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In this paper a discrete event system is 
a dynamical system in which the term event 
is used to describe the occurence of a 
discontinuous change in the elements of 
the system at a point in time. Events 
occur at discrete intervals of time, which 
are not necessarily uniformly separated, 
and logical relationships govern the dis- 
continuosu changes when events occur. The 
state space is restricted to being discrete 
and finite. 

The types of discrete event systems, whiah 
satisfy the above requirements, include 
the following example. In many applica- 
tions of computers to the control of 
complex processes, various program modules 
are used to perform specific tasks. These 
modules must be controlled, so that the 
logical decisions in using them and the 
interactions between them are coordinated 
to achieve the desired control° Similar 
control problems including start-up and 
shut-down, which can be represented as 
discrete event systems, exist in manu- 
facturing processes, warehousing, handling 
of bulk materials and computer aided diag- 
nosis. In designing a controller for 
such discrete event systems it is impor- 
tant to know whether the system is deter- 
ministic, and if it will 'hang' or cycle. 

The state of a discrete event system can 
be represented by elements of the set 
[Y,R], where Y is the set of states of 
all units in the system, and R is the 
set of schedules of future events. Because 
a change of state takes place when an 
event occurs, and the change is determin- 
istic, there exists a state transition 
function p~', which maps the state set 
[Y,R] and the event set F into the state 
[Y,R]. 

p ' :  [ Y , R ] x F ~ [ Y , R ]  I (1) 
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Not all events are able to occur at any 
instant in time. The events that can occur 
are termed enabled events, and they are 
determined by the current description of 
all the units in the system. The enabled 
events are not time dependent, because the 
state of a discrete event system remains 
constant between event occurrences. Denoting 
the set of enabled events by G, there is a 
mapping 

r': Y -~ G (2) 

Exogenous events are scheduled by external 
inputs which are termed firing variables. 
Hence, for an exogenous event to occur it 
must be fired while it is enabled. The 
events influenced by elements of the set 
R (set of schedules of future events) are 
endogenous. Endogenous events which occur 
immediately after they are enabled are 
called transient events, while those that 
do not are called delayed events. Asso- 
ciated with each delayed event is a delay 
time ~, which specifies the interval of 
time between the enabling of a delayed 
event and its scheduled,occurrence. 

In modelling delayed events time is assumed 
to be quantized in terms of a basic unit 
(clock time), a seconds. As a result, the 
delay time associated with each delayed 
event can be expressed as T = NA, where N 
is an integer. Time quantization is not 
applied to events, which are not delayed 
events. A should be chosen small enough 
to resolve any conflicts or race conditions 
between delayed events. 

When modelling a discrete event system con- 
taining delayed events, a counting unit, 
which can count the passage of time incre- 
ments, is incorporated into the model for 
each delayed event. Some exogenous events 
would be associated with each counting unit, 
and all such exogenous events are fired by 
a pulse every A seconds. Each counter is 
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started by a transient event, which has 
the same enabling conditions as the asso- 
ciated delayed event. Another transient 
event, which produces the same state change 
as the occurrence of the delayed event 
would, is enabled when the associated 
counter has counted N (NA = T). Each 
counting unit is disabled and reset to 
zero by any event occurrence which would 
disable its associated delayed event. 

In this manner, delayed events can be 
replaced in a model by adding some count- 
ing units, transient events and exogenous 
events to the model. All exogenous events 
corresponding to counters would be fired 
by one clocked input pulse (firing variable). 
The necessity for a schedule of future 
events has been eliminated by the intro- 
duction of countingunits, and so the 
elements of set R in the state descripffion 
can be eliminated. Let X be the new set 
of states of the model, and let E be the 
new set of events, such that an element 
of E corresponds to a single event occur- 
ence. The state transition function for 
this representation is 

p: x x E ~ x (3) 

If H is the set of enabled events, there 
exists a mapping 

r: X -~ H (4) 

Now, an endogenous event occurs as soon as 
it is enabled, whereas an exogenous event 
occurs only if it is fired while it is 
enabled. Denoting the set of firing vari- 
ables by S, the events which occur are 
defined by the mapping 

q ' :  H × S ~ E ( 5 )  

Combining Equations (4) and (5), a new 
function q is defined 

q :  X X S ~ E  (6) 

From Equations (3) and (6) the following 
model for discrete event systems is ob- 
tained 

®: x" = p(X,E) 

E = q(X,S) (7) 

where X'represents the next state. 

The finite state set X of the model ~, can 
be represented by the finite dimensional 
space X C D k, where D = [O,1}. If there 
are n states in the set X, then k > log~n. 
Let the number of events in the model bE 
m, that is, E has m elements. E can be 
represented by the space E = D m, so that 
each dimension of E corresponds to an event. 
If an element of a vector in the space E 
has the value l, the corresponding event 
has occurred, otherwise it has not occurred. 
In a manner similar to the representation 
of the state set, the set of firing vari- 
ables S, can be efficiently represented by 
direct binary encoding. 

Having defined the spaces X, E and S, a 
Boolean difference equation model can be 
developed from Equation (7). The state 
change for each event E~ can be represented 
by a Boolean vector C~,~and all the state 
changes for a model c~n be incorporated in 
a matrix C, where each row of C represents 
the state change of an event. The enabling 
and firing conditions for each event Ej can 
be embodied in the matrix expression 

E = BiX + B2X + B3S + B~ __ 

such that if a row of this expression has 
the value 0, the corresponding event occurs. 
Bi, B2, B 3 and B 4 are matrices of Boolean 
variables; If A is a Boolean matrix and X 
a vector of appropriate dimension, then AX 
is defined by the normally implied multi- 
plication and addition operations interpreted 
as 'AND' and 'OR' operations, respectively. 

is the negation of X. By matching the rows 
of matrix C with those of expression E, a 
formulation for the model equivalent to 
Equation (7) is obtained 

x" = C(E)¢X .(8) 
E = BiX + B2X + B3S + B4S 

'EXCLUSIVE OR' operations are represented 
by "¢". 

In this formulation, if X and S cause the 
ith row of E to have the value 0, then the 
event corresponding to that row ogcurs and 
the next state is determined by X = C i @ 
X, where C i is the ith row of C. When 
a transient and an exogenous event, or two 
or more transient events are enabled by a 
given state X, two or more rows of E can 
have the value 0. If E does not have a 
row with value 0 for a given X and S, then 
no event occurs and the state X remains un- 
changed. 

Boolean matrix equation models of the above 
form, can be investigated for determinacy, 
zero states and cycles. The Boolean matrix 
equations are quite compact and can be 
efficiently programmed on a digital computer. 
Algorithms have been derived for determining 
whether transient events interactr and 
whether transient event cycles exist. The 
zero states of a model have been shown to 
be solutions of a simple Boolean matrix 
equation. 
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