Check for
Updates

Data Base Contamination and Recovery

Murray Edelberg

Sperry Research Center
Sudbury, Massachusetts 01776

ABSTRACT

An approach to dealing with the contamination problem in the con-
text of a simple model of a multi-process data base environment
is described. We present an algorithm which, given a specifica-
tion of a set of data transfers which are judged to have been
possible contaminators, tracks the possible spread of contamina-
tion among processes and data blocks. This algorithm can be used
as a diagnostic tool for recovery. Also, for environments in
which it is feasible to rerun processes, we-describe an algorithm
which determines a recovery strategy. The strategy consists of
processes to be rerun, blocks to be restored to a prior image,
and appropriate prior images for these blocks.

hg

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800296.811523&domain=pdf&date_stamp=1974-05-01

I. INTRODUCTION

Bachman [1] observes that there are two basic challenges to ‘the integrity of
data in a computing environment in which multiple processes access and update

shared data. One is interference, the other is contamination.

Interference occurs when two or more processes, each of which would be correct
if running alone, interact to produce incorrect results. Contamination in-
volves the propagation of undetected errors among processes and data., In

this paper we are concerned exclusively with the contamination problem.

As a simple example, consider the figure below, in which the circles represent

1
Py 2 b,
3 4
Py by :
5
Py 6 b3

processes, squares represent data blocks, and labeled directed lines represent
data transfers which occur in the order suggested by the labels. If process
p1 transfers incorrect data to block by via the transfer labeled 4, then
transfers 5 and 6 may propagate the error, thereby affecting process p3 and
block bg.

If errors are detected soon after they occur then opportunity for contamination

is limited. In some applications it may be possible to detect errors committed

420

by a process before that process completes. In such cases it is possible to
eliminate contamination entirely by locking all data items updated by a process
until that process completes correctly. However, any error which escapes early

detection can be propagated after completion of the offending process.

Recovery from contamination may involve processes and blocks other than those
that have been contaminated. In the figure above, if a corrected version of
process py is to be rerun then it may be necessary to restore block by to its
image prior to transfer 2, Furthermore, if b1 is restored then it may also

be necessary to rerun process po.

In this paper we describe an approach to dealing with the contamination problem
in the context of a simple model of a multi-process data base environment. We
present an algorithm which, given a specification of a set of data transfers
which are judged to have been possible contaminators, tracks the pessible
spread of contamination among processes and data blocks. This algorithm can

be used as a diagnostic tool for recovery. Also, for environments in which

it is feasible to rerun processes, we describe an algorithm which determines

a recovery strategy. The strategy consists of processes to be rerun, blocks

to be restored to a prior image, and appropriate prior images for these blocks.

IT. THE MODEL

Our multi-process data base model consists of a set P = {plvp2.--~'Pm} of pro-
cesses, a data base B = {bl'bQ""'bn} partitioned into blocks bi' i=1,2,...,n,

and a sequence T = ('Tl.Tz,....T } of process/block data transfers.

k
At any given instant there is a subset of P which comprises the active pro-
cesseS. Once a process becomes active it remains so until completion, at which
time it departs the system, perhaps to be replaced by another'process. Exe-
cution of active processes is interleaved on one or more processors, Processes
are independent; that is, there are no precedence constraints governing exe-
cution scheduling of active processes. Processes are considered indivisible
for rollback purposes. No previous internal process state information is

saved.

421

The data base B resides on one or more mass storage devices, Data base blocks
are permanent subdivisions of B. All interactions between processes and the
data base are handled by a data management system, A process issues commands
to the data management system which in turn transfers information between that

process and one or more data base blocks in response to each command.

There are two kinds of data transfers that can take place between a process
P; and a block b., one for each direction of data movement. We use the notation
T = (pi't'bj) to represent a transfer T from p; to bj initiated at time t, and

(bj,t,pi) for a similar transfer in the reverse direction.

Transfers are indivisible; once begun they run to completion. At any given
instant in time there can be at most one transfer in progress to or from a
given block. The transfer sequence T reflects a lock-for-update mechanism,
For each transfer (pi,t,bj) there is another transfer (b.,t',pi). where t'< t,
such that no transfer involving b, occurs in the interval [t’,t]. The trans-

fer sequence T = (TI'TZ""'Tk) is ordered-by initiation time.

