
I I I I I I III I I I I III 111111111~ oUECT-DBIENTEDDEH 

Iiii~lementation 
Benefits of 
C++ Language 
Mechanisms 
C + + was designed by Bjarne Stroustrup at AT&T Bell 
Laboratories in the early 1980s as an extension to the C 
language, providing data abstraction and object-oriented 
programming facilities. C + + provides a natural syntac- 
tic extension to C, incorporating the cluss construct from 
Simula. A design principle was to remain compatible and 
comparable with C in terms of syntax, performance and 
portability Another goal was to define an object-oriented 
language that significantly increased the amount of static 
type checking provided, with user-defined types (classes) 
and built-in types being part of a single unified type 
system obeying identical scope, allocation and naming 
rules. These aims have been achieved, providing some 
underlying reasons why C + + has become so prevalent 
in the industry. The approach has allowed a straight- 
forward evolution from existing C-based applications to 
the new facilities offered by C + + , providing an easy tran- 
sition for both software systems and programmers. The 
facilities described are based on Release 2.0 of the 
language, the version on which the ANSI and IS0 stan- 
dardization of C + + is being based. 

Paradigms 
C + + supports the object paradigm but does not enforce 
it; it is a multi-paradigm language. Programmers who 
have primarily used procedural paradigm decomposition 
techniques can migrate to the language at a comfortable 
pace and still achieve many benefits of the language. 
Many can use predelined object-oriented C + + libraries, 
incurring only a minimal learning curve. Because of the 
syntactical similarity to C, this is natural and does not 
result in software appearing as a mixed collection of 
programming styles. Thus C + + has become a major 
vehicle for the migration from traditional “procedure- 
oriented” programming and design techniques to data 
abstraction and object-oriented programming. 

C++ AsABetterC 
As an extension to C, C + + supports the basic data types 
in C; not all data types are of an “object type.” C + + is 
often initially used “as a better C,” taking advantage of 
the strong type checking facilities (some of which were 
later incorporated into the ANSI C standard). 

The name and argument types of a function are in- 
cluded in its signature, allowing function name 
overloading. This allows a mnemonic name to be reused 
in all appropriate contexts, reducing namespace clutter 
and the need to devise unique and often cryptic names. 
The likelihood of name collisions is reduced when sep- 
arately designed software is integrated into an applica- 
tion. A function prototype specification must precede the 
use of a function so the compiler can do argument type 
checking. 

C + + also allows programmers to define functions as 
inline, allowing the code of the function to be expanded 
where it is called, eliminating procedure call overhead. 
Inline functions provide the benefits of macros in C, but 
go further by providing argument type checking. Some- 
times inline functions can result in both a reduction of 
code size and an increase in execution speed. But inlin- 
ing is not a panacea and can be overused, sometimes 
resulting in significant code expansion. 

The reference type in C + + provides call by value syn- 
tax, but with the efficiency and operational characteristics 
of passing an argument by address. A reference must be 
initialized when declared and cannot be changed, pro- 
viding some protection against improper uses of pointers. 
A reference is an lvalue, allowing functions that re- 
turn a reference to be used on the left-hand side of an 
assignment. 

The comt specifier in C + + allows data/objects to be 
defined as read-only. This allows programmers to pro- 
vide constants of any data type and ensure that parame- 

CCYLlUlllCITlCNICFTllEliCYlSeprember 199WVo1.33, No.9 61 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F83880.84460&domain=pdf&date_stamp=1990-09-01


ters passed to a function by address or reference are not 
changed by the called function. 

Defining New Types 
The cluss construct in C + + allows programmers to define 
new data types co:mpletely, so that they operate as if they 
were directly supported in the language. Objects are in- 
stances of these classes; members of a class can be func- 
tions or data. Once can fully specify the functionality of 
the type mechanisms in the language, allowing new types 
to have all the expressive capabilities possessed by the 
built-in types borrowed from C. This includes specifying 
operators to handle assignment, initialization and type 
conversions, for example. 

Nearly all the built-in operators of C can be associated 
with functions whose operands include user-defined 
types; arithmetic, comparison, logical, dereferencing and 
subscripting operators, for example. As a syntactical con- 
venience, operator symbols like +, <, &, = =, ->, and 
[] are treated as functions whose names happen to be the 
standard operators found in many programming lan- 
guages. Operator overloading should be used where the 
semantics normally attributed to the operator apply in- 
tuitively for the types of the operands. C has predefined 
semantics for use of operators with pointer operands. 
References can be used with operator overloading to pass 
the addresses of objects to the function implementing an 
operator, which is often more efficient than passing ob- 
jects by value. 

