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ABSTRACT 

Although simulation involves solvlng a mathematical model through experimentation, the llterature 
of simulation does not reflect a broad, sustained interest in the design of slmulatlon experiments. The 
objective of this paper is to fulfill a part of this need by suggesting a general flve-phase experi- 
mental approach for determinlng the optimum for a partlcular, but common, type of slmulation problem. 
The majority of the suggested procedure makes use of existing design and analysis techniques. However, 
the problem of multlmodal simulation outcomes has resulted in the development of the "random factorial" 
experimental design. This design is a combination of a complete factorial design and a random balance 
design. The majority of the paper is devoted to a discussion of the use of this design approach for 
solving the multlmodal problem. 

OPTIMIZATION PROBLEM 

The r e s u l t  of  an e v a l u a t i o n  run of  a s i m u l a t i o n  model i s  the  d e t e r m i n a t i o n  o f  a n u m e r i c a l  v a l u e  f o r  
one o r  more s i m u l a t i o n  outcome v a r i a b l e s .  As p o i n t e d  out  by Box and Hun te r  ( 2 ) ,  one of  the  two p o s s i b l e  
o b j e c t i v e s  of  a s i m u l a t i o n  s t u d y  i s  t o  d e t e r m i n e  the  s e t  o f  v a l u e s  f o r  the  d e c i s i o n  v a r i a b l e s  which 
y i e l d s  the  optimum v a l u e  f o r  a p a r t i c u l a r  outcome v a r i a b l e .  At t imes  the  comple te  e n u m e r a t i o n  o f  a l l  
possibilities might be used to accomplish this objective. However, oftentimes complete enumeration is 
not feasible. This latter Situation is that considered in this paper. Furthermore, the paper will be 
concerned with static, statistical simulations. The decision variables are assumed to be quantitative, 
and the response surface of slmulatlon outcomes to possibly be multlmodal. 

A simulation involves solving a symbollc model by obtaining numerlcal outcome values. Thus, it 
is not inherently optimizing. To solve the optimization problem posed here, one must superimpose optl- 
mizatlon upon the model by varying the declsion-varlable values in search of the optimum outcome. A 
procedure which specifies the manner for performing such a search is suggested in the followlng section. 

OPTIMIZATION PROCEDURE 

The s e a r c h  f o r  t he  optimum outcome o f  a r e sponse  f u n c t i o n  i n v o l v e s  the  t h r e e  d i s t i n c t ,  b u t  i n t e r -  
r e l a t e d ,  sub - p r ob l ems  of  (1) i n v e s t i g a t i n g  the  g l o b a l  p r o p e r t i e s  o f  the  r e sponse  f u n c t i o n ,  (2) i n v e s t i -  
g a t i n g  t he  l o c a l  p r o p e r t i e s  o f  t he  r e s p o n s e  f u n c t i o n ,  and (3) i d e n t i f y i n g  the  o p t i m a l  s o l u t i o n .  
A c c o r d i n g l y ,  t h e  f i r s t  p a r t  of  our  o p t i m i z a t i o n  p r o c e d u r e  i n v o l v e s  e x p e r i m e n t a t i o n  o v e r  the  e n t i r e  
s o l u t i o n  space  i n  o r d e r  t o  e s t a b l i s h  g l o b a l  p r o p e r t i e s  o f  the  r e s p o n s e  f u n c t i o n .  The o b j e c t i v e  of  t h i s  
e x p e r i m e n t a t i o n  i s  to  t r a n s f o r m  the  o r i g i n a l  o p t i m i z a t i o n  p rob lem i n t o  a number of  s m a l l e r  and more 
manageable  p r o b l e m s .  

An obv ious  f i r s t  s t e p  toward the  accompl i shment  o f  t h i s  o b j e c t i v e  i s  to  d e t e r m i n e  w h e t h e r  a l l  t he  
decision variables included in the simulation affect the response-functlon values significantly. If 
one can identify some decision variables as having an unimportant effect, one can then set the value 
of these variables equal to some nomlnal value and treat them as deterministic parameters throughout 
the remainder of the optimization. Such a reduction, in the dimenslonallty of the optimization problem 
can greatly reduce the number of evaluation runs required. Thus, Phase I of the optimization procedure 
might be called "Determination of the Effective Decision Variables." 

There a r e  a number o f : o p t i m i z a t i o n  t e c h n i q u e s  a v a i l a b l e  which a r e  c a p a b l e  of  e f f e c t i v e l y  l o c a t i n g  
the optimum of a response surface which contains either a slngle peak or a saddlapolnt. Consequently, 
the establishment of a second global property, the existence of a peak or saddlepoint within a solution 
subspace would be advantageous. Such a solutlon subspace will be called a "locally explorable" subspace. 
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EXPERIMENTAL OPTIMIZATION ... Continued 

Accord ing ly ,  the o b j e c t i v e  of  the second phase of  the procedure  i s  to  d i v i d e  the t o t a l  s o l u t i o n  space 
i n t o  a number o f  subspaces such t h a t  the response  f u n c t i o n  over  each subspace i s  l o c a l l y  e x p l o r a b l e .  