III. CONTAMINATION

We say that a transfer T predates a transaction Ts' written Tr<' Ts' if there
is a (not necessarily contiguous) subsequence T' = (Ti,T'.,..,Té) of T,
where T{ = (x;,t;0y;), 1 =1,2,..0,q, and q 2 1, such that:

T/ o= T/ =
(1) 1 Tr and q s
(2) Ty <t forl <cic<q
(3) Y5 = Xpq0 for 1 <i<gq.

if Tr predates Ts then we say that TS postdates Tr and write Ts-> Tr'

t It can be shown that <. is a partial ordering relation on the set of

transfers in T.

h22

It should be clear that every transfer sequence T’/ = (T{.Té,....T&) along

which an error can propagate satisfies conditions (2) and (3) above. On the
other hand, every sequence T’ satisfying (2) and (3) is not necessarily a
sequence along which an error can or will propagate. Consider two consecutive
Tl TI - ’ . s , €
transfﬁrs ; and i1 1? a sequence T satisfying. (2) and (3). If Yir X501 P
then Ti+1 may overlap Ti in time or T{ may be functionally independent of
I

i If Yir X5

+1

T € B then perhaps only a portion of block X,

" is actually

delivered to or utilized by process Yiqn:

1

We refer to a transfer Tr which propagates an error as a contaminator, and

adopt the following rule concerning the identification of contaminators:

If Tr is a contaminator and Tr <. Ts

then Ts is a contaminator.
In other words, we assume that any transfer which postdates a contaminator is
itself a contaminator. Although this assumption is not always valid, as the
preceeding paragraph suggests, it allows us to identify contaminators without
the need to interpret processes and leads to an efficient contamination track-
ing algofithm, at the possible cost of mistakenly including some non-contamina-

tors.,

Let S be a given set of contaminator-seeds drawn from T. Define S to be the

set of transfers which postdate transfers in S. T includes S and all con-

taminators generated by S.

A process or block which participates in one or more transfers in S is said
to be contaminated. A contaminated process pi (or block b.) is a contaminant
if there exists a transfer T = (pi,t,bj) (or (bj,t,pi)) in S such that T is
not predated by any other transfer in 5. In the following section we give ¢
one-pass contamination tracking algorithm which, given T and S, identifies
all contaminated/contaminant processes and blocks.

423

IV. CONTAMINATION TRACKING

Input to the algorithm consists of the transfer sequence T = (71.72....,Tk)
and a set S of contaminator-seeds. The algorithm uses three arrays: process-
status [1:m], block-status {1:n] and block-time [1:n]. Initially,

process-status [il =0, for 1 <i Sm

block-status [j1 =0

block-time [_]] = ® for 1 =j =n.

The final contents of these arrays are:

process-status [il

2 if process Py is a contaminant
1 if process P; is contaminated

0 otherwise

block-status [j1 =

2 if block bj is a contaminant
1 if block bj is contaminated
0 otherwise

block-time [j] =

t, where t is time of earliest transfer at which
block bj becomes either a contaminant or con-
taminated, if either has occurred

« otherwise.

Algorithm X

Xx1. [initializel r + 0.

X2. [get next transfer] r ¢ r+l. T ¢ Tr’ Choose appropriate substep of step
X3. according to whether T is a contaminator-seed (7 € S) and whether T
is of the form (pi.t,bj) or (bj,t,pi).

Lk

X3. [update arrays]
(a) Tes, Tz (pi.t,bj)

if process-status [il = O then
process-status [i] « 2

if block-status [j1 = O then
block-status [j1 +
block-time [j1 ¢ t

—

(b) T els. T = (bjt,pi)

if process-status [i] = O then
process-status [i] + 1

if block-status [j]
block-status [j] + 2
block-time [j] ¢

il
(=4

then

ot

) T ¢s, T= (py.tby)
if process-status [i] > O then
if block-status [j] = O then

block-status [j] « 1
block-time [j] « t

(d) 7 ¢s, T= (bj,t.pi)

if block-status [j] > O then
if process-status (il = 0 then
process-status [i] ¢ 1

X4, [check for end] If r < k then go to step X2 else stop.

Algorithm X could be used at the time an error situation is detected as a
diagnostic tool for recovery. Specification of contaminator-seeds could be
done manually, based on available information such as the nature of the de-

tected error(s), knowledge of recent update activity, and spot checks of the

425

data base. This specification might be made in the form of templates such as:

(a) (pi,—.-)
(o) (bj,t,-), tzt
(c) (pi,—,bj)
d) (-, t,-), tl st= ty.

Alternatively, an algorithm similar to Algorithm X might be used to generate
all transfers which predate a given set of recent transfers known to be in

error. The transfer sequence T would be processed in reverse order, back to
a specified point in time, and the resulting set of transfers would be taken

as contaminator-seeds and used as input to Algorithm X.