Object Instantiation 
Constructors are functions that can be defined for a class 
to ensure proper initialization of an object when it is in- 
stantiated. A constructor called the co& constructor is used 
to make a copy of an object. This constructor is used 
when an object is passed by value as a function argument 
or return value. Some object-oriented languages do not 
pass objects by value, but always use a reference. Speci- 
fying function arguments as references or pointers in 
C + + is recommended to reduce the often unnecessary 
overhead of instantiating a new object. Constructors are 
also used in type conversions. A destructor is a function that 
can be defined to provide necessary cleanup when an ob- 
ject is deleted. 

Objects in C + .t can be instantiated either implicitly 
or explicitly. C + + , like C, is a block-structured language 
and objects local to a block are implicitly instantiated/ 
deleted when a program enters/exits a block. The extent 
of an object is either static, automatic or dynamic. Static ob- 
jects have their constructors called automatically when 
a process starts and. the destructors are then implicitly 
called when the process terminates; these objects reside 
in the data segment of a program. Automatic objects 
reside on the stack and are the local variables within a 
function. As with static objects, the constructors and 
destructors are called implicitly for automatic objects on 
entry and exit frorn a function (or a block within a 
function). 

Dynamic objects are explicitly instantiated by invok- 
ing the new operator and are destroyed by invoking the 
delete operator. As a default, the standard memory alloca- 
tion and deallocation facilities of the operating system en- 
vironment are used. Programmers can also provide their 
own memory allocation primitives by overriding operator 
new and delete; this can be used to place objects in shared 
memory, for example. It also provides a means of 
transparently taking control of the allocation of objects 
of a known size and using techniques far more efficient 
than possible with the system’s standard memory alloca- 
tion facilities that must handle objects of any size. 

C + + does not provide implicit dynamic allocation of 
objects, nor is there mandated support for garbage col- 
lection to free memory for objects no longer accessible. 
Many of the languages that use garbage collection by 
default incur performance penalties. If garbage collection 
mechanisms are needed, they can still be developed and 
used on a per-class basis and kept transparent to users 
of the class. 

Inheritance 
C + + supports both single and multiple inheritance. All 
classes do not have to be derived from a single root class; 
there can be as many independent class lattices as re- 
quired. C + + supports class inheritance; it does not sup- 
port object-level inheritance. 

Multiple inheritance can result in a base class occur- 
ring more than once in a derivation. A single occurrence 
of a base class can be obtained by declaring it as virtual. 
Multiple inheritance can also result in a member func- 
tion with a given signature being inherited from more 
than one base class. These clashes are detected at com- 
pile time and the ambiguity can be resolved by redefining 
the member function in the derived class. 

Polymorphism 
Polymorphism is a key benefit offered by object-oriented 
languages. It provides software a generic interface defined 
by a base class so objects can be manipulated uniformly 
though they may be instances of either the base class or 
any derived class. Dynamic binding is a mechanism used 
to support this. New derived classes can be defined and 
easily incorporated into a system; objects of those classes 
are transparently manipulated by software interfacing at 
the generic base class level. Virtual functions provide this 
capability in C + + . The function actually called depends 
on the class of the object used when invoking the virtual 
function. 

While some object-oriented languages are imple- 
mented such that all functions are virtual, in C + + the 
programmer can make the choice. If the designer of a 
class does not want to permit a function to be redefined 
in a derived class, the function can be specified without 
the virtual keyword. 

One can define an abstract base chs in C + + by delin- 
ing a set of virtual functions as having null values; the an- 
tithesis of an abstract class is a concrete class in which all 
functions have been specified. Abstract classes can exist 

62 Sqmnbcr 199O/Vo1.33, No.9/COYWUNICATIONSOFT”EICY 



I I I I I I I I I I II l I I I IIIIllnl~ OWNCTONlNNTND DEUON 

at multiple levels in a class hierarchy. The compiler only 
allows instantiations of concrete classes. Abstract classes 
provide a uniform and transparent interface to a set of 
semantically related derived classes, ensuring the derived 
classes provide a base set of functionality. 

Member Access Control 
C + + provides several levels of access control to the mem- 
bers of a class; this includes both functions and data. 
Members can be private, such that they are only accessible 
by functions that are members of the class. Members of 
a class can be declared as public, allowing all functions ac- 
cess to the members. Members can be specified as being 
protected, only allowing access by.member functions of the 
class and any derived classes. This is useful for providing 
access to members needed by derived classes, but pre- 
venting access by other functions. The accessibility of 
base classes can be specified as either public or private. 