Next the second sub-problem of  i n v e s t i g a t i n g  the l o c a l  p r o p e r t i e s  of  each of  the subspaces  can be 
cons ide red .  The o b j e c t i v e  here  i s  to e s t a b l i s h  an approximat ion  to the  response  f u n c t i o n  in  the v i c i n i t y  
o f  the l o c a l  optimum of  each subspace .  T h e r e f o r e ,  one must f i r s t  e s t i m a t e  the l o c a t i o n  of  the l o c a l  
op t ima l  s o l u t i o n  p o i n t ,  Phase I I I  of  the o p t i m i z a t i o n  p rocedure ,  and then de termine  a s u i t a b l e  ap-  
p rox ima t ing  f u n c t i o n ,  Phase IV. 

Phase V of the procedure is to consider the third sub-problem, that of identifyln 8 the global 
optimal solution point. In this phase, a figure of merit is determined for each of the local optima 
in order to establlsh which of them is the preferred operating point. Thus, the optimization problem 
previously posed will have been completely solved. 

For t h i s  p rocedure  to  be made o p e r a t i o n a l ,  i t  i s  neces sa ry  to i d e n t i f y  a p p r o p r i a t e  e x p e r i m e n t a l  
des igns  and a n a l y s i s  p rocedures  f o r  s a t i s f y i n g  the  r equ i r emen t s  of  each of  t h e s e  f i v e  phases .  A rev iew 
o f  the l i t e r a t u r e  (see (6 ) ,  Chapter  I I )  r e s u l t e d  i n  the i d e n t i f i c a t i o n  o f  a p p r o p r i a t e  des igns  and 
a n a l y s i s  p rocedures  f o r  four  o f  the  f i v e  phases .  However, f o r  Phase I I ,  the  l i t e r a t u r e  sea rch  r e s u l t e d  
i n  the conc lu s ion  t h a t  the problem of a mul t imodal  response  f u n c t i o n  i s  a d i f f i c u l t  a spec t  o f  e x p e r i -  
menta l  o p t i m i z a t i o n .  The d e t e c t i o n  o f  some measure o f  the m u l t i m o d a l i t y  of  a response  f u n c t i o n  r e q u i r e s  
an exper iment  w i th  four  o r  more l e v e l s  f o r  each v a r i a b l e ,  and as p o i n t e d  out  by Cochran and Cox 
(4, p. 273), "Experiments with all factors at four levels do not appear t o  be common." This statement 
appears to be true also for experimental designs for variables involving more than four levels. As 
a result of this finding, a new form of experlmental design, called a random factorial design, is 
suggested in the following section. 

EXPERIMENTAL DESIGNS FOR PHASE I I  
/ 

The concept  of  random f a c t o r i a l  e x p e r i m e n t a l  des igns  i s  based on the  Random Balance Experiment 
proposed by F. E. $ a t t e r t h w a i t e  (11) and on a s u g g e s t i o n  f o r  i t s  use made by Budne (3, p. 141). The 
need f o r  t h i s  new des ign  approach a r i s e s  because  the  commonly used e x p e r i m e n t a l  des igns  such as 
complete  and f r a c t i o n a l  f a c t o r i a l  des igns  r e q u i r e  an unreasonab ly  l a r g e  number o f  e v a l u a t i o n  runs f o r  
Phase IX of  the o p t i m i z a t i o n  p r o c e d u r e .  As t h i s  i m p l i e s ,  the  c r i t e r i o n  used here  i n  Judging  the 
e f f e c t i v e n e s s  of  des igns  f o r  Phase I I  i s  the number of  e v a l u a t i o n  runs r e q u i r e d .  In  a d d i t i o n ,  a second 
g e n e r a l  r equ i rement  imposed upon the Phase I I  des igns  i s  t h a t  they must p rov ide  unconfounded e s t i m a t e s  
f o r  a t  l e a s t  a l l  the main and t w o - f a c t o r  i n t e r a c t i o n  e f f e c t s .  Although J u s t i f i c a t i o n s  can be found 
f o r  n e g l e c t i n g  i n t e r a c t i o n s  i n v o l v i n g  t h r ee  or  more v a r i a b l e s  ( e . g . ,  s e a  (1, p.  313), (7, p.  91 and 
138), (IO, p. 306), and (12, p. 459)), it is generally recognized that effects involving less than three 
must be e x p l i c i t l y  cons ide red .  

To beg in  t h i s  d i s c u s s i o n  cons ide r  the a p p l i c a t i o n  o f  complete  and f r a c t i o n a l  f a c t o r i a l  des igns  to 
Phase I I .  The f i r s t  o b s e r v a t i o n  one can make f o r  these  des igns  i s  t h a t  no f r a c t i o n a l  des ign  i s  a v a i l -  
ab le  f o r  s i m u l a t i o n s  i n v o l v i n g  two, t h r e e ,  o r  fou r  d e c i s i o n  v a r i a b l e s  i f  one i s  to  o b t a i n  unconfounded 
e s t i m a t e s  o f  a l l  main and t w o - f a c t o r  i n t e r a c t i o n  e f f e c t s .  Consequent ly ,  the  number of  e v a l u a t i o n  runs 
r e q u i r e d  f o r  problems wi th  ewo, t h r e e  or  four  d e c i s i o n  v a r i a b l e s  cor responds  to" a l l  the p o s s i b l e  
factorial combinations, that is 16, 64 and 256 respectively. 

