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Object-oriented programming may 
engender an approach to software 
development characterized by the 
large-scale reuse of object classes. 
Large-scale reuse is the use of a class 
not just by its original developers, but 
by other developers who may be from 
other organizations, and may use the 
classes over a long period of time. 
Our hypothesis is that the successful 
dissemination and reuse of classes re- 
quires a well-organized community 
of developers who are ready to share 
ideas, methods, tools and code. Fur- 
thermore, these communities should 
be supported by software informa- 
tion systems which manage and 
provide access to class 
collections. In the fol- 
lowing sections we 
motivate the need for 
software communities 
and software informa- 
tion systems. The bulk 
of this article discusses 
various issues associated 
with managing the very 
large class collections 
produced and used by 
these communities. 

tellectually taxing effort. Therefore, 
it is different from most manufac- 
tured products. Nevertheless, we still 
dream of “software factories” which 
will cheaply produce high quality 
software (see [20] for an early expres- 
sion of this idea). The problem, per- 
haps, is that we approach software 
development with the wrong para- 
digm. If we approach software using 
a mathematical paradigm, the pro- 
gram resembles a proof of a stated 
problem (the theorem). The empha- 
sis is on structure, methodical devel- 
opment and proof of correctness. 
If we approach software with an en- 
gineering/manufacturing paradigm, 

call cooperative large-scale reuse. This 
method can be illustrated by use of a 
legal analogy. Suppose a program 
corresponds to a legal case: its 
development and maintenance par- 
allel the legal effort associated with 
building and presenting a legal case. 
Such an analogy would have been 
natural if the pioneers of computer 
science had been lawyers rather than 
mathematicians and engineers. Note 
that, within this analogy, it is difficult 
to talk about the correctness of soft- 
ware, or software factories, for the 
analogy immediately points out the 
difficulties in considering correctness 
of a legal case or a legal case factory. 

so6tware 
Communltles 
Software development 
and maintenance cause 
major headaches for 
most organizations. Al- 
though it has been rec- 
ognized as a problem for 
many years now, soft- 
ware development still 
costs too much and in- 
duces overruns and de- 
lays. Advances have been made over 
the years, particularly in the area of 
Computer-Aided Software Engi- 
neering (CASE) tools which aim to 
improve productivity. In spite of 
these improvements, software de- 
velopment has resisted efforts at 
mechanization or automation. It is 
perhaps time to recognize that there 
is something intrinsically different 
about software development which 
does not allow easy automation. 

It is widely recognized that soft- 
ware development is not repetitive 
but requires much creative and in- 

we view the program as a product 
built by a well-known procedure 
whose steps have to be streamlined. 
Over the years, as a result of con- 
siderable research activity we have 
achieved some success using these 
paradigms. However, the fact that 
software development and mainte- 
nance are still a problem should 
encourage the search for other 
paradigms. 

One new paradigm is offered by 
object-oriented programming. This 
paradigm, when fully applied, pro- 
motes a method of development we 

The most interesting insights, 
however, come in a positive sense 
when we consider how lawyers go 
about building a case. First, they base 
their arguments on past experience 
accumulated not only by themselves, 
but especially by their colleagues. 
Recording this experience is an in- 
tegral part of the legal process. Sec- 
ond, a legal case continuously 
evolves. There is no notion of sepa- 
rating design from implementation 
or development from maintenance. 
Instead, each legal case continuously 
develops (through the appeal pro- 
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cedure) and links up to previous and 
eventually future cases. Two out- 
standing characteristics of legal effort 
seem, therefore, to be the reusability 
of past experience and a continu- 
ously evolving effort. 

We will now draw parallels from 
the analogy and a.pply the character- 
istics of legal effort to software. The 
two outstanding characteristics of 
software development and mainte- 
nance should be :reusability of expe- 
rience and evolving software. To 
increase productivity of software 
development one should reuse past 
experience, in the same way a lawyer 
building a legal case uses past ideas, 
arguments and cases. By the term 
past experience we mean to include re- 
quirements, specillcations, models, 
designs and software components. To 
promote evolving software we should 
be able to interchange parts, such as 
documentation, designs, and soft- 
ware components, and link them in 
various ways, just as a lawyer 
enhances his case by continuously 
rearranging his arguments, drawing 
in new ones and abandoning those 
that are unsuccessful. 

Like legal work, software develop- 
ment and maintenance are intellec- 
tually taxing. Both can benefit from 
proper organization and appropriate 
use of technology to help manage 
and locate information. The prevail- 
ing software engineering methods 
tend to cover all phases of software 
development for every single project, 
from requirements collection, anal- 
ysis and specification, all the way to 
coding. Reuse of experience and soft- 
ware is effectively discouraged by 
restricting the context to a single ap- 
plication at a time [22]. We argue, on 
the other hand, that long-term gains 
in software productivity and reliabil- 
ity can only be achieved by adopting 
a more global view of software 
development. 

In particular., software develop- 
ment can be viewed as taking place 
within the context of a software com- 
munity. Just as there are legal com- 
munities-groups of lawyers with 
common areas of legal expertise and 
a shared history of legal cases-so 
there should be software communi- 
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ties: groups of people engaged in the 
development, and also the dissemi- 
nation and end use, of pieces of soft- 
ware. An essential characteristic of 
any community is its history: an ac- 
cumulation of collective past expe- 
rience. The history of a software 
community would be the experiences 
gained in the design, development, 
use and maintenance of software 
for particular application domains. 
For a software community to func- 
tion efficiently it must learn from 
and take advantage of this wealth 
of experience. 

In our ideal scenario, applications 
would be based on generic software 
components accumulated by a soft- 
ware community familiar with the 
application domain. To build a new 
application, a developer could collect 
requirements according to an ex- 
isting, well-defined model of the 
domain, select generic software com- 
ponents according to these require- 
ments, and initialize and compose 
the selected components to construct 
the running application. By analogy, 
lawyers would like to handle all legal 
cases as though they were slight 
variations on textbook cases. 

Although this scenario is rather 
idealized, we believe it can be real- 
ized to a greater or lesser extent, 
depending on how well an applica- 
tion domain can be characterized, 
and on how routine the required ap- 
plications will be. In fact, commer- 
cially available generic software, 
(such as spreadsheets, relational 
databases, and hypertext systems), is 
already proving this scenario work- 
able for certain application domains. 
Even in cases where clients have very 
specific requirements, we believe a 
large part of an application should be 
boilerplate, with only a few software 
components being designed specifi- 
cally to meet the new requirements. 

To approach this scenario as 
closely as possible for any given ap- 
plication domain, it is clear that we 
must support the process of develop- 
ing generic, reusable software. To this 
end we must 
1. organize and manage software 

and information about software 
development, 
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2. make it easy to find information 
concerning prior projects that may 
be relevant to new projects, and 

3. provide support for the gradual 
evolution of software and software 
components. 

Soitware 
lniocmation systems 
The use of software information systems 
is one way of achieving the above 
three goals and improving the effi- 
ciency of software communities. A 
software information system is a 
repository, likely very large, contain- 
ing all the information, including 
documents, designs, and software 
components, relevant to the func- 
tioning of a particular software com- 
munity. The system should be 
readily available to members of the 
community and continuously aug- 
mented as software is developed or 
refined. 

To make the notion of a software 
information system more concrete 
we shall assume that applications are 
developed using an object-oriented 
approach and that individual soft- 
ware components are primarily 
classes written in an object-oriented 
programming language. Object- 
oriented languages, through mecha- 
nisms of encapsulation, data ab- 
straction, instantiation, inheritance, 
genericity, and strong typing, have 
demonstrated their potential in de- 
veloping toolkits and libraries of 
reusable software components. Al- 
though we make few assumptions 
about the nature of the particular 
mechanisms supported by the lan- 
guage of choice, we feel it reasonable 
to suppose that object classes and 
some form of class inheritance will 
play an important role. A starting 
point, then, is to consider a software 
information system as a collection of 
object classes. 

