skip to main content
article

ACETAF: A software package for computing validated bounds for Taylor coefficients of analytic functions

Published:01 September 2003Publication History
Skip Abstract Section

Abstract

This article presents methods for practical computation of verified bounds for Taylor coefficients of analytic functions. These bounds are constructed from Cauchy's estimate and from some of its modifications. Interval arithmetic is used to obtain rigorous results.

References

  1. Alefeld, G. and Herzberger, J. 1983. Introduction to Interval Computations. Academic Press, New York.Google ScholarGoogle Scholar
  2. Braune, K. 1988. Standard functions for real and complex point and interval arguments with dynamic accuracy. Comput. Suppl. 6, 159--184.Google ScholarGoogle Scholar
  3. Braune, K. and Krämer, W. 1987. High-accuracy standard functions for real and complex intervals. In Computerarithmetic: Scientific Computation and Programming Languages, E. Kaucher, U. Kulisch, and C. Ullrich, Eds. Teubner, Stuttgart, Germany, 81--114.Google ScholarGoogle Scholar
  4. Caprani, O. and Madsen, K. 1980. Mean value forms in interval analysis. Computing 24, 147--154.Google ScholarGoogle Scholar
  5. Casado, L. G., Garcia, I., and Csendes, T. 2000. A new multisection technique in interval methods for global optimization. Computing 65, 263--269. Google ScholarGoogle Scholar
  6. Csendes, T. and Ratz, D. 1997. Subdivision direction selection in interval methods for global optimization. SIAM J. Numer. Anal. 34, 922--938. Google ScholarGoogle Scholar
  7. Free Software Foundation. 1991. GNU General Public License, Version 2. http://www.gnu.org/ licenses/licenses.html.Google ScholarGoogle Scholar
  8. Geddes, K. O. and Mason, J. C. 1975. Polynomial approximation by projections on the unit circle. SIAM J. Numer. Anal. 12, 111--120.Google ScholarGoogle Scholar
  9. Griewank, A. 2000. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia, Pa. Google ScholarGoogle Scholar
  10. Hairer, E., Nørsett, S. P., and Wanner, G. 1993. Solving Ordinary Differential Equations I, 2nd ed. Springer, Berlin, Germany. Google ScholarGoogle Scholar
  11. Hansen, E. R. 1992. Global Optimization using Interval Analysis. Dekker, New York.Google ScholarGoogle Scholar
  12. Henrici, P. 1974. Applied and Computational Complex Analysis, Vol. I. Wiley, New York. Google ScholarGoogle Scholar
  13. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. 2001. Applied Interval Analysis. Springer, London, England.Google ScholarGoogle Scholar
  14. Kearfott, R. B. 1996. Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht, Netherlands.Google ScholarGoogle Scholar
  15. Klatte, R., Kulisch, U., Lawo, C., Rauch, M., and Wiethoff, A. 1993. C-XSC: A C++ Class Library for Extended Scientific Computing. Springer, Berlin, Germany. Google ScholarGoogle Scholar
  16. Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, C. 1992. PASCAL-XSC---Language Reference with Examples. Springer, Berlin, Germany. Google ScholarGoogle Scholar
  17. Krämer, W. 1988. Inverse standard functions for real and complex point and interval arguments with dynamic accuracy. Comput. Suppl. 6, 185--212.Google ScholarGoogle Scholar
  18. Kulisch, U. and Miranker, W. L. 1981. Computer Arithmetic in Theory and Practice. Academic Press, New York. Google ScholarGoogle Scholar
  19. Lerch, M., Tischler, G., and Wolff von Gudenberg, J. 2001a. filib++---Interval library specification and reference manual. Tech. Rep. 279, Universität Würzburg, Germany.Google ScholarGoogle Scholar
  20. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., and Krämer, W. 2001b. The interval library filib++ 2.0. Design, features and sample programs. Preprint 2001/4, Universität Wuppertal, Wissenschaftliches Rechnen/Softwaretechnologie, Germany.Google ScholarGoogle Scholar
  21. Moore, R. E. 1966. Interval Analysis. Prentice Hall, Englewood Cliffs, N.J.Google ScholarGoogle Scholar
  22. Neher, M. 1997. Enclosing power series solutions of ODEs. ZAMM 77, S2, S635--S636.Google ScholarGoogle Scholar
  23. Neher, M. 2001a. Geometric series bounds for the local errors of Taylor methods for linear n-th order ODEs. In Symbolic Algebraic Methods and Verification Methods, G. Alefeld, J. Rohn, S. Rump, and T. Yamamoto, Eds. Springer, Wien, Austria, 183--193.Google ScholarGoogle Scholar
  24. Neher, M. 2001b. The mean value form for complex analytic functions. Computing 67, 255--268. Google ScholarGoogle Scholar
  25. Neher, M. 2001c. Validated bounds for Taylor coefficients of analytic functions. Rel. Comput. 7, 307--319.Google ScholarGoogle Scholar
  26. Neher, M. 2003a. A complex mean value form for curves. Preprint 03/4, Fakultät für Mathematik, Universität Karlsruhe, Germany.Google ScholarGoogle Scholar
  27. Neher, M. 2003b. Improved validated bounds for Taylor coefficients and for Taylor remainder series. J. Comput. Appl. Math. 152, 393--404. Google ScholarGoogle Scholar
  28. Neumaier, A. 1990. Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, England.Google ScholarGoogle Scholar
  29. Rall, L. B. 1981. Automatic Differentiation: Techniques and Applications. Lecture Notes in Computer Science, vol. 120. Springer, Berlin, Germany.Google ScholarGoogle Scholar
  30. Ratschek, H. and Rokne, J. 1984. Computer Methods for the Range of Functions. Ellis Horwood Ltd. Chichester, England.Google ScholarGoogle Scholar
  31. Ratschek, H. and Rokne, J. 1988. New Computer Methods for Global Optimization. Ellis Horwood Ltd. Chichester, England. Google ScholarGoogle Scholar
  32. Ratz, D. 1996. Improved techniques for gap-treating and box-splitting in interval Newton Gauss-Seidel steps for optimization with validation. ZAMM 76, Suppl. 1, 323--326.Google ScholarGoogle Scholar
  33. Rump, S. 1999. INTLAB---INTerval LABoratory. In Developments in Reliable Computing, T. Csendes, Ed. Kluwer, Dordrecht, Netherlands. 77--104.Google ScholarGoogle Scholar
  34. Sakurai, T. and Sugiura, H. 2000. On factorization of analytic functions and its verification. Rel. Comput. 6, 459--470.Google ScholarGoogle Scholar
  35. Walsh, J. L. 1935. Approximation by Polynomials in the Complex Domain. Gauthier-Villars, Paris, France.Google ScholarGoogle Scholar
  36. Walter, W. V. 1993. Fortran-XSC: A portable Fortran 90 module library for accurate and reliable scientific computing. In Validation Numerics---Theory and Applications, R. Albrecht, G. Alefeld, and H. J. Stetter, Eds. Comput. Suppl. 9, 265--285.Google ScholarGoogle Scholar

Index Terms

  1. ACETAF: A software package for computing validated bounds for Taylor coefficients of analytic functions

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Mathematical Software
        ACM Transactions on Mathematical Software  Volume 29, Issue 3
        September 2003
        107 pages
        ISSN:0098-3500
        EISSN:1557-7295
        DOI:10.1145/838250
        Issue’s Table of Contents

        Copyright © 2003 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 September 2003
        Published in toms Volume 29, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader