
A Mechanical Proof of the Unsolvability of the Halting
Problem

ROBERT S. BOYER AND J STROTHER MOORE

The University of Texas at Austm, Austin, Texas

Abstract. A proof by a computer program of the unsolvability of the halting problem is described. The
halting problem is posed in a construcUve, formal language. The computational paradigm formalized
~s Pure LISP, not Tunng machines. The machine was led to the proof by the authors, who suggested
certain function definitions and stated certain intermediate lemmas. The machine checked to ascertain
that every suggested definition was admissible and the machine proved the main theorem and every
lemma. It is beheved this is the first instance of a machine checking that a given problem is not solvable
by machine.

Categories and Subject Descriptors: F. 1.0 [Computation by Abstract Devices]: General; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs--mechanical
vertficatton; F.4.1 [Mathematical Logic and Formal Languogesl: Mathematical LOgic.--computational
logw; 1.2.3]Artificial Intelligence]: Deduction and Theorem Proving--mathematical inductwn

General Terms: Theory, Verificatmn

Additional Key Words and Phrases: Automatic theorem provang, interpreters, LISP, program verifica-
tion, recurswe unsolvability, termination

1. Summary

Our current theorem-proving system, a descendant of systems described in [J]
and [2], has proved that no computer program can decide whether a given program
halts on a given input. To lead the theorem prover to the proof, we suggested nine
definitions and ten lemmas; our input to the theorem prover is presented in Section
6. To our knowledge, this is the first mechanically checked proof of the recursive
unsolvability of any problem.

The model of computation used in our statement of the halting problem,
described in Section 2, is Pure LISP, not Turing machines. The unsolvability
theorem is proved in a constructive logic like those of Skolem [7] and Goodstein
[4], a logic that does not provide for bound variables ranging over infinite domains.
The logic is briefly sketched in the Appendix.

In Section 3 we present a constructive statement of the unsolvability of the
halting problem. Sections 4 and 5 contain an informal version of the proof.

The research reported here was supported by National Science Foundation Grant MCS-8202943 and
Office of Naval Research Contract N00014.81-K-0634.

Authors' address: Institute for Computing Science and Computer Applications, The University of Texas
at Austin, Austin, TX 78712.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercml advantage, the ACM copyright notice and the title of the
publicauon and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0004-54 ! 1/84/0700-0441 $00.75

Journal of the AssoclaUon for CompuUng Machinery, Vol 31, No 3, July 1984, pp. 441-458

http://crossmark.crossref.org/dialog/?doi=10.1145%2F828.1882&domain=pdf&date_stamp=1984-06-26

442 R. S. BOYER AND J S. MOORE

The proof is an example of program verification via interpretive semantics.
We ask the reader, before continuing, to imagine a machine-checkable proof of

the unsolvability of the halting problem complete in every detail. For example, if
the Turing machine approach is adopted, then, among many other details, one
must contemplate the G&telization of Turing machines necessary to pass one
machine as an argument to another.

2. The LISP Interpreter

The programming language used in our statement of the halting problem is a
version of Pure LISP [5]. We present our version by defining the logical function
EVAL, which takes four arguments:

1. an S-expression to be evaluated,
2. a variable alisP assigning values to variable symbols,
3. a function alist assigning definitions to nonprimitive function symbols, and
4. a natural number, indicating the maximum depth of function calls.

EVAL returns either the value of the S-expression in the given environment or else
it returns the object (BTM).

(BTM) is an object in the logic, axiomatized as an element of a "new" type using
the shell principle, and is recognized by the function BTMP, which returns T or F
according to whether its argument is (BTM). Furthermore, (BTM) is not equal to
T, F, or any number, literal atom, or CONS. Thus (IF (BTM) 1 2) = I. The reader
is cautioned against thinking that a logical term involving (BTM) is necessarily
(BTM).

That EVAL permits the computation of all partial recursive functions from the
nonnegative integers to the nonnegative integers, and is consequently "universal,"
is easy to see for those with experience in LISP programming. In particular, we can
write an alist of function definitions tmi defining a LISP program, 'TMI, which
acts as a Turing machine interpreter when applied to (1) a tree of numbers suitably
encoding a Turing machine and (2) an input integer. Let us call tm* the "suitable
encoding" of Turning machine tm. Then we obtain the following theorem for all
Turing machines tm and all nonnegative integers j and n:

tm halts on input n with answerj
if and only if

for some integer k,
(EVAL (LIST 'TMI tm* n) NIL tmi k) = j.

We describe a mechanical proof of this theorem in [9].

We describe EVAL in the next three sections. In Section 2.1 we present EVAL
formally. In Section 2.2 we paraphrase the formal definition in English. In Section
2.3 we give some example S-expressions and the values assigned by EVAL. These
sections may be read in any order.

2.1. FORMAL D~CI~IPTION OF EVAL. Formally, EVAL is defined to satisfy
the equation below. The formal logic used is sketched in the Appendix. The
functions GET, EVLIST, SUBRP, APPLY.SUBR, and PAIRLIST, used in the
equation, are discussed informally below and defined formally in Section 6.

t An alist is a list of pairs.

Mechanical Proof of Halting Problem Unsolvability

(EVAL X VA FA N)

(IF (NLISTP X)
(IF (NUMBERP X)

X
(IF (EQUAL X 'T)

T
(IF (EQUAL X 'F)

F
(IF (EQUAL X NIL)

NIL
(GET X VA)))))

(IF (EQUAL (CAR X) 'QUOTE)
(CADR X)

(IF (EQUAL (CAR X) 'IF)
(IF (EQUAL (EVAL (CADR X) VA FA N)

(BTM))
(BTM)
(IF (EVAL (CADR X) VA FA N)

(EVAL (CADDR X) VA FA N)
(EVAL (CADDDR X) VA FAN)))

(IF (EQUAL (EVLIST (CDR X) VA FA N)
(BTM))

(BTM)
(IF (SUBRP (CAR X))

(APPLY.SUBR (CAR X)
(EVLIST (CDR X) VA FAN))

(IF (EQUAL (GET (CAR X) FA)
(BTM))

(BTM)
(IF (ZEROP N)

(BTM)
(EVAL (CADR (GET (CAR X) FA))

(PAIRLIST (CAR (GET (CAR X) FA))
(EVLIST (CDR X) VA FAN))

FA
(SUBI N))))))))).