There are a number of advantages 
to collecting and organizing classes 
within an information system. First, 
the classes will be indexed to help 
with retrieval. Second, by applying 
quality control procedures to classes 
added to the system, developers can 
be more certain of the reliability of 
classes obtained from the system. 



I I I I I I I 

Furthermore, a software information 
system with knowledge about depen- 
dencies between classes can ensure 
that its contents be complete (miss- 
ing files or definitions are often prob- 
lems when reusing software). Finally, 
by obtaining a class from a reposi- 
tory, developers are more likely to get 
a standard version rather than a 
version full of undocumented local 
modifications. 

There has been considerable work 
in the area of database support for 
software development [3, 4, 15, 281, 
primarily in the context of extending 
programming environments with 
database facilities for project and 
configuration management. We view 
a software information system in a 
rather different light, as an autono- 
mous service, not necessarily tightly 
coupled with the programming de- 
velopment tools but, nevertheless, 
easily accessible by these tools. The 
closest existing systems of this nature 
are electronic bulletin boards and the 
various software repositories scat- 
tered over Internet. Such facilities, 
while useful, are very limited in their 
functionality. 

We will call the task of maintain- 
ing a collection of classes class manage- 
ment. Class management includes 
many traditional database manage- 
ment issues such as data modeling, 
access methods and authorization. 
Additionally, class management en- 
compasses new issues specific to 
classes. For instance, as requirements 
change or designs improve, classes 
must change; we call this class evolu- 
tion. When the collection is large, 
developers may require assistance in 
finding a class for reuse; we call this 
class selection. There is the problem 
of preparing classes for reuse: class 
packaging. Other class management 
issues pertain to security and pricing 
policies. These include keeping the 
class collection free from viral infec- 
tion or, when a class is proprietary to 
particular groups, helping to enforce 
licensing contraints. 

Next we explore the basic issues in 
class management by discussing ap- 
proaches to organizing and manag- 
ing classes so as to support software 
development and reuse, approaches 

to browsing and querying a collec- 
tion of object classes, and techniques 
for the controlled evolution of object 
classes and class hierarchies. Our ob- 
jective is not to propose a design for 
software information systems, but 
rather to identify and categorize 
some of the critical issues that must 
be addressed when designing these 
systems. 

Class PackagIng 

Object-oriented programming has 
been described as a “packaging tech- 
nology” [9]. Class packaging is the 
problem of representing an object 
class so that the information needed 
to use the class can be easily located 
and incorporated within an applica- 
tion. A straightforward approach to 
packaging would be to represent 
classes by source text and store these 
representations in a file system. The 
information could be organized us- 
ing simple mechanisms such as lile- 
naming conventions and directories, 
and accessed through standard util- 
ities such as editors and file browsers. 
However, even if the number of 
classes is small, this representation 
may present difftculties. For instance, 
on a UNIX’” system a C++ pro- 
grammer typically represents a class 
X by two files: a source file, Xc, and 
header file, X.h, containing public 
declarations. Suppose X.h consists 
Of: 

#include “commonh” 
#include “Y.h” 
#include “Zh” 
class X : public Y, public Z ( 

int x; 
protected: 

void setx(int); 
int getx(); 

public: 
X(int); 

-x0; 
1; 
Given X.h, a programmer who 

wants to make use of class X would 
have to locate at least the following 
information: 
l the include files common.h, Y.h, 

and Z.h, 
l the source code or object code for 

the methods X::setx, X::getx, 
X::X, and X::-X, and 

l the source code or object code for 
methods of the classes Y and Z. 