For problems wi th  more than four  d e c i s i o n  v a r i a b l e s ,  f r a c t i o n a l  f a c t o r i a l  des igns  become f e a s i b l e .  
Although f o u r - l e v e l  f r a c t i o n a l  f a c t o r i a l s  a re  no t  g e n e r a l l y  d i s cus sed  in  the l i t e r a t u r e  one can d e r i v e  
o n e - h a l f  r e p l i c a t e  des igns  f o r  f i v e  and s i x  d e c i s i o n  v a r i a b l e  problems ,  and a o n e - f o u r t h  r e p l i c a t e  
des ign f o r  seven v a r i a b l e  problems.  Acco rd ing ly ,  the numbers o f  runs f o r  t h e s e  f r a c t i o n a l  des igns  f o r  
f i v e ,  s i x ,  and seven v a r i a b l e  problems are  512, 2048, and 4096, r e s p e c t i v e l y .  

Although we have required the minimum number of levels and the minimum number of u~confounded 
affects, the number of runs required by these designs makes Phase II impractical for many simulations. 
Of course, if we require a greater number of levels and/or addltlonal unconfounded effects, the numbers 
become even more demanding of our slmulatlon resources. Therefore, it is deslrable to develop an 
experlmental-deslgn approach such as random factorlal designs which requires a smaller number of 
evaluation runs. 

A random f a c t o r i a l  des ign i s  a combina t ion  des ign  made up o f  a complete f a c t o r i a l  des ign  and a 
random ba lance  d e s i g n .  In e s s e n c e ,  a random ba lance  des ign i s  s imply one fo r  which (1) the va lues  of  
each d e c i s i o n  v a r i a b l e  are  s e l e c t e d  through the use of  some random p r o c e s s ,  and (2) the random s e l e c t i o n  
p roce s s  used fo r  each d e c i s i o n  v a r i a b l e  i s  independent  of  the  va lues  s e l e c t e d  fo r  a l l  the remain ing  
d e c i s i o n  v a r i a b l e s .  
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A "complete random factorial" design is made up of a number of fractional designs, that Is, 
"fractional random factorials," Just as a complete factorial design is made up of a number of fractional 
factorials. For each of the fractional random factorials within a complete design, a subset of the 
variables form a complete factorial design while each of the remaining variables is maintained at some 
constant value. Thus, we define two categories of varlables for each fractlonal factorial: the 
factorlal variables and the random balance variables. The former category Includes all those variables 
which form the.complete factorlal design within a fractional random factorial, and the latter category 
all the remaining variables whose values are selected such that together they form a random balance 
design. That is, the single value for each of these random balance variables is selected so as to 
satisfy the two aspects of the previously specified definition of a random balance design. 

The c o n d i t i o n ,  o r  a s s u m p t i o n ,  upon w h i c h  t h e  v a l i d i t y  o f  o u r  random f a c t o r i a l  a p p r o a c h  i s  b a s e d  i s  
t h a t  a l l  i n t e r a c t i o n  e f f e c t s  i n v o l v i n g  more t h a n  some number  o f  v a r i a b l e s ,  s a y  k ,  a r e  n e g l i g i b l e .  To 
c l a r i f y ,  c o n s i d e r  an  e x p e r i m e n t a l  d e s i g n  p r o b l e m  i n v o l v i n g  n d e s i g n  v a r i a b l e s  w i t h  L l e v e l s  e a c h .  
Suppose  f o r  t h i s  p r o b l e m ,  i t  i s  known t h a t  t h e  s i g n i f i c a n t  i n t e r a c t i o n  e f f e c t s  i n v o l v e  a t  t h e  mos t  k 
v a r i a b l e s  where  O < k <  n .  T h i s  means t h a t  t h e  p r o b l e m  c o u l d  b e  a n a l y z e d  u s i n g  t h e  r e s u l t s  o f  e x p e r i -  
m e n t a l  d e s i g n s  w h i c h  y i e l d  u n c o n f o u n d e d  e s t i m a t e s  f o r  o n l y  t h o s e  e f f e c t s  i n v o l v i n g  k f a c t o r s  o r  l e s s .  
Thus ,  a s i n g l e  k - f a c t o r  c o m p l e t e  f a c t o r i a l  would  p r o v i d e  some o f  t h e  r e q u i r e d  e s t i m a t e s ,  b u t  o n l y  t h o s e  
i n v o l v i n g  t h e  p a r t i c u l a r  s e t  o f  k f a c t o r s  i n c l u d e d  i n  t h e  d e s i g n .  E s t i m a t e s  o f  any  o f  t h e  e f f e c t s  
i n v o l v i n g  t h e  r e m a i n i n g  (n  - k)  v a r i a b l e s  wou ld  have  to  be  f o u n d  f rom t h e  r e s u l t s  o f  a d d i t i o n a l  d e s i g n s .  
A c c o r d i n g l y ,  f u r t h e r  k - f a c t o r  c o m p l e t e  f a c t o r i a l s  m i g h t  be  u s e d  t o  p r o v i d e  t h e s e  e s t i m a t e s .  