443

The function GET takes two arguments. The second is understood to be an alist.
GET looks up its first argument in the alist and returns the associated value if one
is found. Otherwise, GET returns (BTM).

(EVLIST L VA FA N) treats L as a list of S-expressions, x~, . . . , Xk, and returns
the list of their values

(LIST (EVAL x~ VA FA N) . . . (EVAL x~ VA FAN)).

However, should any x, evaluate to (BTM), EVLIST returns (BTM).
Strictly speaking, our logic prohibits the definition of mutually recursive func-

tions such as EVAL and EVLIST. The actual definitions of EVAL and EVLIST,
which are presented in Section 6, are preceded by the definition of a function EV,
which has five arguments, the first being used as a flag. Then (EVAL X VA FA N)
is defined to be (EV 'AL X VA FA N) and (EVLIST X VA FA N) is defined to be
(EV 'LIST X VA FAN). The admissibility of EV under the principle of definition
follows from the observation that in each recursion either the last argument
decreases or it stays even and the size of the second argument decreases.

(SUBRP X) returns T or F according to whether X is a member of '(ZERO
TRUE FALSE ADD 1 SUB 1 NUMBERP CONS CAR CDR LISTP PACK UN-

444 R.S. BOYER AND J S. MOORE

PACK LITATOM EQUAL LIST). These are the primitives, other than 'IF and
'QUOTE, interpreted by EVAL.

APPLY.SUBR takes two arguments, the name of a primitive and a list of
arguments, and returns the result of "applying" the primitive to the arguments.
For example, (APPLY.SUBR 'CONS L) is (CONS (CAR L) (CADR L)) and
(APPLY.SUBR 'LIST L) is L. For the purposes of the unsolvability proof obtained
here, it is necessary that CONS and LIST be among the primitives recognized by
SUBRP and interpreted as above by APPLY.SUBR. Within these restrictions,
arbitrary other names could be recognized by SUBRP and interpreted by AP-
PLY.SUBR.

Finally, PAIRLIST takes two arguments. It pairs successive elements from the
first with those from the second until the first list is empty. PAIRLIST returns the
list of such pairs. Thus, (PAIRLIST '(A B C) '(1 2 3)) is '((A. 1) (B. 2) (C. 3)).

2.2. AN ENGLISH PARAPHRASE OF EVAL. To determine the value of an S-
expression, X, under the variable alist VA, function alist FA, and maximum
function call depth N, EVAL uses the following rules:

If X is not a list,
then
if X is a number, its value is X;
if X is the atom 'T, its value is true;
if X is the atom 'F, its value is false;
if X is the atom 'NIL, its value if 'NIL;
otherwise, X is treated as a variable symbol and

its value is found by looking it up in VA.

Otherwise, X is a list. Let fn be the first element of X and let x, xn be the remaining
elements, which we will call the "actual expressions."
Iffn is 'QUOTE, the value of X is x~.
Iffn is 'IF, the value of X is (BTM) if the value ofxj is (BTM) and otherwise the value of
X is either the value of x3 or of x2, according to whether the value of Xl is false. Thus, our
conditional is a 3-place IF that tests against false instead of an n-place COND that tests
against NIL.

Otherwise, evaluate the actuals of X, xt xn, under the current VA, FA, and N. If any
actual evaluates to (BTM), the value of X is (BTM).
Iffn is a primitive function name, the value of X is obtained by applying the appropriate
primitive function to the evaluated actuals.

Otherwise, look for a definition offn on FA.
ff no definition is found, the value of X is (BTM).
If a definition is found, it consists of two parts: a list, called the formals offn, and an S-
expression, called the body offn.
If the maximum function call depth, N, is 0 (or not a natural number), the value of X is
(BTM).

Otherwise, form a new variable alist by pairing the formals offn with the evaluated actuals.
The value of X is then the value of the body offn under the new variable alist, the current
function alist, FA, and maximum function call depth N - 1.

2.3. EXAMPLES OF EVAL. We now illustrate the programming language de-
fined by EVAL. We do so by displaying some simple theorems about EVAL that
show the values of various S-expressions in various environments.

Let v be the following variable alist, in which 'A has the value '(1 2 3) and 'B
has the value '(A B C D):

v. '((A. (l 2 3)) (B. (A B C D))).

Mechanical Proof of Halting Problem Unsolvability 445

Let w be the following variable alist, in which 'A has the value 0 and 'B has the
value '(A B C D):

w. '((A. 0) (B. (A B C D))).

Le t fbe the following function alist, defining the program APP:

f. '((APP (X Y)
(IF (EQUAL X NIL)

Y
(CONS (CAR X)

(APP (CDR X) Y))))).

Then the following equalities are theorems:

(EVAL 5 v fN) = 5. I.
2. (EVAL'A v fN) = '(1 2 3).
3. (EVAL '(QUOTE (E. 3)) v f N) = '(E. 3).
4. (EVAL '(IF A T F) v f N) -- T.
5. (EVAL '(CONS 7 NIL) v f N) = '(7).
6. (EVAL '(IF X l 2) v f N) -- (BTM).
7. (EVAL'(APPAB)vfN) -- (IF(LESSPN4)

(BTM)
'(1 2 3 A B C D)).

8. (EVAL '(APP A B) w f N) -- (BTM).

A proof of Theorem 4 depends on the fact that '(1 2 3) is not F and that the
value of the literal atom 'T is T. Theorem 6 may be proved from the observation
that 'X is not given a value by the variable alist v. Theorem 7 informs us that
under variable alist v and function alist f, '(APP A B) evaluates to (BTM) if the
maximum function call depth is less than 4, and evaluates to '(1 2 3 A B C D) for
all other depths. On the other hand, Theorem 8 informs us that under the variable
alist w, '(APP A B) evaluates to (BTM) for all function call depths. A proof of
Theorem 8 may be constructed from the observations that the value of 'A in w is
0, 0 is not NIL, and the CDR of 0 is 0.