In addition the programmer 
would have to consider 

l whether the names (classes, struc- 
tures, type definitions, etc.) used in 
common.h, Y.h, or Z.h, are in con- 
flict with names already in use, 

l whether any of common.h, Y.h, or 
Z.h, in turn refer to other include 
files, 

l if object code is available, whether 
it is suitable for the run-time en- 
vironment (processor, operating 
system) the programmer intends to 
use, 

l if source code is available, whether 
it is suitable for the development 
environment (compiler, operating 
system) the programmer intends to 
use, 

l whether X will be reused directly 
or relined. In the first case the pro- 
grammer may want to examine the 
source of public methods of X; in 
the second case the programmer 
may also want source of private 
and protected methods. 

As the number of classes increases, 
more problems appear with this rep- 
resentation: it becomes difficult to 
find classes, relationships between 
classes are not explicitly represented 
and so must be deduced from the 
source code, and adding new classes 
may involve rearranging the file 
system. By choosing a richer, more 
explicit representation of class struc- 
ture, the software information system 
can be of greater assistance in man- 
aging large numbers of classes. For 
instance, advanced querying and 
browsing facilities, versioning, and 
high-level interfaces to development 
tools all require, to some extent, 
knowledge of the structure and rela- 
tionships of classes. 

An early example of class packag- 
ing can be found in Xerox’s PIE 
(Personal Information Environment) 
[14]. PIE is an extension of the 
Smalltalk programming environ- 
ment in which Smalltalk classes are 
represented by layered networks. 
The nodes of these networks contain 
various chunks of code for the 
associated class, (see Figure 1 for a 
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simplified example). Each layer cor- 
responds to a different design of the 
class (in the example shown, class X 
has one method in the initial layer 
and a second me:thod added by the 
superseding layer). One advantage of 
representing classes by data struc- 
tures rather than text is that software 
can then be integrated with other 
forms of information. This is illus- 
trated by PIE since it supports the 
creation of hypertext-like links be- 
tween nodes containing code and 
nodes containing documentation. 

A more recent example of packag- 
ing is found in the Trellis pro- 
gramming environment [27]. As a 
programmer defines new classes us- 
ing the Trellis/Owl language, repre- 
sentations consisting of the source 
code of these classes are added to a 
database. This information is shared 
and augmented by t.he programming 
tools within the environment, in- 
cluding a cross-referencing tool and 
a compiler which adds object code 
and possibly error information. A 
second advanta,ge of representing 
classes by data structures, rather than 
text, is that it is easier to build tools 
which examine and manipulate 
classes. Trellis is an open-ended en- 
vironment where tools can be added 
or modified. This is, at least in part, 
a result of the packaging and sharing 
of class definitions provided by the 
database. 

It is natural to ask what are the 
characteristics of useful class repre- 
sentations. We believe three things 
are important: First, the representa- 
tion should allow a structural decom- 
position of the class into a number of 
logical components. Second, the rep- 
resentation should permit the attach- 
ment of descriptive information. 
Third, the representation should 
support multiple views. 

Structural Deco@xxition. By structural 
decomposition we mean breaking the 
representation of a class into a 
number of interrelated components. 
In choosing a decomposition for 
classes written in a particular pro- 
gramming language, one can be 
guided by the constructs provided by 
the language. So if the programming 
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language supports class and instance 
variables, the representation should 
contain structural components cor- 
responding to both class and instance 
variables. Similarly, if methods may 
be private or public it should be pos- 
sible to capture this distinction within 
the representation. However, there is 
a tradeoff between the granularity of 
structural decomposition and sim- 
plicity of the representation: as the 
representation becomes more finely 
detailed, its use by tools such as 
browsers becomes more complex. 

Descriptive Attachment. Not all com- 
ponents of the class representation 
need be derivable from source code. 
The representation should allow one 
to attach components corresponding 
to descriptive attributes. Possible at- 
tributes include the author of the 
class, the date it was written, version 
and release information, and com- 
ments or documentation. For re- 
trieval purposes it is useful to attach 
textual descriptions of the class. This 
could be a set of keywords, or de- 
scriptors from a software classifica- 
tion scheme such as described in [34]. 