Moreover, we observe that, if it is necessary t o  estimate all the k-factor interaction effects, the 
number of individual k-factor complete factorials required is equal to the number of all possible 
combinations of n items taken k at a time, say C(n,k). The expetlmental results from all these C(n,k) 
designs would yield one estimate for each of the k-factor interaction effects, and at least one estimate 
for all the effects involving less than k variables. If, in addition, we require that the (n - k) 
variables not included in each k-factor complete factorlal satisfy the two conditions of random balance, 
then each of these C(n,k) complete factorials will have associated with it a pure random balance design 
in (n - k) variables. As previously stated, this combination of a complete factorial design and a pure 
random balance design is what we term a "fractional random factorial." The totality of all these 
C(n,k) fractional random factorlals is called here a "complete 'random factorlal design." 

The number  o f  e v a l u a t i o n  r u n s  n e c e s s a r y  f o r  t h i s  d e s i g n  a p p r o a c h  i s  s i g n i f i c a n t l y  r e d u c e d  f rom t h e  
number  r e q u i r e d  by  a c o n s t a n t  b a l a n c e  d e s i g n s .  F o r  e x a m p l e ,  t h e  number  o f  r u n s  f o r  a f o u r : - l e v e l ,  
s e v e n - v a r i a b l e  p r o b l e m  w i t h  k e q u a l  t o  two i s  r e d u c e d  f rom 4096 t o  336.  

ANALYSIS OF PHASE II DESIGNS 

I n  o r d e r  to  a c c o m p l i s h  t h e  o b j e c t i v e  o f  P h a s e  I I ,  t h a t  i s ,  i s o l a t e  l o c a l l y  e x p l o r a b l e  s o l u t i o n  
s u b s p a c e s ,  one mus t  p e r f o r m  a s t a t i s t i c a l  a n a l y s i s  o f  t h e  s i m i ~ l a t i o n  outcome v a l u e s  o b t a i n e d  f o r  a 
Phase II experimental design. In essence, the objective of this statistical analysis is to test for 
differences in the simulation outcome at different solution points. As demonstrated by research results 
reported by Naylor D Wertz, and Wonnacott (9), the analytical tool which is most compatible with such an 
experimental objective is the F-test of an analysle of variance. Moreover, the specific form of the 
analysis of variance which is of interest here is called the "slngle-degrae-of-freedom" approach. This 
analysis technique, which is appllcable to problems involving quantitative decision varlables with 
equi-spaced levels, provides one with an indication of the shape of a response function. Consequently, 
through the application of it to Phase II experimental results, one is able to ascertain statistically 
whether a function is locally explorable over a specified solution subspace. 

The t e c h n i q u e  f o r  g e t t i n g  t h e  sum of  s q u a r e s  n e c e s s a r y  t o  c o n d u c t  a s i n g l e - d e g r e e - o f - f r e e d o m  
a n a l y s i s  o f  v a r i a n c e  i s  t o  decompose t h e  sum o f  s q u a r e s  a s s o c i a t e d  w i t h  t h e  c o m p l e t e  e f f e c t .  T h i s  c an  
be  a c c o m p l i s h e d  by  a p p l y i n g  a s p e c i a l  s e t  o f  c o n t r a s t s  c a l l e d  o r t h o g o n a l  p o l y n o m i a l s  to  t h e  e x p e r i -  
m e n t a l l y  d e r i v e d  ou tcomes  ( s e e  ( 4 ) ,  ( 5 ) ,  (7) o r  ( 8 ) ) .  The r e s u l t  one d e r i v e s  f rom t h e  u se  o f  t h e s e  
a r e  sums o f  s q u a r e s  w h i c h  c o r r e s p o n d  t o  e s t i m a t e s  o f  a p p r o p r i a t e  s i n g l e - d e g r e e - o f - f r e e d o m  e f f e c t s  o f  a 
d e c i s i o n  v a r i a b l e .  Each main  e f f e c t  i s  decomposed i n t o  ( L - l )  e f f e c t s  whe re  L r e p r e s e n t s  t h e  number  o f  
d e c i s i o n - v a r i a b l e  l e v e l s .  These  i n c l u d e  a l i n e a r  e f f e c t ,  a q u a d r a t i c  e f f e c t ,  a c u b i c  e f f e c t ,  and  s o  on 
up t o  a f i n a l  e f f e c t  w h i c h  h a s  an  o r d e r  o f  ( L - l ) .  C o r r e s p o n d i n g l y ,  e a c h  t w o - f a c t o r  i n t e r a c t i o n  e f f e c t  
is divided into the (L-l) 2 individual two-factor effects, and so on. 