V. RECOVERY FROM CONTAMINATION

For applications in which it is feasible to rerun processes, the following
algorithm provides a recovery strategy. Input to the algorithm consists of
the transfer sequence T = ('Tl,’rz....,’r) and the three arrays process-status
[lzm], block-status [1:nl], and block-time [1:n] as produced by Algorithm X.
The final contents of these arrays are:

process-status [il] =
2 if process P; is to be rejected
1 if process 1 is to be rerun

0 otherwise

block-status Ej] =

2 if block bj is to be restored to an image prior to
block-time Lj]

1 if block b, is to be restored to its image at
block-time [j]

0 otherwise

426

block-time [j] =

t, where t is the time to which block bj is to be
restored, if necessary

« otherwise.

Algorithm R

R1. [initializel r ¢ 0. another-pass + 0.

R2. [get next transfer] r ¢ r+l. T ¢ Tr‘ Choose appropriate substep of
step R3 according to whether T is of the form (pi,t,bj) or (bj,t,pi).

R3. [update arrays]

(a) T = (pi,t,bj)

if process-status [i] > O then
if t < block-time [j] then
block-status [j1 *+ 1
block-time [j1 « t

(b) T = (bj,t,pi)

if block-time [j] < t then

if process-status [il = 0 then
process-status [i] «1
another-pass ¢ 1.

R4. [check for end of pass] If r < k then go to step R2.
R5. [check for another pass] If another-pass = 1 then go to step Rl

else stop. O

Algorithm R may be used in conjunction with an audit file to recover from con-
tamination. For each transfer T = (pit,b.) in T the audit file contains a
before image entry o = (t.bj,Bj(t)), WherevB.(t) is the image of block b, just
prior to transfer T, For each j such that block-status [j]l = 1, the appropriate
audit file entry o is retrieved using indices t = block-time [j] and bj' and
block b, is restored to its image Bj(t). For each j such that block-status

[j] = 2, the audit file is searched for an entry o = (t,b,,B.(t))such that:

(a) t < block-time [jJ, and (b) t is maximal. If no such audit.file entry

427

exists then either some back up copy of block bj will be needed, or some
special measures will be necessary to reconstruct an appropriate image for
block b, .

J

It can be shown that Algorithm R has the following properties:

(a) for each process Py such that process-status (il > 0, if a transfer
(pi.t.bj) appears in T then block-time [jJ < t.

(b) for each.process p; such that process-status (il = o,
(1) if a transfer (bj,t,pi) appears in T then t < block-time [jJ.

(2) if a transfer (p,,t,b.,) appears in T then t < block-time [jJ.
i i e

From (a) we see that blocks are restored to images that existed prior to any
update activity of processes which are rejected or rerun. From (b) we see
that all interaction between the remaining processes and restored blocks has

taken place prior to the time to which blocks have been restored.

No claim of efficiency is made for Algorithm R. Indeed, it is possible to

avoid the necessity for several complete passes of the transfer sequence T by:

(a) modifying T to include an indicator identifying the point at which
each process begins, and

(b) in step R3.(b), replacing the assignment another-pass ¢ 1 by a
backup in T to the point at which process P; begins.

VI. CONCLUSIONS

The transfer sequence T cannot be maintained indefinitely. Truncation of T
is not only necessary, but also a means of controlling the amount of system
resources allocated to integrity maintenance. Of course, truncation of T
restricts contamination tracking and recovery to the period of time spanned
by T.

For some applications it may be infeasible to rerun processes. In this case
the contamination tracking method of Section IV. could be used as a diagnostic
tool in deciding what forward corrective action is required to remedy the
problem.

428

The recovery strategy described in Section V. could possibly be adapted to
run concurrently with ongoing data base activity to avoid excessive down time.
Affected data base blocks could be taken offline as they are discovered, and

placed online after they have been restored.

For some applications it may be desirable to use the transfer sequence T to
preserve the original ordering of transfers for rerun processes as.far as

possible.

This paper has dealt with some logical aspects of contamination and recovery
- for an idealized multi-process data base model. Various refinements or
extensions may be of interest. One concerns refinement of the "postdates"
relation, which specifies paths along which contamination propagates, in
order to further restrict the identification of contaminated processes and
blocks. Another involves recovery strategies for environments in which it

is infeasible to rerun processes.

429

ACKNOWLEDGMENT

This work has benefited from discussions with my colleagues Mr. James L. Black
and Dr. Eugene Ott.

REFERENCE

1. C. W. Bachman., The Programmer as Navigator, Comm. ACM, Vol. 16, No. 11,
Nov. 1973, 653-658.

430