A class can also specify&end functions that are allowed 
access to private and protected members. It is also pos- 
sible to specify that all the member functions of another 
class are friends by declaring the class as a friend. This 
is useful when several classes are tightly related, each pro- 
viding the definition of a component used in the facility 
being designed; the nodes of a linked-list class, for 
example. 

Control of member accessibility can also be used to 
prevent use of some of the operators that provide the type 
mechanics in the language. For example, the copy con- 
structor and the assignment operator could be restricted 
to a subset of functions by declaring them as private or 
protected. Defining operator new as a private member 
of a class could be used to restrict the dynamic allocation 
of objects of the class to those functions that are either 
friends or members. 

Other Class Facilities 
It has been mentioned that C + + supports constant data; 
this applies also to class instances. Class member func- 
tions that do not change the value of the object can be 
specified as comt. These are the only member functions 
that the compiler will permit to be invoked with constant 
objects of the class. The compiler also ensures that those 
functions do not change the value of the object. This is 
useful information for users of a class, clearly indicating 
those member functions that can or cannot change the 
value of an object. The const specifier should be used for 
both data and functions wherever possible; otherwise it 
precludes users from having constant data. 

A class can have members that are specific to the class 
by declaring them as static. Static data members have class 
scope and only one occurrence is shared by all instances 
of the class. While C + + does not provide meta-class 
facilities, static data members can be used to provide 
some of the information commonly associated with a 
meta-class or class object. One can also define static 
member functions that can be invoked with or without 
an instance of the class. 

Development Environment 
The C + + compilation environment results in C + + 
source being compiled into the object code of a particular 
machine. The current language implementation distrib- 
uted by AT&T is a translator; the C + + source is trans- 
lated into C and then compiled by a C compiler. The 
translator, in a sense, treats C as a universal assembly 
language, which is in many ways true. C runs on virtually 
every machine in the industry and this translation ap- 
proach has allowed C + + to be quickly bootstrapped onto 
many machine architectures. Another benefit of this ap- 
proach is the ease of using C cross-compilers to build soft- 
ware for target machines architecturally different from 
the development machine. There is an industry trend 
toward RISC processors to increase performance and 
since most RISC processors have instruction sets specif- 
ically designed to efficiently execute C, the C + + trans- 
lator is able to cost-effectively take advantage of this 
industry trend with minimal development cost. 

C + + is link-compatible with C and any other lan- 
guage with which C code can be linked: Fortran, for 
example. A linkage specification mechanism has been 
defined so that C + + implementations can provide link 
compatibility with other languages. This permits C + + 
software to be readily incorporated into existing software 
environments without requiring rewriting millions of 
lines of tested, working software. Even if a software 
development organization wants to rewrite its software 
to take advantage of the advanced features, this linking 
capability allows an incremental migration path. This 
allows reuse not only of new code designed specifically 
using the object-oriented facilities provided by C + +, but 
also reuse of the massive amount of useful code available 
in C, Fortran, etc. 

Class implementations are usually placed in libraries. 
A program using a class will only link in those object files 
that are explicitly specified or are implicitly linked be- 
cause they are needed by an object file that is included 
in the program. This would include all the object files 
containing the virtual function definitions for those 
classes used by an application (this is a result ofthe tech- 
nique commonly used for implementing the virtual 
function mechanism). Operating system environments 
supporting dynamically linked libraries would only link 
in object files when they are needed. Functions can be 
separated into as many object files as necessary to mini- 
mize the inclusion of unneeded functions. These aspects 
of the compilation environment permit C + + programs 
to fit easily into small machine architectures. 

Initially there were no debuggers that provided 
C + +-level debugging; programmers used C-level debug- 
gers. With Release 2.0 of the translator, routines are pro- 
vided that understand the name encoding algorithms 
used by the translator. These routines are being incor- 
porated into existing C debuggers, permitting the de- 
bugger to provide a more complete C+ + debugging 
environment. There also exists a utility that can be run 
against a program to rebuild its symbol table, replacing 

COYllUNlCATlOWSOFTllFlCYlSeptember 199OPIol.33, No.9 63 



I I I I I I I I I I I 

the encoded C names with their C + + representation. 
C + + compilers directly provide C + +-specific symbol 
table representations. 

C+ + can be obtained from multiple sources and 
several companie:s are marketing both C + + translators 
and compilers. Some of the compiler implementations in- 
clude syntax-directed editors, incremental compilation 
and integrated debugging facilities. Interpreters for C + + 
are also being developed, though none are commercially 
available yet. 