The number of slngle-degree-of-freedom effects into which the total effect of a decision varlable 
can be decomposed depends only upon the number of levels one considers for that decision variable. The 
greater the number of levels selected for a variable, the greater the number of effects which may be 
tested, and the more assurance one has that all neglected effects are actually negligible. Of course, 
the number of evaluation runs undergoes a corresponding increase. Thus, the number of levels selected 
for each varlable must be based on two confllctlng considerations: (1) accuracy of representation by 
the analysis model, and (2) resources available for making evaluatlon runs. Although a general 
discussion of these considerations cannot be given, there is some Justification for recommending that 
only four, or at the most five, levels should be utillzed for each variable. 
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EXPERIMENTAL OPTIMIZATION . . .  C o n t i n u e d  

Having e s t a b l i s h e d  t he  g e n e r a l  a n a l y s i s  p r o c e d u r e ,  we may now c o n s i d e r  t h e  s i n g l e - d e g r e e - o f - f r e e d o m  
a n a l y s i s  o f  v a r i a n c e  s p e c i f i c a l l y  f o r  the  random f a c t o r i a l  d e s i g n s  of  the  p r e v i o u s  s e c t i o n .  I t  w i l l  be 
r e c a l l e d  t h a t  each of  t h e s e  d e s i g n s  i s  made up o f  C(n ,k)  f r a c t i o n a l  random f a c t o r i a l  d e s i g n s ,  where k 
e q u a l s  the  number of  f a c t o r i a l  v a r i a b l e s  i n  t h e  d e s i g n .  In  t u r n ,  each  of  t h e  f r a c t i o n a l  d e s i g n s  i s  made 
up of  a comple te  f a c t o r i a l  d e s i g n  i n  k v a r i a b l e s  and a s i n g l e  l e v e l  f o r  the  ( n  - k) r e m a i n i n g  v a r i a b l e s .  

A d e r i v a t i o n  o f  t he  e x p e c t e d  mean squa re  e x p r e s s i o n s  ( see  (6) )  f o r  an n - f a c t o r  f r a c t i o n a l  random 
f a c t o r i a l  y i e l d s  h y p o t h e s i s  t e s t s  f o r  a l l  the  s i n g l e - d e g r e e - o f - f r e e d o m  main and i n t e r a c t i o n  e f f e c t s .  
The e x p e r i m e n t a l  outcomes of  each f r a c t i o n a l  random f a c t o r i a l  p r o v i d e  s t a t i s t i c a l  t e s t s  o f  a l l  e f f e c t s  
i n v o l v i n g  t he  k f a c t o r i a l  v a r i a b l e s ,  t h a t  i s ,  a l l  e f f e c t s  up to  and i n c l u d i n g  t h e  k - f a c t o r  i n t e r a c t i o n s .  
Each of  the  n d e c i s i o n  v a r i a b l e s  appea r s  as  a f a c t o r i a l  v a r i a b l e  i n  C ( n - l , k - 1 )  of  t h e  f r a c t i o n a l  p a r t s  
o f  a complete  random f a c t o r i a l ,  so  t he  combined a n a l y s i s  o f  a l l  the  f r a c t i o n a l  p a r t s  p r o v i d e s  t he  
r e q u i r e d  s t a t i s t i c a l  t e s t s  o f  a l l  e f f e c t s  i n v o l v i n g  k or  fewer  v a r i a b l e s .  

ITERATIVE PROCEDURE FOR PHASE II 

Many procedures could be formulated for iteratlvely applying Phase II designs in order to define 
a set of solutlon subspaces over which the response function of a statlstlcal elmulatlon is locally 
explorable. The one we suggest is a sequentlal halving process which resembles Bolzano's method for 
finding a root of an equation. 

To b e g i n  t he  s u g g e s t e d  app roach ,  e v a l u a t i o n  runs  a r e  made over  t h e  e n t i r e  s o l u t i o n  space  b a s e d  on 
an a p p r o p r i a t e  random f a c t o r i a l  d e s i g n .  Next ,  t h e s e  e x p e r i m e n t a l  r e s u l t s  a re  a n a l y z e d  by t h e  t e c h n i q u e s  
of  t he  p r e v i o u s  s e c t i o n .  I f  t h i s  a n a l y s i s  r e v e a l s  t h a t  some of  t h e  d e c i s i o n  v a r i a b l e s  e x h i b i t  s i g n i f -  
i c a n t  c u b i c  o r  h i g h e r - o r d e r  e f f e c t s ,  we c o n t i n u e  to  t h e  second s t a g e  of  the  p r o c e d u r e .  The second  s t a g e  
i n v o l v e s  d i v i d i n g  i n t o  h a l v e s  t he  f u l l  r anges  o f  t h o s e  v a r i a b l e s  which have shown a s i g n i f i c a n t  c u b i c  o r  
h i g h e r - o r d e r  e f f e c t .  These h a l f - r a n g e s ,  t o g e t h e r  w i t h  comple te  r anges  o f  the  u n d i v i d e d  v a r i a b l e s ,  
d e f i n e  a number of  s m a l l e r  s u b s p a c e s  w i t h i n  t h e  o r i g i n a l  s o l u t i o n  s p a c e .  To c o n t i n u e ,  we make the  
n e c e s s a r y  a d d i t i o n a l  e v a l u a t i o n  runs  o v e r  each  of  t h e s e  s u b s p a c e s  b a s e d  on the  a p p r o p r i a t e  random 
f a c t o r i a l  d e s i g n ,  and a g a i n  c a r r y  ou t  the  random f a c t o r i a l  a n a l y s i s .  I f  s i g n i f i c a n t  c u b i c  o r  h i g h e r  
e f f e c t s  a r e  found f o r  any o f  t h e s e  s u b s p a c e s ,  t h e y  a r e  f u r t h e r  s u b - d i v i d e d .  The p r o c e s s  i s  c o n t i n u e d  
u n t i l  we o b t a i n  an " a d e q u a t e l y "  f i t t i n g ,  p i e c e - w i s e  q u a d r a t i c  e q u a t i o n  ove r  a number o f  s o l u t i o n  
subspaces. 

