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ABSTRACT 

A parametric time series model is employed 
to simulate the number of aircraft present 
in an air traffic control sector. Borrow- 
ing from the work of Box and Jenkins, the 
identification, parameter estimation and 
associated tests of adequacy are illustr- 
ated using data from a low altitude con- 
trol sector. • The fitted model provides 
a usefu~ algorithm and reflects the time 
dependency which exists between the number 
of aircraft measured in consecutive time 
periods. The simulation is part of a 
larger air communications system simu- 
lation which is under development. 

I. INTRODUCTION 

The air-ground-air verbal communications 
system over which information is relayed 
between pilots and air traffic controllers 
is currently threatening to restrict the 
level of air traffic over large metropoli- 
tan areas. A fast-time computer simu- 
lation model of the communications system 
is being developed for the Federal Avi- 
ation Administration as a tool for study- 
ing system responses to changes in vari- 
ables which relate to the kinds and 
amounts of information relayed. 

While the primary object of this study is 
not to describe general patterns of traf- 
fic flow, some method of model±ng the 
number of aircraft is required. This 
"aircraft loading" is directly rel'ated to 
the proportion of a controller's time 
spent in verbal communication. For the 
purposes of the computer simulation, air- 
craft loading is treated as an exogeneous 
variable to be represented by a time de- 
pendent stochastic model. 

This paper discusses the identification 
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and estimation of a parametric time series 
model descriptlve of the aircraft loading 
experienced by a particular enroute con- 
troller handling traffic over New York 
during a four-hour period in April of 1969." 

The procedures discussed for modeling the 
response of a continuous variable over time 
have been presented by George E.P. Box and 
Gwilym M. Jenkins in their text Time Series 
Analysis Forecastin$ and Control (1970). 
They discuss the identification and esti- 
mation of a particular family of "para- 
metric" time series models called the 
Autoregressive Integrated Moving Average 
(ARIMA) models. A brief introduction to 
ARIMA processes is included for those 
readers who are unfamiliar with the method- 
ology. 

II. GENERAL DISCUSSION OF PARAMETRIC 
TIME SERIES MODELS 

In many experimental situations, where the 
variability of some quantity over time is 
of interest, sequential observations are 
taken at equally spaced intervals of -time. 
Such a set of n observations is called a 
"discrete time series" and can be simply 
expressed by 

Yt = ~t + et t = 0,1,2,...n 

where y is the observed value of the 
variabl~ at time t, nL is the unknown 
value of the underlying response at time 
t, and s is a "shock" or "error" at time 

t 
t. In many cases, N can be assumed to be 
a constant and all the variability ex- 
plained in terms of disturbances z . The 

t 
estimate of N is given by the average 

= (Xy)/n 

and the estimated disturbances by 

zt = Yt - ~ 

The parametric time series form a family 
of stochastic models appropriate for des- 
cribing the non-independence of the suc- 
cessive quantities z t. The models are 
described as autoregressive of order p, 
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moving, average of order q, operating on 
the d -h difference of the z 's. In pract- 
ice, p, d, and q are usuall~ less than or 
equal to 2. 

BACKWARDS OPERATOR: 

To elucidate the parametric models we em- 
ploy a convenient notational operator B, 
called the "backwards operator". It is 
used to identify the z taken earlier in 

time. Thus Bz t = Z t _ l t a n d  B Z z t  = z t _  2 .  

Two useful expressions involving the back- 
wards operator are the first difference 
(l-B)z t = z t - zt_ I and the second differ- 

ence (l-B)2z t = (l-2B+B2)zt = z t - 2zt_ I 

+ zt_ 2 • 

WHITE NOISE: 

The basic idea behind parametric time 
series models is that a stochastic process 
can be described as a dynamic system sub- 
ject to independent "shocks" ae. These 
shocks are assumed to be Normally and in- 
dependently distributed with zero mean and 
constant variance. The parametric model 
is a "linear filter" whichttransforms this 
"white noise" into the observed quantities 
z t. The general model is thus 

z t = ~(B)a t 

where ~(B) is the parametric model or 
transfer function of the linear filter. 

MOVING AVERAGE MODELS: 

The general moving average model of order 
q expresses the current z as a linear 

t 
function of a current shock ae and q 
previous shocks. The expression for an 
MA(q) process is given by 

z t = a t - O l a t _ l - O 2 a t _ 2 - . . . - O q a t _  q 

= (l-@IB-O2B~...-OqBq)at 

which may also be written 

z t = 8q(B)a t 

where O (B) indicates a polynomial of de- 
gree q ~n the backwards operator B. Fitt- 
ing such a model to an observed time 
series requires estimating q+2 parameters 
from the data: the mean level of the 
series nt, the q parameters 8_i .--. a@ ' 
and the variance o of the in~pendefit 
shocks a 

t" 

AUTOREGRESSIVE MODELS: 

The general autoregressive model of order 
p expresses the current z as a linear 

t 

function of a current shock a and the p 
t 

previous values z~ i, ..... The ex- 
presslon for an A~) zt-2 • process is 

or 

z t - $1zt_l - ~2zt_2 - ... - ~pZt_p= a t 

(1-$1B-~2B~...-~pBP)zt= a t 

which may also be written 

~p(B)z t = a t 

where ~(B) indicates a polynomial of degree 
p in the backwards operator B. Fitting 
such a model to an observed time series re- 
quires estimating p+2 parameters from the 
d~ta: ~, ~_,$ ..... ,~ , and the variance 

I z 
of the independen~ shocks a t . 

INTERCHANGEABILITY, MIXED MODELS AND 
STATIONARITY 

The AR and MA models are interchangeable. 
For example, the AR(1) model (1-~iB)zt=a t 

can be written as t~e infinite order MA 
model z = (l-~_B)-~a Similarly a 

i t" 
finite ~A model can be re-expressed as an 
infinite order AR model. Since models with 
the fewest parameters are almost always of 
greatest value, mixed AR-MA models are 
often used to minimize the total number of 
parameters. For example, the mi~ed 
AR(2)-MA(1) model is: (l-~iB-$2B-)zt = 

(l-@iB)a L. To estimate the parameters in 
a parametric time series model, the series 
must be stationary, that is, the para- 
meters in the model must remain invarient 
to the location of the time origin. Non- 
stationarity in the z can be induced by 
movement in ~. It i~ often possible to 
acquire the attributes of stationarity 
through the simple device of using either 
the first or second differences of the z 
in place of the original z t. A complete t 
family of parametric time series m~els of 
order p, d, q, exist; that is, a p . order 
autoregressive, operating on ~e d th 
difference, combined with a q-- order 
moving average. For example, the l,l,l 
model is written: - - - -  - - _ - ( 1 - ~ B )  C 1 - B ) z t = C i - O B ) a  t. 

BOX-JENKINS MODELING PROCEDURE 

Step i - Model Identification: 

The first step in employing the method- 
ology of parametric time series models, as 
proposed by Box and Jenkins, is to identi- 
fy the model. The most useful tool is the 
sample autocorrelation function (acf) of 
the z t. In practice, the estimated lagged 
autocorrelation coefficients up to lag k 
are plotted where k is equal to about one- 
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fourt~hof the number of observations. 
The k lagged autocorrelation ooeffic- 

ient ~k is 

rk n~k - (Zt+k_~) / ~ - 2 = (zt-z) (zt-z) 
t=l t=l 

with variance approximately 

i k-i 

Variance(r k) = -~-(1+2 iE=iri2) 

where n is the number of observations in 
the original data trace. 

Figure i shows the theoretical autocorrel- 
ation functions for moving average pro- 
cesses a~ autoregressive p~cesses of order 
1 and order 2 respectively. In general, 
a moving average process of order q will 
show non-zero autocorrelatlon coefficients 
for the first q lags. The autocorrelatlon 
coefficients for a first order autore- 
gressive process decay exponentially. The 
signs of the lagged autocorrelations may 
or may not alternate in sign. Auto- 
correlation functions for second order 
autoregresslve processes take the form of 
a sum of two decaying exponentials or of 
an exponentially decaying cosine function, 
as illustrated in Figure i. 

Remembering that estimated autocorrelation 
functions will not match the theoretical 
functions exactly, one infers from the 
shape of the estimated function which 
model, or models, sho~uld be initially 
entertained and tested. 

Autocorrelatlon functions which do not 
die out as k increases indicate non- 
stationarity of the series z . In such 
an event, the first or secon~ differences 
of the z 's are taken and their auto- 
correlations estimated in the hope of 
identifying a stationary model. 

Step 2 - Parameter Estimation: 

After the form of time series model has 
been selected, the parameters must be 
estimated. Autoregressive parameters can 
be estimated using ordinary least squares 
techniques. Moving average parameters 
require iterative least squares. Com- 
puter programs exist which will plot the 
estimated autocorrelation function and, 
given a postulated model, will estimate 
the parameters. (i) 

Step 3 - Diagnostics: 

Once the parameters of the model have 
been estimated, various checks of the 
adequacy of the fitted model must be made. 
Let z bethe disturbance predicted by the 
mode~tat time t. Then the discrepancies, 
z t -zt, between observed and predicted 
values should be independent and Normally 

distributed. A test for Normality involv- 
ing standardized skewness and standardized 
kurtosis can be used to test the hypothes- 
is that the residuals are Gaussian noise 
(see pages 86-88 of (2)). Further, the 
estimated autocorrelation function for the 
residuals should show no statistically sig- 
nificant non-zero coefficients. 

Step 4 - Forecasting and Updating: 

The fitted model may be used to forecast. 
For example, eonsider the fitted AR(2) 
model 

z = 1.2z t l-0.3zt_2÷at t 

and suppose that at time position t it is 
necessary to forecast the event at time 
position t+l. The model may then be 
written 

Zt+l = 1.2z t - 0.3zt_l+at+l. 

Since the oncoming random Normal shock 
a +_ is unknown at time position t, it is 
r~p~aeed by its expected value (zero) £o 
give the equation 

^ 

zt(l ) = 1.2z t - 0.3zt_ I 

where z (i) is read "the predicted value 
t 

of z, one unit ahead in time, made at time 
t." Predicting two units ahead in time 
would give 

^ 

zt(2 ) = 1.2zt(l ) - 0.3z t 

The extension to predictions I units ahead 
in time, ~ (1), is obvious. When a moving 
average mo~el is employed, the shocks a , 

• E 
a _ etc. are estimated uslng the dis- 
t-I 

crepancies between the previous observed 
and predicted values, thus 

at_ I = Zt_l-~t_ i. 

The one ahea4 forecasts, zt(1) , are used 
to obtain a predicted value for each ob- 
served value in the time series. The dis- 
crepancies zL+1-z~(1) are then used to 

E K 
check on the adequacy of the fitted model. 
These discrepancies should have all the 
attributes of Normally distributed, zero 
mean, homogeneous variance, independent 
events. 

Step 5 - Simulating a Time Series 

Once the steps of model identification, 
parameter estimation, and tests of ade- 
quacy have been completed, the fitted 
model may be used as an algorithm for 
generating simulated events z . To ex- 
plain, consider the fitted AR[2) model 
given above where the a t are Normally and 
independently distributed with zero mean 
with a known standard deviation. As each 
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random Normal shock a occurs; the model 
generates a corresponding value z depen- 
dent O n that shock plus the linea~ combin- 
ation of the previous two z t. The z t so 
generated from an AR(2) model can be used 
to simulate the time series originally 
employed in determining the fitted model. 

III. MODELING AIRCRAFT LOADING 

The attempt to model the number of air- 
craft which a controller is required to 
handle presented an initial problem since 
data on the number of aircraft present 
was recorded every second. It was decided 
that aircraft loading indices computed on 
a sixty-second basis would be more useful 
in the context of the communication simu- 
lation being developed. The number of 
transactions (conversations) between 
pilots and controllers, the length of such 
conversations, and the gaps between con- 
secutive communications could all be tied 
to these loading indices. Also, averages 
based on sixty one-second observations 
would eliminate the discreteness and per- 
sistence of integer numbers in the raw 
second-by-sedond data. Figure 2 is a plot 
of the sixty-second averages which were 
computed for a particular low-altitude 
sector within the New York Air Traffic 
Control Center. 

It is clear from this plot of aircraft 
loading versus time that consecutive ob- 
servations are highly correlated and that 
a parametric time series model might be an 
effective way of modeling the time depen- 
dency. To determine which type of para- 
metric time series model should be con- 
sidered, the estimated autocorrelation 
function of the observed z about the 
mean level of the data wastplotted and is 
shown in Figure 3. The plot of the esti- 
mated acf is similar to that of a second 
order autoregressive model with complex 
roots (see Figure if). 

The model proposed has the form 

(yt-n) = ~l(Yt_l-n) + ~2(Yt_2-n)+ a t • 

Estimates of four ~arameters, n, ~i' ~^' 
and the variance ~ of the a+'s, were ~hus 
required. An initial estimate of ~ was 
given by the average of the y 's. Esti- 
mates of ~ and ~ were computed from the 

± Z 
first and second estimated lagged auto- 
correlation coefficients using the Yule- 
Walker equations (see p. 60 of (i)). 
Iterative computer algorithms were used to 
search for better parameter estimates, but 
in this case only one iteration was per- 
formed on the initial estimates and the 
change was not significant. The fitted 
model is 

z t = 1.24 zt_ 1 - .34 zt_2 + at 

where 

zt = Yt - 3.78 and 2 = 0.57. a 

Tests of the adequacy of the fitted model 
were then performed. If the model fits 
well, the residuals (i.e., observed dist- 
urbances z t minus the predicted values 
determined from z_ i and z ~) should be 

E-- E--~ 
Normally and independently dlstributed. 
The histogram of the residuals, shown in 
Figure 4, has the general shape associated 
with the Normal density function. Tests 
based on the estimated skewness and esti- 
mated kurtosis do not contradict the hy- 
pothesis that the residuals are Normally 
distributed at the 99% and 95% confidence 
levels, respectively. Figure 5 is a plot 
of the estimated autocorrelation function 
for the residuals. At all lags, the esti- 
mated autocorrelation coefficients fall 
within two standard deviations of zero. A 
Chi-Square test performed on the estimated 
autocorrelations was also not significant 
at the 95% confidence level. The hypothe- 
sis that the residuals are independent is 
not contradicted. It was thus felt that 
the fitted model adequately described the 
stochastic nature of the data. 

An illustration of how this model is used 
to forecast ahead in time is given in 
Figure 6. The original time series is 
shown along with the forecasts one unit 
ahead in time. That is, at each time t 
an estimate is made of y given the 

t 
previous values of Yt - and Yt 2" The 
forecasts for time t are superimposed on 
the observed series as plus signs (+). It 
should be noted how closely the forecasts 
follow the general pattern of the series. 

The next step was to use the fitted model 
to simulate aircraft loading as required 
in the model for the verbal communications 
system. Figure 7 is a simulated time 
series employing the fitted model, based 
on a set of Normally distributed random 
shocks. The general shape of the simu- 
lated response does conform well to that 
of the original series. One additional 
restriction on the simulated series was 
necessary, since actual aircraft loading 
is clearly bounded at zero. Since the 
probability of the simulated series ex- 
tending below zero did exist, any random 
shock which would have sent the series 
below zero was replaced. 

A stochastic model was thus developed 
which simulated the general aircraft 
loading pattern exhibited by the particu- 
lar air traffic control sector under con- 
sideration. This model is now being 
integrated into a larger computer simu- 
lation of the communications problem. 

IV. GENERAL APPLICABILITY 

The use of parametric time series models 
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in describing the response of continuous 
variables over time is no longer an un- 
commo~ technique, yet its general applica- 
bility in various simulation problems is 
often overlooked. The modeling of exo- 
geneous variables in many studies might 
often be more easily accomplished by fitt- 
ing a parametric time series model rather 
than by trying to simulate the complex 
operations which give rise to those varl- 
ables. The time series approach allowed 
us, in this instance, to ignore relation- 
ships which were not Of interest in the 
context of our larger problem, and pro- 
vided an accePtable and parsimonious 
stochastic model for the relevant exo- 
geneous variable. In this way, we have 
been able to concentrate our efforts on 
studying the efficiency of the verbal 
communications system rather than on the 
detailed mechanisms of air traffic flow. 
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