typical Life environment (a 
sort of primordial 'broth' made of blocks, 
blinkers, gliders, etc.). It might for in- 
stance do this by shooting out masses of 
gliders to detect nearby objects and then 
take appropriate action to eliminate them. 
So one of these organisms could be more or 
less adjusted to its environment than an- 
other. If both were self-replicating, and 
shared a common territory, presumably more 
copies of the better adapted one woad sur- 
vive and replicate. 

From here on we read a very familiar story. 
Inside any sufficiently large random broth, 
we expect just by chance, that there will 
be some of these self-replicating organisms 
or creatures~ Any particularly well- 
adapted ones will gradually come to populate 
their territory. Sometimes one of the 
creatures will be accidentally modified by 
some unusual object which it was not pro- 
grammed to avoid. Most of these modifica- 
tions, or mutations, are likely to be harm- 
ful, and will adversely affect the organ- 
ism's chances of survival, but very occa- 
sionally, there will be some beneficial 

mutations. In these cases, the modified 
organism will slowly come to predominate 
in their territory, and so on. There does 
not seem to be any limit to this process 
of evolution, and so we conclude: 

It is possible indeed, that given a suffi- 
ciently large Life space set initially into 
some random state, that over long periods 
of time, self-reproducing organisms will 
emerge and populate some parts of the 
space~ 

This is slightly more than just speculation, 
since the earlier parts are based on pre- 
cisely proved theorems. Of course, 'suffi- 
ciently large' means very large indeed, and 
we cannot prove that 'living' organisms of 
any kind are likely to emerge in any Life 
space which we can construct in practice. 

8. Some Speculation 

It is remarkable how such a simple system 
of genetic rules can lead to such complex 
results. It may be argued that the small 
configurations so far looked at correspond 
roughly to the molecular level in the real 
universe. If a two-state cellular automaton 
can produce such varied and esoteric 
phenomena from these simple laws, how much 
more so our own universe? 
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Analogies with life processes are im- 
possible to resist• If a primordial broth 
of amino acids is large enough, and there 
is sufficient time, self-replicating, 
moving automata may result from complex 
transition rules built into the structure 
of matter and laws of nature• There is 
even the possibility that space-time it- 
self is granular, composed of discrete 
units, and that the universe, as Edward 
Fredkin of M.I.T. and others have sugges- 
ted, is a cellular automaton run by an 
enormous computer. If so, what we call 
motion may be only simulated motion• A 
moving particle in the ultimate microlevel, 
may be essentially the same as one of Con- 
way's gliders, appearing to move on the 
macrolevel whereas actually there is only 
an alteration of states of basic space- 
time cells in obedience to transition 
rules that have not yet been d~scovered. 
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