At each  i t e r a t i o n ,  o r  s t a g e ,  of  t h i s  p r o c e d u r e ,  a number o f  l e v e l s  a r e  s p e c i f i e d  f o r  each of  t he  
d e c i s i o n  v a r i a b l e s .  In  g e n e r a l  f o r  t he  f i r s t  s t a g e ,  L l e v e l s  a re  s p e c i f i e d  f o r  each  o f  the  n d e c i s i o n  
v a r i a b l e s .  As p r e v i o u s l y  d i s c u s s e d ,  L must  be g r e a t e r  t h a n  t h r e e ,  and t h e  l e v e l s  must be e q u a l l y  
s p a c e d .  At Stage Two, the  range  of  each  o f  the  v a r i a b l e s  h a v i n g  a s i g n i f i c a n t  cub ic  o r  h i g h e r - o r d e r  
e f f e c t  i s  d i v i d e d  i n t o  h a l f - r a n g e s .  For each  h a l f - r a n g e ,  L e q u a l l y  spaced  l e v e l s  a re  s p e c i f i e d .  One 
o f  t h e s e  l e v e l s  f o r  each h a l f  i s  c o i n c i d e n t  w i t h  t h e  c e n t e r  o f  the  o r i g i n a l  f u l l  r a n g e .  A c c o r d i n g l y ,  
we have a t o t a l  of  ( 2 . L - l )  l e v e l s  d e f i n e d  o v e r  t h e  f u l l  range  o f  each  of  the  d i v i d e d  v a r i a b l e s .  

Since the levels are equally spaced, not all of the (2.L-i) levels are new a t  the second stage. 
fact, only (L-l) representnew values, and the remaining L levels are those speclfled for the first 
stage. Furthermore, each of the (L-l) new levels bisects one of the intervals between two adjacent 
levels from the first stage. It is observed that the Iteratlve procedure we have presented has an 
additional analytical benefit. Namely, after the division of the range of a varlable into two equal 
parts and the addition of (L-l) new levels to the varlabla, there exist (2.L-1) equally-spaced levels 
over the full, undivided range. Consequently, before the second-stage analysis of the experlmental 
outcomes is performed, it is posslble to conduct a (2.L-l)-level analysls over the entire range. This 
supplemental analysis provldes a check on the results one has obtained for the first stage. Moreover, 
such a (2.L-l)-level analysis is possible, not only between the first and second stages, but also 
between the second and thlrd, thlrd and fourth, and any other two successive stages. In general, any 
sub-range of a variable which is divided into two equal parts at a stage s, based on the results of an 
L-level experiment, can be re-examlned after the experimental outcomes for stage (s+l) are obtained. 

In  

A d d i t i o n a l  c o n s i d e r a t i o n s  f o r  the  Phase  I I  p r o c e d u r e  such as  (1) the  s p e c i f i c a t i o n  of  the  s o l u t i o n  
p o i n t s  which must  be e v a l u a t e d  a t  each s t a g e  of  t h e  p r o c e s s ,  (2) the  d e t e r m i n a t i o n  of  t h e  c o s t  of  
e x p e r i m e n t a t i o n ,  (3) t he  p r o c e d u r e  f o r  combin ing  t h e  a n a l y s i s  r e s u l t s  o f  a l l  t h e  f r a c t i o n a l  d e s i g n s  of  
a c o m p l e t e  random f a c t o r i a l ,  and (4) t h e  l i m i t a t i o n s  imposed by t h e  p o s s i b i l i t y  o f  s t a t i s t i c a l  e r r o r s  
a r e  c o n s i d e r e d  e l s e w h e r e  (6,  C h a p t e r  V). However, f o r  t h i s  p a p e r  i t  seems a p p r o p r i a t e  to  t u r n  our  
a t t e n t i o n  to  a c o n s i d e r a t i o n  o f  an example p rob lem.  
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PHASE II EXAMPLE 