Perilormance Advantages 
C + + allows generation of very efficient code when in- 
voking member functions. Non-virtual function calls are 
completely resolved at compilation. Invoking them at 
runtime is just as efficient as a function call in C, with 
none of the lookup overhead characteristic of many 
object-oriented languages. 

C + + implemr:ntations also have very efficient mech- 
anisms for calling virtual functions. Each object of a class 
with virtual functions has a pointer to a jump vector that 
exists for each class. The jump vector contains the ad- 
dresses of all the virtual functions. Each virtual function 
is assigned an entry in the jump vector during compila- 
tion. When a virtual function is called, the jump vector 
pointer in the object is used with the virtual function’s in- 
dex in the jump vector to determine the appropriate func- 
tion to call. 

Some object-oriented languages delay the computa- 
tions needed to determine the proper function to call until 
runtime. While this approach does provide a higher 
degree of flexibility, it results in slower execution and 
delays the detection of many errors until runtime (the lack 
of a function being specified, for example). C + + does 
not have this characteristic and thus provides excellent 
performance and a guarantee of the construction of com- 
plete programs. 

The class definition includes the data members used 
in the implementation of the class. One side effect is that 
during development of a class, changes to its declaration 
require recompilation of all files using the class. But be- 
cause the memory layout of an object is known at com- 
pile time, significant optimizations can be made. The 
compiler can make effective use of the stack for automatic 
variables and accessible data members can be directly 
addressed without incurring any overhead. Class imple- 
mentors can provide inline member functions that in- 
sulate the class user from the internal representation and 
still provide direct memory access to the data without in- 
curring any function call overhead. The C + + language 
has been defined so that software can be written to run 
very efficiently. F’rogrammers do not have to leave the 
context of the language to obtain needed efficiencies. 

Features Not Part Of The Language 
C + + does not have a large virtual machine environment 
directly providing features like garbage collection and 

graphics capabilities by default. These are not required 
in all application environments and can be provided ef- 
fectively through libraries. Their absence in the language 
allows C + + to be used in a wider set of system environ- 
ments than some object-oriented languages. Companies 
are producing development environments around C + + 
that do not intrude into the language itself, but do pro- 
vide many of the interactive development facilities char- 
acteristic of languages with built-in environments. 

C + + does not have a built-in meta-class facility. In ad- 
dition, no generally available C + + environment yet sup- 
ports the run-time creation and integration of new types 
into running processes, though this is possible and has 
been done. A new class can be derived from a given base 
class and be incrementally compiled and linked into a 
running process. Software interfacing at the base class 
level can then manipulate instances of the new derived 
class via virtual functions. 

Another feature some object-oriented languageslenvi- 
ronments provide is persistence, allowing objects to be 
placed on secondary storage so they can exist across pro- 
cesses. Some languages also support mechanisms to han- 
dle concurrency, sometimes used with persistence. C + + 
does not directly support persistence or concurrency. 
Several companies have developed C + + object-oriented 
databases that provide these capabilities. Persistence is 
an example of a language feature that may be more ap- 
propriately provided by libraries. By not incorporating 
the feature as a built-in language mechanism, applica- 
tions not requiring the feature are not constrained by its 
presence. 

Paramterized types and exception handling are currently not 
defined in the language and thus are not yet available in 
commercial C + + implementations. Techniques exist 
within the current language definition to approximate 
these features, but the techniques have drawbacks. Pa- 
rameterized types and exception handling are likely to be 
added to C + + in the future. 

Summary 
The C+ + language provides the key capabilities and 
benefits offered by object-oriented programming, 
without including features that would constrain its use 
to a limited set of application domains and environments. 
The mechanisms are defined to allow very efficient im- 
plementations and an easy migration path for the large 
amount of existing C software and programmers. Fea- 
tures that would result in performance penalties have not 
been included in the language. Instead, the language 
provides base functionality permitting developers to pro- 
vide needed mechanisms efficiently. This provides an ex- 
ample of the efficiency and versatility offered by the 
language. q 
David Jordan is a Distinguished Member of Technical Staff at AT&T Bell 
Laboratories. He has been a lead developer on several large projects buiIding 
systems in C+ + since 1985. He has given courses and presentations on 
C + +, object-oriented design and the project management and methodology 

implications of using object technology. He is currently evaluating object- 
oriented database technology. 

64 September 199O/Vu1.33, No.9ICOYYUWICATIONSOFT”E~~.CM 