3. The Halting Problem

Given an expression X it is not usually meaningful to ask whether it halts. One
must consider whether it halts when evaluated under a particular variable alist and
function alist.

When we say "the evaluation of X under VA and FA halts," we mean that there
exists an n such that (EVAL X VA FA n) is not (BTM). Similarly, to say "the
evaluation of X under VA and FA does not halt" means no such n exists, that is,
for all n (EVAL X VA FA n) is (BTM). We have seen that '(APP A B) under the
variable alist

'((A. (1 2 3))
(B. (A B C D)))

halts, whilc under the variable alist

'((A. o)
(B. (A B C D)))

it does not halt.
To solve the halting problem, we desire a function alist containing a definition

of a program named 'HALTS and its subroutines. 'HALTS must have the following
properties. As input 'HALTS must take three arguments, an expression, x, and

446 R.S. BOYER AND J S. MOORE

two alists, va andfa. Given a sufficient function call depth, the evaluation of a call
of 'HALTS on such arguments must return either T or F. If the answer is T, then
the evaluation of x under va and fa should halt. If the answer is F, then the
evaluation o f x under va andfa should not halt.

Let us now be more formal. Suppose we have in mind some function call depth
N and some function alist FA on which 'HALTS is purportedly defined. Observe
that

H. (EVAL (LIST 'HALTS
(LIST 'QUOTE x)
(LIST 'QUOTE va)
(LIST 'QUOTE fa))

NIL FA N)

is the value of 'HALTS when applied to some x, va, and fa (with function call
depth N). l f H is equal to F we will say that " 'HALTS reports that x, va, and fa
does not halt" and if H is equal to T we will say that " 'HALTS reports that x, va,
and fa does halt."

We want to prove that for every function alist FA there exist x, va, and fa such
that for all function call depth N, 'HALTS reports incorrectly. That is,

l i f 'HALTS reports that x, va, and fa does not halt; that is, H --- F, then there
exists a k such that (EVAL x vafa k) ~ (BTM); and

l i f 'HALTS reports that x, va, and fa halts; that is, H = T, then for all K,
(EVAL x vafa K) --- (BTM).

Since ours is a constructive logic, we must express this without the existential
quantification over x, va, fa, and k. In particular, we must exhibit for any FA the
required x, va, and fa, and for any FA and N the required k. We therefore seek to
express x, va, and fa as functions of FA and k as a function of FA and N. It suffices
to define k as a function of N only. Given definitions of x, va, fa, and k, our
statement of the unsolvability of the halting problem is

HP. (IMPLIES
(EQUAL H (EVAL (LIST 'HALTS

(LIST 'QUOTE (x FA))
(LIST 'QUOTE (va FA))
(LIST 'QUOTE (fa FA)))

NIL FAN))
(AND
(IMPLIES

(EQUAL H F)
(NOT (BTMP (EVAL (x FA) (va FA) (fa FA) (k N)))))

(IMPLIES
(EQUAL H T)
(BTMP (EVAL (x FA) (va FA) (fa FA) K))))).

4. Definitions o f x, va, fa, and k

The functions x, va, fa, and k must be defined by the user of our theorem prover
before the unsolvability result can be posed to the theorem prover. These definitions
are the key to the unsolvability proof.

The intuitive idea behind the definition of x, va, and fa is: x should use 'HALTS
to ask, of itself, "Does this program terminate?" and then either infinitely recur or
not, in opposition to the answer supplied by 'HALTS. Therefore when x is
evaluated under va and fa it must reconstruct x, va, and fa and call 'HALTS on
those objects.

Mechanical Proof o f Halting Problem Unsolvability 447

Let us attempt to meet these constraints by first considering the following list of
two definitions:

'((CIRC (A)
(IF (HALTS (QUOTE (CIRCA))

(LIST (CONS (QUOTE A)
A))

A)
(LOOP)
T))

(LOOP NIL (LOOP))).

Let fa be defined to append this list to the front of FA, the function alist that
purportedly solves the halting problem. Let x be defined to return the expression
'(CIRCA), and let va return the singleton alist in which A is bound to fa (i.e., we
pass as the argument to 'CIRC the definition of 'CIRC and its subroutines). The
reader should confirm that if EVAL is applied to (x FA), (va FA), and (fa FA), the
results of evaluating the arguments to 'HALTS inside 'CIRC are (x FA), (va FA),
and (fa FA), as desired.

It remains to define k. If, with function call depth N, 'HALTS reports that
(x FA) does not halt under (va FA) and (fa FA), we must exhibit a function call
depth k sufficient for (x FA) to halt. Given our previous choices it is clear that k
should be N + I.

Some readers could now "prove" HP. But HP is not a theorem, and a careful
attempt to prove HP uncovers a technical flaw in our definitions. Consider what
happens when 'HALTS is called inside 'CIRC. After the actuals are evaluated they
are bound to the formals of 'HALTS and the resulting alist is used as the variable
alist in the evaluation of the body of 'HALTS. But the function alist used is that
containing 'CIRC, 'LOOP, and the definition of 'HALTS and its subroutines.
How do we know that the evaluation of the body of 'HALTS will not be affected
by the presence of our definitions for 'CIRC and 'LOOP? The answer is: we do
not know. Suppose the definition of 'HALTS on FA uses a subroutine named
'CIRC defined differently from above. Then our attempt to define 'CIRC will
either overwrite the old definition of 'CIRC (causing 'HALTS to behave differently)
or will be ignored (causing 'CIRC to behave differently) dePending on whether we
add our definition of 'CIRC to the front or the back of the function alist containing
'HALTS. A similar problem arises for 'LOOP.

However, here a lemma about EVAL can help us.

LEMMA 1. Suppose that FN is a function name that does not occur as a program
name in the expression X and does not occur in the body o f any function defined in
a function alist FA. Let FA1 be FA with one additional definition on it, namely
that o f the function FN. Then (EVAL X VA FAI N) is (EVAL X VA FAN).

Lemma 1 holds even if the result is (BTM). The proof is by induction on X and
N. The actual version of this lemma, proved in Section 6, is a generalization
concerning the function EV.

Thus, instead of choosing 'CIRC and 'LOOP as the names of our programs we
should choose "new" names, names constructed from the given FA so as to be
guaranteed not to occur in the body of 'HALTS or in any definition in FA. Since
there is no requirement in our programming language that program names be
atoms, it suffices to choose, in place of the name 'CIRC, the object (CONS FA 0),
and, in place of 'LOOP, the object (CONS FA 1). It is straightforward to show that
these names do not occur in FA.

448 R. S. BOYER AND J S. MOORE

Formal definitions of x, va, fa, and k are given in Section 6. Note that 5 of the
10 lemmas in that section were stated to establish that the definitions of 'CIRC
and 'LOOP do not interfere with the evaluation of 'HALT.

5. The Proof

We now prove HP. We use the following abbreviations:

x. (x FA)
va. (va FA)
fa. (fa FA)
k. (k N)
circ. (CONS FA 0)
loop. (CONS FA l)
body . (CADR (GET 'HALTS FA))
formals. (CAR (GET 'HALTS FA)).

Recall that H is

H. (EVAL (LIST'HALTS (LIST 'QUOTE x)
(LIST 'QUOTE va)
(LIST 'QUOTE fa))

NIL FA N).

Observe that H is equal to

H'. (EVAL body
(PAIRLIST formals

(LIST x va fa))
FA
(SUB1 N)),

unless N is 0 or 'HALTS is not defined on FA, in which case H is (BTM). Since
we must consider only the two cases H -- F and H -- T, we conclude N is not 0,
'HALTS is defined on FA, and H is H'.

Case 1: H = F. We must show that (EVAL x vafa k) # (BTM). By expanding
the definition of EVAL and the code for circ

(EVAL x va fa k)

(IF (BTMP h)
(BTM)
(IF h

(EVAL (LIST loop) vafa N)
(EVAL 'T vafa N))),

where h is

h. (EVAL body
(PAIRLIST formals

(LIST x va fa))
fa
(SUBI N)).

By two applications of Lemma 1 (one to remove the circ entry from fa and
the next to remove the loop entry from fa) we get h --- H ' -- H = F. Thus,
(EVAL x vafa k) = (EVAL 'T vafa N) = T # (BTM).

Case 2: H = T. We must show that (EVAL x vafa K) = (BTM). If K is less
than 1, then (EVAL x vafa K) is (BTM). l f K is 1 then the call of 'HALTS in the

Mechanical Proof of Halting Problem Unsolvability 449

body of circ returns (BTM) so (EVAL x vafa K) is (BTM). Otherwise

(EVAL x va fa K)

(IF (BTMP h)
(BTM)
(IF h

(EVAL (LIST loop) vafa (SUBI K))
(EVAL 'T vafa (SUBI K)))),

where h is

h. (EVAL body
(PAIRLIST formals

(LIST x va fa))
fa
(SUBI (SUBI K))).

By two applications of Lemma 1 we conclude that h = h':

h'. (EVAL body
(PAIRLiST formals

(LIST x va fa))
FA
(SUBI (SUBI K))).

Observe that in h' we have function call depth K - 2 while in H' we have N - 1.
However, the following lemma establishes that h' = H' or else (BTMP h'):

LEMMA 2. I f both (EVAL X VA FA N) and (EVAL X VA FA K) are non-
BTM, the)' are equal.

PROOF. The proof is by simultaneous induction on X, N, and K. D

Thus, h = h' = H' = H = T and hence (EVAL x vafa K) = (EVAL (LIST loop)
va fa (SUB 1 K)). However, Lemma 3, below, establishes that the latter EVAL is
equal to (BTM).

LEMMA 3. I f fn is not a primitive function symbol and the body of fn on FA is
(LISTfn), then (EVAL (LISTfn) VA FA N) is (BTM).

PROOF. The proof is by induction on N. []

Thus, the unsolvability of the halting problem has been proved.

6. Input to the Theorem Prover

In this section we present and annotate the commands typed to the theorem prover
that lead to the proof of the unsolvability of the halting problem. The theorem
prover responds to each theorem below with a proof and to each definition with a
justification under the principle of definition.

The theorem prover took 75 minutes of processor time (running block compiled
INTERLISP on a DEC 2060) to produce the proofs. Of this, 7 minutes were spent
in garbage collection and 2 minutes were spent printing out the proofs.

6.1. THE DEFINITION OF EVAL AND ITS SUBROUTINES

1. Shell Definition.
Add the shell BTM of no arguments with recognizer BTMP.

450 R.S. BOYER AND J S. MOORE

2. Definition.
(GET X ALIST)

(IF (NLISTP ALIST)
(BTM)
(IF (EQUAL X (CAAR ALIST))

(CDAR ALIST)
(GET X (CDR ALIST)))).

3. Definition.
(PAIRLIST X Y)

(IF (NLISTP X)
NIL
(CONS (CONS (CAR X) (CAR Y))

(PAIRLIST (CDR X) (CDR V)))).
4. Definition.

(SUBRP FN)

(MEMBER FN
'(ZERO TRUE FALSE ADDI SUBI NUMBERP CONS CAR

CDR LISTP PACK UNPACK LITATOM EQUAL LIST)).
5. Definition.

(APPLY.SUBR FN LST)

(IF (EQUAL FN 'ZERO) (ZERO)
(IF (EQUAL FN 'TRUE) (TRUE)
(IF (EQUAL FN 'FALSE) (FALSE)
(IF (EQUAL FN 'ADDI) (ADD! (CAR LST))
(IF (EQUAL FN 'SUBI) (SUBI (CAR LST))
(IF (EQUAL FN 'NUMBERP) (NUMBERP (CAR LST))
(IF (EQUAL FN 'CONS) (CONS (CAR LST) (CADR LST))
(IF (EQUAL FIN 'LIST) LST
(IF (EQUAL FiN 'CAR) (CAAR LST)
(IF (EQUAL FN 'CDR) (CDAR LST)
(IF (EQUAL FIN 'LISTP) (LISTP (CAR LST))
(IF (EQUAL FN 'PACK) (PACK (CAR LST))
(IF (EQUAL FN 'UNPACK) (UNPACK (CAR LST))
(IF (EQUAL FN 'LITATOM) (LITATOM (CAR LST))
(IF (EQUAL FN 'EQUAL) (EQUAL (CAR LST) (CADR LST))

o))))))))))))))).
6. Definition.