In o r d e r  to  i l l u s t r a t e  the e x p e r i m e n t a l  des ign and a n a l y s i s  p rocedure  sugges ted  h e r e ,  seven 
multimodal example problems have been examined. These examples t r e a t  a number of  the  common c h a r a c t e r -  
i s t i c s  an expe r imen t e r  i s  l i k e l y  to encoun te r  in  p r a c t i c e  such as (1) response  s u r f a c e s  composed o f  
r i d g e s ,  peaks ,  and /o r  s a d d l e p o i n t a ,  (2) response  s u r f a c e s  wi th  n o n - i n t e r a c t i n g  o r  i n t e r a c t i n g  independent  
v a r i a b l e s ,  (3) response  s u r f a c e s  wi th  extreme s lopes  o r  g radua l  s l o p e s ,  (4) cont inuous  and d i s con t i n uous  
response s u r f a c e s ,  and (5) the e f f e c t  of  Type I e r r o r s  and of  Type I I  e r r o r s .  

A l l  seven examples were fo r  the s m a l l e s t  random f a c t o r i a l  des igns  which have been d i s c u s s e d ,  t h a t  
i s ,  f o r  f o u r - l e v e l ,  t w o - d e c i s i o n  v a r i a b l e  problems.  Two reasons  account  fo r  t h i s  s e l e c t i o n .  F i r s t ,  f o r  
problems i n v o l v i n g  th ree  dimensions ( i . e . ,  two d e c i s i o n  v a r i a b l e s  t o g e t h e r  wi th  the dependent s i m u l a t i o n  
outcome) ,  the t rue  response  s u r f a c e  can be d i s p l a y e d  p i c t o r i a l l y  so one can fo l low the p rogres s  of  the 
i t e r a t i v e  p rocedure .  Second, the t w o - v a r i a b l e  procedure  i s  t h a t  which i s  used f o r  a n a l y z i n g  the r e s u l t s  
of  a l l  n - v a r i a b l e  random f a c t o r i a l s  w i th  two f a c t o r i a l  v a r i a b l e s .  These f o u r - l e v e l ,  t w o - f a c t o r i a l -  
v a r i a b l e  des igns  are  probably  the  most u s e f u l  form. 

In t h i s  s e c t i o n  we w i l l i l l u s t r a t e  the Phase I l p r o c e d u r e  through the p r e s e n t a t i o n  of  some of the 
details of one of these examples. A representation of the contours of constant expected values for this 
example is shown in lllustratlon I. As indicated, this examplehas two local maxima, one saddlepolnt, 
and a number o f  l o c a l  minima. The r e s u l t s  one  would expec t  from our Phase I I  p rocedure  are  t h a t  two 
l o c a l l y  e x p l o r a b l e  subspaces would be i d e n t i f i e d  a t  the c l o s e  of  a s econd - s t age  a n a l y s i s .  

ILLUSTRATION 1 

Expected-outcome Contours f o r  Example Seven 
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Decision Variable X 1 

Since we are concerned with two, four-level decision variables, the number of flrst-stage evaluation 
runs is sixteen. These include all the factorlal combinations for the levels 0.0, 1/3, 2/3, and 1.0 for 
both decision variables. The corresponding experimental outcomes were derived from the response surface 
equation and randomly selected error values. The analysis of the resulting sixteen outcomes begins with 
the determination of the sum of squares for the two main and the one interaction effect. 

The n e x t  s t ep  in  the procedure  i s  to  apply o r thogona l  po lynomia ls  to  these  data  i n  o rde r  to f ind  
the s i n g l e - d e g r e e - o f - f r e e d o m  components o f  the main and i n t e r a c t i o n  e f f e c t s .  The r e s u l t s  o f  t h i s  s t ep  
are shown in Table i. Since the sum of squares for interaction effect for the results obtained is zero, 
its slngle-degree-of-freedom effects are not deslgnated. 
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TABLE 1 

Stage One Single-degree-of-freedom Analysis of Variance 

Source of Degrees of Sum of F 
Variation Freedom Squares Statistic 

XlL 1 1.422 222 1580.2 

XlQ 1 0.197 533 219.5 

XiC 1 0.800 000 888.9 

X2L 1 0.000 000 0.0 

X2Q 1 3.160 573 3511.7 

X2C 1 0.000 000 0.0 

XlX 2 9 0.000 000 -- 

These  r e s u l t s  i n d i c a t e d  t h a t  a s e c o n d  s t a g e  e x p e r i m e n t a t i o n  i s  r e q u i r e d ,  and  t h a t  o n l y  X 1 mus t  b e  
divided. In accordance with the procedure of the previous section, the range of X 1 is divided into 
halves. The twelve additional solution points are added to the flrst-stage design. These correspond 
to the new design points created by adding three new levels to the variable X 1. These levels are i/6, 

1/2, and 5/6. When the experlmental outcomes for these new design points are added to the sixteen 
results of stage one, the resulting data are those necessary for a seven-level, flrst-stage analysis 
of X I . 

The slngle-degree-of-freedom effects for the second-stage subspace (0.0 ~<Xi~ 0.5 , O.0~X2~ 1.0) 
are given in Table 2. These data indicate that the quadratic components of the two main effects give an 
adequate empirical representation of the response over this subspace~ so a further division of this 
subspace is not required. Similar results for the remaining second-stage subspace (0.5~X1~1.0, 
0.0~X2~l.O) , indicate that no further analysis is necessary for it. 

TABLE 2 

Stage Two Single-degree-of-freedom AnalFsls of V a r i a n c e  

S o u r c e  o f  D e g r e e s  o f  Sum o f  F 
V a r i a t i o n  Freedom S q u a r e s  S t a t i s t i c  

XiL 1 0.000 000 0.0 

XiQ 1 3.160 573 3511.7 

XiC 1 0.000 000 0.0 

X2L 1 0.000 000 0.0 

X2Q 1 3.160 573 3511.7 

X2c 1 0.000 000 0.0 

XlX 2 9 0.000 000 -- 
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RESULTS AND CONCLUSIONS 

A summary of all the examples examined is shown in Table 3. In this table, we give for each 
example evaluated (i) the five characteristics which describe the problem situation analyzed, (2) the 
type of Phase II results which would be considered ideal, and (3) an indication of the actual results 
obtained through the use of the Phase II procedure. 

TABLE 3 

SUMMARY OF PHASE II EXAMPLES 

Example Composition Independent Slope of Surface Stage One No. of Sub- 
Number of Surface Variables Surface Continuity Error Spaces 

Ideal Actual 

1 Peaks Interacting Very Steep Continuous None 2 20 

2 Ridges Non-Interactlng Gradual Continuous None 2 2 

3 Ridges Interacting Gradual Continuous None 16 16 

4 Ridges Nonilnteractlng Gradual Continuous None 2 2 

5 Peaks Interacting Gradual Continuous None 2 2 

5 Peaks Interacting Gradual Continuous Type I 4 4 

6 Ridges Non-lnteracting Gradual Discontinuous None 4 4 

6 Ridges Non-lnteracting Gradual Discontinuous Type II 4 4 

6 Ridges Non-lnteractln 8 Gradual Discontinuous None 2 2 

7 Saddlepolnt Non-lnteractlng Gradual Continuous None 2 2 
and Peaks 

As shown i n  t h e  l a s t  two co lumns  o f  t h i s  t a b l e ,  t h e  p r o c e d u r e  p e r f o r m e d  i n  an  i d e a l  m a n n e r  f o r  a l l  
t h e  e x a m p l e s  e x c e p t  Example Number One. The f a i l u r e  t o  o b t a i n  an  i d e a l  ou tcome f o r  t h i s  example  i s  t h e  
r e s u l t  o f  t h e  e x t r e m e  s l o p e s  a s s o c i a t e d  w i t h  t h e  p e a k s  o f  t h i s  r e s p o n s e  s u r f a c e .  I n  e s s e n c e ,  t h e  
P h a s e  I I  p r o c e d u r e  c a l l s  f o r  d i v i d i n g  t h e  t o t a l  s o l u t i o n  s u b s p a c e  i n t o  s m a l l e r  and s m a l l e r  s u b s p a c e s  
u n t i l  t h e r e  i s  no  n e e d  f o r  c u b i c  and h i g h e r  o r d e r  t e r m s  i n  an  e m p i r i c a l l y  d e r i v e d  p o l y n o m i a l  r e p r e -  
s e n t a t i o n  o f  t h e  r e s p o n s e  s u r f a c e .  Fo r  s u r f a c e s  w i t h  e x t r e m e  s l o p e s ,  t h i s  c o n d i t i o n  i s  n o t  s a t i s f i e d  
u n t i l  v e r y  s m a l l  s u b s p a c e s  h a v e  b e e n  d e f i n e d .  

Similar results would be expected for response surfaces with very sharp discontinuities. Although 
Example Number Six showed that the procedure is effective for a particular discontinuous surface, this 
is not a result which could be generally expected. The discontinuity of this example was such that it 
was well suited to the Phase II procedure. 

In general, the procedure was effective for response surfaces made up of peaks, ridges, or 
saddlepoints, and for response surfaces with either interacting or non-lnteracting independent variables. 
The insertion of a Type I error in the first-stage results for Example Number Five did affect the 
effectiveness of the procedure. However, a Type I error does have the adverse effect of increasing 
the number of resulting subspaces. The reaction of the Phase II procedure to the insertion of a Type II 
error in the first stage results of Example Number Six also was favorable. The fact that a Type II 
error was inserted was uncovered in the second stage. 

In summary, it is felt that the ideas suggested in this paper fulfill a part of the need for 
experimental design approaches to simulation experiments. In particular, we have suggested (1) a five- 
phase experimental optimization procedure for computer simulations; (2) a form of experimental design 
suited to Phase II of the optimization procedure; and (3) an Iteratlve Phase ll procedure compatible 
with computer-controlled simulations. However, there is a need for additional theoretical and experi- 
mental research in this area. 
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