(EV FIG X VA FA N)

(IF (EQUALFIG 'AL)
(IF (NLISTP X)

(IF (NUMBERP X) X
(IF (EQUAL X 'T) T
(IF (EQUAL X 'F) F
(IF (EQUAL X NIL) NIL

(GET X VA)))))
(IF (EQUAL (CAR X) 'QUOTE)

(CADR X)
(IF (EQUAL (CAR X) 'IF)

(IF (BTMP (EV 'AL (CADR X) VA FAN))
(BTM)
(IF (EV 'AL (CADR X) VA FA N)

(EV 'AL(CADDR X) VA FA N)
(EV 'AL (CADDDR X) VA FAN)))

(IF (BTMP (EV 'LIST (CDR X) VA FAN))
(BTM)

Mechanical Proof of Halting Problem Unsolvability 451

(IF (SUBRP (CAR X))
(APPLY.SUBR (CAR X)

(EV 'LIST (CDR X) VA FAN))
(IF (BTMP (GET (CAR X) FA))

(BTM)
(IF (ZEROP N)

(BTM)
(EV 'AL

(CADR (GET (CAR X) FA))
(PAIRLIST (CAR (GET (CAR X) FA))

(EV 'LIST (CDR X) VA FAN))
FA
(sum N)))))))))

(IF (LISTP X)
(IF (BTMP (EV 'AL (CAR X) VA FAN))

(BTM)
(IF (BTMP (EV 'LIST (CDR X) VA FAN))

(BTM)
(CONS (EV 'AL (CAR X) VA FA N)

(EV 'LIST (CDR X) VA FAN))))
Nil.)).

Hint. Consider the lexicographic order induced by LESSP and LESSP on (LIST N
(COUNT X)).

7. Definition.
(EVAL X VA FA N)

(EV 'AL X VA FA N).
8. Definition.

(EVLIST X VA FA N)

(EV 'LIST X VA FA N).

6.2. TIlE DEFINITIONS OF X, va, fa, AND k. We first define APPEND (so we
can concatenate the definitions of 'CIRC and 'LOOP onto FA) and SUBLIS (so
we can substitute new names for 'CIRC and 'LOOP).

9. Definilion.
(APPEND X Y)

(IF (NLISTP X)
Y
(CONS (CAR X) (APPEND (CDR X) Y))).

10. Definition.
(ASSOC VAR ALIST)

(IF (NLISTP ALIST)
F
(IF (EQUAL VAR (CAAR ALIST))

(CAR ALIST)
(ASSOC VAR (CDR ALIST)))).

11. Definition.
(SUBLIS ALIST X)

(IF (NLISTP X)
(IF' (ASSOC X ALIST)

(CDR (ASSOC X ALIST))
x)

(CONS (SUBLIS ALIST (CAR X))
(SUBLIS ALIST (CDR X)))).

452

12. Definition.
(x FA)

(SUBLIS (LIST (CONS 'CIRC (CONS FA 0)))
(QUOTE (CIRCA))).

13. Definition.
(fa FA)

(APPEND (SUBLIS (LIST (CONS 'CIRC (CONS FA 0))
(CONS 'LOOP (CONS FA l)))

'((CIRC (A)
(IF (HALTS (QUOTE (CIRCA))

(LIST (CONS (QUOTE A) A))
A)

(LOOP)
T))

(LOOP NIL (LOOP))))
FA).

14. Definition.
(va FA)

R. S. BOYER AND J S. MOORE

(LIST (CONS 'A (fa FA))).
15. Definition.

(k N)

(ADD! N).

6.3. LEMMA l
16. Definition.

(OCCUR X Y)

(IF (EQUAL X Y)
T
(IF (NLISTP Y)

F
(OR (OCCUR X (CAR Y))

(OCCUR X (CDR Y))))).
17. Definition.

(OCCUR.IN.DEFNS X LST)

(IF (NLISTP LST)
F
(OR (OCCUR X (CADDR (CAR LST)))

(OCCUR.IN.DEFNS X (CDR LST)))).
18. Theorem. OCCUR.OCCUR.IN.DEFNS:

(IMPLIES (AND (NOT (OCCUR.IN.DEFNS FN FA))
(NOT (BTMP (GET X FA))))

(NOT (OCCUR FN (CADR (GET X FA))))).
19. Theorem. LEMMAI:

(IMPLIES (AND (NOT (OCCUR FN X))
(NOT (OCCUR.IN.DEFNS FN FA)))

(EQUAL (EV FLG X VA
(CONS (CONS FN DEF) FA)
N)

(EV FLG X VA FAN))).

We state the straightforward lemmas establishing that our chosen replacements
for 'CIRC and 'LOOP are indeed "new." We then have the system prove as,
Corollary 1, that the evaluation of the body of 'HALTS under fa is the same as

Mechanical Proof of Halting Problem Unsolvability 453

under FA. This is the sole use we make of Lemma 1, but if we do not have the
system prove this Corollary, and then forget Lemma 1, it wastes time trying to use
Lemma 1 frequently.

20. Theorem. COUNT.OCCUR:
(IMPLIES (LESSP (COUNT Y) (COUNT NAME))

(NOT (OCCUR NAME V))).
21. Theorem. COUNT.GET:

(LESSP (COUNT (CADR (GET FN FA)))
(ADDI (COUNT FA))).

22. Theorem. COUNT.OCCUR.IN.DEFNS:
(IMPLIES (LESSP (COUNT FA) (COUNT NAME))

(NOT (OCCUR.IN.DEFNS NAME FA))).
23. Theorem. COROLLARYI"

(EQUAL (EV 'AL
(CADR (GET 'HALTS FA))
VA
(CONS (CONS (CONS FA 0) DEF0)

(CONS (LIST (CONS FA l)
NIL
(LIST (CONS FA l)))

FA))
N

(EV 'AL
(CADR (GET 'HALTS FA))
VA FAN)).

24. Disable LEMMAI.

6.4. LEMMA 2
25. Theorem. LEMMA2:

(IMPLIES (AND (NOT (BTMP (EV FLG X VA FAN)))
(NOT (BTMP (EV FLG X VA FA K))))

(EQUAL (EV FLG X VA FA N)
(EV FLG X VA FA K))).

Lemma 2 in its most general form is not useful to the theorem prover as a rewrite rule.
Consequently, we state Corollary 2rathe only version of Lemma 2 we will subsequently
need--and tell the theorem prover to prove it by using Lemma 2.
26. Theorem. COROLLARY2:

(IMPLIES (EQUAL (EV FLG X VA FA N) T)
(EV FLG X VA FA K)).

Hint: Use LEMMA2.

6.5. LEMMA 3
27. Theorem. LEMMA3:

(IMPLIES (AND (LISTP X)
(LISTP (CAR X))
(NLISTP (CDR X))
(LISTP (GET (CAR X) FA))
(EQUAL (CAR (GET (CAR X) FA)) NIL)
(EQUAL (CADR (GET (CAR. X) FA)) X))

(BTMP (EV 'AL X VA FA N))).

6.6. A LEMMA TO EXPAND EVAL ON CIRC. We state a lemma that can be
regarded as a command to expand the definition of EVAL when it is applied to
'(CIRCA). The system's heuristics for expanding recursive functions fail to see the
merit of converting a question about the relatively simple expression '(CIRC A) to
a question about the more complex body of 'CIRC.

454 R. S. BOYER AND J S. MOORE

28. Theorem. EXPAND.CIRC:
(IMPLIES

(AND (NOT (BTMP VAL))
(NOT (BTMP (GET (CONS FN 0) FA))))

(EQUAL (EV 'AL
(CONS (CONS FN 0) (QUOTE (A)))
(LIST (CONS 'A VAL))
FA J)

(IF (ZEROP J)
(BTM)
(EV 'AL

(CADR (GET (CONS FN 0) FA))
(PAIRLIST (CAR (GET (CONS FN 0) FA))

(EV 'LIST
(QUOTE (A))
(LIST (CONS 'A VAL))
FA J))

FA
(SUBI J))))).

6.7. THE UNSOLVABILITY OF THE HALTING PROBLEM
29. Theorem. UNSOLVABILITY,OF.THE.HALTING.PROBLEM:

(IMPLIES
(EQUAL H (EVAL (LIST 'HALTS

(LIST 'QUOTE (x FA))
(LIST 'QUOTE (va FA))
(LIST 'QUOTE (fa FA)))

NIL FAN))
(AND
(IMPLIES

(EQUAL H F)
(NOT (BTMP (EVAL (x FA) (va FA) (fa FA) (k N)))))

(IMPLIES
(EQUAL H T)
(BTMP (EVAL (x FA) (va FA) (fa FA) K))))).

7. Discussion

One might ask what was learned by applying an existing theorem prover to a well-
known theorem? We learned several things from the exercise.

First, the halting problem can be stated in an entirely constructive logic. This
was not immediately apparent either to us or to many of our colleagues, who often
reacted to the announcement of this result by asking "How did you state that in
your logic?"

Second, it is well known that mutual recursion can be eliminated by the trick of
defining a single function that has an extra "flag" argument; however, this exercise
demonstrated to us the practical advantages to formal, mechanical proof that
accrue by taking this approach.

Suppose that explicit mutual recursion is permitted, so that EVAL is defined in
terms of EVAL and EVLIST and EVLIST is defined in terms of EVLIST and
EVAL. Consider the proof of Lemma 2, which was informally stated as "If both
(EVAL X VA FA N) and (EVAL X VA FA K) are non-BTM, they are equal." To
prove this by induction one seems to need an induction hypothesis concerning
EVLIST. To permit such a hypothesis one must first invent a stronger conjecture
to prove (one concerning both EVAL and EVLIST). Furthermore, the induction
mechanism must instantiate it in the right way so that induction hypotheses about
EVLIST are applicable to goals arising from EVAL, and vice versa. Such an

Mechanical Proof of Halting Problem Unsolvability 455

induction mechanism would be substantially more complicated than our current
o n e .

Because of our system's prohibition against mutual recursion, we defined (EV
FLG X VA FA N) so that (EVAL X VA FA N) is (EV 'AL X VA FA N) and
(EVLIST X VA FA N) is (EV 'LIST X VA FAN). We believe that the definition
of EV is as perspicuous as the alternatives. Furthermore, with EV it is natural to
state truly general theorems about both EVAL and EVLIST. For example, our
formal statement of Lcmma 2 is that if both (EV FLG X YA FA N) and (EV FLG
X VA FA K) are non-BTM they are equal--a statement that simultaneously
applies to EVAL and EVLIST. Finally, our existing induction mechanism properly
provides hypotheses about EVAL and EVLIST by choosing the appropriate instan-
tiations for FLG. Because of the exercise reported here, we believe it would be a
waste of time to mechanize any less general handling of mutual recursion.

The third and last example of the value of this exercise concerns a weakness it
exposed in the induction mechanism we described in [l]. The weakness caused the
system to select an inappropriate induction argument and was initially overcome
by using a proof-checking command to tell the system the correct induction. After
further study of the alternative induction schemes, we made a minor modification
to the induction heuristic so that it would produce the desired induction. The
modified theorem prover was then used to reprocess some 1100 theorems and
definitions in our standard benchmark, to make sure that the new heuristic
permitted the discovery of all of the proofs previously claimed for the system. (The
standard benchmark now includes the invertibility of the RSA public key encryp-
tion algorithm [3, 6].)

Although the modification we made to the induction principle was minor, the
need for the modification was not recognized by us before. Indeed, it is notable
that the system has coped with thousands of induction arguments without uncov-
ering the problem before. The reason the problem arose here is that EV is by far
the most complicated recursive function the system has studied. We are encouraged
that our previously formulated heuristic techniques have coped so well with such
a function.

The rest of this section is devoted to a description of the trouble we encountered
with our induction mechanism and the modification we made. As described in
[1], our theorem prover's heuristic for inventing an induction argument is based
on its analysis of the recursive definitions of the functions in the conjecture to be
proved. For example, since (PAIRLIST A B) is defined in terms of (PAIRLIST
(CDR A) (CDR B)), an occurrence of (PAIRLIST A B) in the conjecture to be
proved suggests CDR-induction on both A and B. Thus, the induction hypothesis
contains (PAIRLIST (CDR A) (CDR B)) where (PAIRLIST A B) appears in the
conclusion. By replacing (PAIRLIST A B) by its recursive definition, the system
tries to reduce the terms in the conclusion to their counterparts in the hypothesis.

After obtaining the suggested inductions, the theorem prover manipulates these
schemes in an attempt to generate an induction argument suitable for the conjecture
as a whole. For example, suppose both (PAIRLIST A B) and (PAIRLIST C B)
appear in the conjecture and imagine that we do the induction suggested by the
former. Then (PAIRLIST C (CDR B)) appears in the induction hypothesis where
(PAIRLIST C B) appears in the conclusion. Neither replacing (PAIRLIST C B) by
its definition nor leaving (PAIRLIST C B) alone produces the desired formula in
which the terms in the conclusion match their counterparts in the hypothesis.

As described [1, p. 193], the system tries to resolve such conflicts by "merging"
the inductions suggested by (PA-IRLIST A B) and (PAIRLIST C B) to produce a

456 R. S. BOYER AND J S. MOORE

simultaneous CDR-induction on A, B, and C. The heuristic described in [1] merges
two inductions when they share changed variables and agree on all the changed
variables. We insisted that the two agree on all shared variables so that the resulting
induction could be justified (as an induction on a well-founded relation) in the
same way as one of the two input inductions.

However, now consider Lemma 2. It contains both the terms (EV FLG X VA
FA N) and (EV FLG X VA FA K). The induction suggested by the first changes
FLG, X, VA, and N. The induction suggested by the second changes FLG, X, VA,
and K. We expected the system to merge these two inductions. But the merging
heuristic of [1] will not do so, because the two disagree on how VA should be
instantiated when the case analysis leads to the call of a user-defined function: In
one induction the new variable alist is constructed from the values of the actuals
with stack depth N while in the other induction the stack depth is K.

But the induction suggested by (EV FLG X VA FA N) is justified by the well-
founded lexicographic relation on pairs constructed from N and the size of X. In
the parlance of [1], {X N} is a measured subset for (EV FLG X VA FA N).
Similarly, IX K} is a measured subset for (EV FLG X VA FA K). A merge is sound
if it produces an induction that has the same case analysis as one of the inputs and,
in every case, agrees with the input induction on its measured subset. In the above
example, we see we can choose any instantiation of VA without affecting the
soundness of the resulting induction. We therefore altered the merging heuristic so
that, in addition to the merges permitted by [1], we now merge if the two inductions
agree on the (nonempty) intersection of their measured subsets.

8. Chronology

Our first mechanical proof of the unsolvability of the halting problem was different
from the one described here because we formalized the theorem in terms of
"computation traces" instead of with EVAL. In addition, our approach to the
quantification problem was different: we instructed the theorem prover to assume,
as an axiom, a formula that claimed that 'HALTS solves the halting problem for
all programs and then we used the theorem prover to prove that T = F. The proof
was obtained in March 1982. It took us 4 days to guide, command, and cajole the
theorem prover to this first proof of the unsolvability result. Users less familiar
with the system's heuristics might still be trying to get the proof through.

In May 1982 we defined EVAL and stated the problem as seen here. However,
where 'LOOP is called now in the definition of 'CIRC we originally called 'CIRC
recursively on A. The proof that this recursion did not terminate was somewhat
more complicated than the proof that 'LOOP does not terminate.

In June 1982 after presenting the proof at the Whitney Symposium on Com-
puter/Information Science and Technology, sponsored by General Electric, we saw
the simplification that would result from introducing 'LOOP. In addition, we
changed the theorem prover for the first time in connection with this problem, by
modifying the induction heuristic as sketched above.

Our initial attempts to define the trouble-making program 'CIRC were incorrect.
It is easy to imagine that the evaluation of x under va and fa involves asking
whether x under va and fa halts. It is harder to find definitions of x, va, and fa that
correctly ask the question; in particular, it is difficult to reconstruct the calling
environment of x in x. In addition, the unsolvability problem involves several
different levels of QUOTEma notoriously difficult construct. Several of our initial
hand proofs were erroneous (although all were meant to be formalizations of the

Mechanical Proof of Halting Problem Unsolvability 457

sketch pre,,;ented here) and the errors were uncovered by our initial attempts at
mechanical proof.

Appendix A. An Informal Sketch of the Formal Theory
We use the prefix syntax of Church [8] to write down terms. For example, we write
(PLUS X Y) where others might write PLUS(X,Y) or X + Y.

Our logic is a quantifier-free, first-order logic obtained from the propositional
calculus with equality and function symbols by adding (a) axioms for certain basic
function symbols, (b) a rule of inference permitting proof by induction on lexico-
graphic combinations of well-founded relations, (c) a principle of definition per-
mitting the introduction of total recursive functions, and (d) the "shell principle"
permitting the introduction of axioms specifying "new" types of inductively defined
objects.

The basic function symbols are TRUE, FALSE, IF, and EQUAL. The first two
are function symbols of no arguments and return distinct constants that are
abbreviated T and F, respectively. IF is a function symbol of three arguments and
is axiomatized so that (IF X Y Z) is Z if X is F and is Y otherwise. EQUAL is a
function symbol of two arguments and is axiomatized so that (EQUAL X Y) is T
if X is Y and is F otherwise.

Using the principle of definition, we introduce the functions AND, OR, NOT,
and IMPLIES in terms of IF. For example, (NOT P) = (IF P F T).

Using the shell principle we axiomatize several commonly used inductively
constructed types. Among them are:

1. Natural numbers. A natural number is either the constant (ZERO) or is constructed from
another natural number with the "constructor" function ADDI. The function NUM-
BERP "recognizes" natural numbers in the sense that (NUMBERP X) is axiomatized to
be T or F according to whether X is a natural number. The function SUB I is the
"accessor" for ADDI in the sense that if I is a natural number then (SUB1 (ADDI I)) =
I. SUB I returns (ZERO) on (ZERO) and on non-NUMBERP objects.

2. Ordered pairs. An ordered pair is constructed from any two objects by the constructor
function CONS. LISTP recognizes ordered pairs. CAR and CDR are the aecessors for
CONS: (CAR (CONS X Y)) = X and (CDR (CONS X Y)) = Y. CAR and CDR are
axiomatized to return (ZERO) on non-LISTP objects.

3. Literal atoms. A literal atom is constructed from any object by the constructor PACK.
LITATOM recognizes literal atoms. UNPACK is the accessor for PACK. UNPACK
returns (ZERO) on non-LITATOMs.

Each shell class is disjoint from the others. For example, it is an axiom that if X
is a NUMBERP then X is not a LISTP or a LITATOM.

With the introduction of each shell class we obtain a well-founded relation
permitting proof by induction and the definition of recursive functions under our
principle of definition.

We define LESSP recursively so that if I and J are NUMBERPs (LESSP I J) is
T or F according to whether I is strictly less than J.

The function COUNT assigns a numeric size to each object composed of
NUMBERPs, LISTPs, and LITATOMs. The size of a composite object is larger
than the sum of the sizes of its components. For example, (COUNT (CONS X Y))
= 1 + (COUNT X) + (COUNT Y).

A precise description of our theory is given by the combination of [1, Chap. Ill]
and [2, Sect. 3].

We now briefly discuss our notational conventions.
The number 0 is an abbreviation of (ZERO); the positive decimal numeral n is

an abbreviation of the nest of n ADD 1 s around a 0.

458 R.S. BOYER AND J S. MOORE

Nests of CARs and CDRs are abbreviated with function symbols of the form
C. . .A. . .D. . .R; that is, (CADAR X) is an abbreviation of (CAR (CDR (CAR X))).

We provide a convention for abbreviating some of our LITATOM constants. If
wrd is a sequence of ASCII characters satisfying the syntactic rules for a symbol in
our logic 2 and the ASCII codes for the successive characters in wrd are el, cn,
then 'wrd is an abbreviation for

(PACK (CONS Cl - . . (CONS cn 0). . .)) .

Thus, 'ABC is an abbreviation of (PACK (CONS 65 (CONS 66 (CONS 67 0)))).
'NIL is further abbreviated NIL.

(LIST x~ x2.. .xn) is an abbreviation for (CONS Xl (LIST x2 .- . xn)). (LIST) is
an abbreviation of NIL.

Finally, we provide a convention for abbreviating certain LISTP constants. For
example, (LIST (CONS 'A 2) (CONS 'B 0)) may be abbreviated '((A. 2) (B. 0)).
We so abbreviate any object constructed entirely by repeated CONSes from natural
numbers and those LITATOMs admitting the abbreviation convention noted
above. If x is such an object we abbreviate x by a single quote mark (') followed
by the pname of x as defined below. If x is a NUMBERP abbreviated by n, its
pname is n. If x is a LITATOM abbreviated by "wrd, its pname is wrd. Otherwise,
x is a LISTP. Let Xl, x 2 , . . . , x~ be the CARs of x and of its successive LISTP
CDRs. Let fin be the nth CDR of x (i.e., the first non-LISTP in the CDR chain).
If fin is NIL then the pname of x is an open parenthesis followed by the pname of
Xl, a space (or arbitrary amount of white space), the pname of x2, a space , . . , the
pname of x~, and a close parenthesis. If fin is non-NIL, then the pname of x is as
it would be hadfin been NIL except that immediately before the close parenthesis
there should be inserted a space, a dot, a space, and the pname of fin.

2 Roughly speaking a symbol is a string of upper- or lowercase alphanumeric or sign characters
beginning with an alphabeUc or sign character other than +, - , or dot. However, see [2, p. 133] for the
precise definition.

REFERENCES

1. BOYER, R.S., AND MOORE, JS. A ComputationalLogic. Academic Press, New York, 1979.
2. BOYER, R.S., AND MOORE, JS. Metafunctions: Proving them correct and using them efficiently

as new proof procedures. In The Correctness Problem m Computer Science, R.S. Boyer and JS.
Moore, Eds. Academic Press, London, 1981.

3. BOYER, R.S., AND MOORE, JS. Proof checking the RSA public key encryption algorithm. Am
Math Monthly 91, 3 (Mar. 1984), 181-189.

4. GOOOSTEIN, R.L. Recurswe Number Theory North-Holland Publishing Company, Amsterdam,
1964.

5. MCCARTHY, J., ABRAHAMS, P.W., EDWARDS, D.J., HART, T.P., AND LEVIN, M.I. LISP 1.5
Programmer's Manual The MIT Press, Cambridge, Mass., 1965.

6. RIVEST, R.L., SHAMIR, A., AND ADLEMAN, L. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM21, 2 (Feb. 1978), 120-126.

7. SKOLEM, T. The foundations of elementary arithmetic established by means of the recursive mode
of thought, without the use of apparent variables ranging over infimte domains. In From Frege to
Godel, J. van Heijenoort, Ed. Harvard University Press, Cambridge, Mass., 1967.

8. CHURCH, A. The calculi lambda conversion. In Annals of Mathemattcal Studies, No. 6. Princeton
Univ. Press, Princeton, N.J., 1941.

9. BOYER, R.S., AND MOORE, JS. A mechanical proof of the Turing completeness of pure LISP. In
Automatzc Theorem Prowng: After 25 Years, W. Bledso¢ and D. Loveland, Eds. American
Mathematical Society, Providence, R.I., 1984, to appear.

RECEIVED JULY 1982; REVISED FEBRUARY 1983, ACCEPTED FEBRUARY 1983

Journal of the Assoclauon for Computmg Machmery, VoL 31, No 3, July 1984.