Multiple Views. Structural decompo- 
sition of classes is a very general 
mechanism which can be used in a 
number of ways. One use is in ver- 
sioning, the advantage being that 
only those components differing 
from a previous version need be 
stored. This is demonstrated by PIE. 
Structural decomposition is also 
useful for browsing-since the 
browser can then display or highlight 
different parts of the class in different 
ways, and for querying-since it is 
then possible to express and evaluate 
queries which refer to different parts 
of the class. However, the represen- 
tation of a class may become rather 
complex. Considering only version- 
ing there are many complications. 
Versions may have different designs 
(i.e., different signatures), may refer 
to different stages of development, 
their implementations may differ 
(i.e., different choices for internal 
data structures and algorithms), and 
their compilations may differ (i.e., 
object code for various machine ar- 
chitectures). In order to cope with 
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this complexity it is useful if multiple 
views of a class are supported. 

Some examples of views include 
the private and public parts of a class, 
the implementations of a class (see 
Figure 2), and owner-versus-user 
views of a class [42]. Other examples 
of views can be found in the ways 
various object-oriented languages 
organize methods. For instance, 
Smalltalk conventionally groups 
methods into categories. In CV++ 
[37], an extension of C ++ , methods 
can be grouped into a number of in- 
terfaces. Other proposals group 
methods into roles-each object has 
a current role and will only respond 
to methods associated with that role 
[30,36]. In such cases one may want 
to be able to view a class from the 
perspective of a particular category, 
interface, or role. Finally, in a multi- 
language environment where, for in- 
stance, both C++ and Smalltalk 
classes are needed, it may be useful 
to have a coarse language-indepen- 
dent view, showing perhaps only class 
names and method names, in addi- 
tion to more detailed, language- 
dependent views. In general, as these 
examples show, a view mechanism 
allows classes to be dealt with at dif- 
ferent levels of detail and in more 
flexible ways. 

Class Orqanlzation 
Class packaging deals with the 
representation of single classes. Class 
organization, on the other hand, deals 
with the relationships and dependen- 
cies that occur in collections of 
classes. A software information sys- 
tem should capture the relationships 
between classes for a number of 
reasons. First, it is needed for reuse; 
although classes have been proposed 
as units of code reuse, it is often the 
case that one class depends on an- 
other and so it is not single classes but 
groups of classes which are reused. 
Second, knowledge of class relation- 
ships can help with browsing since a 
browser needs to identify related 
pieces of information. Finally, class 
relationships can also help to detect 
inconsistencies or incompleteness. 
For example, a software information 
system would be incomplete if it con- 
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tained a. class but not its superclass. 
It is useful to distinguish two cat- 

egories of relationships involving 
classes. The first, structural relation- 
ships, are derivable from source 
code. Examples include the SubckzssOf 
or inheritance relationship, Instance- 
Of; and a DependrOn relationship. 
Relationships of the second category 
are those which are not derivable 
from source code; instead these are 
explicitly defined by some agency ex- 
ternal to the software information 
system. For example, a project could 
define a relationship for the purpose 
of collecting the classes which it uses. 
We now look at some of the issues in- 
volved in representing relationships 
among classes. 

SubclassOf (inheritance). Inheritance is 
one of the standard features of object- 
oriented languages [44]. Thus we 
would expect a software information 
system to keep track of which classes 
are subclasses of other classes. Rep- 
resenting this relationship itself is 
straightforward; single inheritance is 

a l-n relationship between classes 
while an m-n relationship is needed 
for multiple inheritance. An interest- 
ing question is to what extent the 
software information system need 
model the semantics of inheritance. 
There are many varieties of in- 
heritance [25,39]. To take one exam- 
ple, object-oriented programming 
languages differ on whether the in- 
stance variables of a superclass are 
visible to the methods of a subclass. 
If we want the software information 
system to provide a view of a class 
showing all available instance vari- 
ables or all available methods, as does 
the “flat” view of Eiffel [21], then it 
will be necessary to model some of 
the semantics of inheritance. Fur- 
thermore, such views involve calcu- 
lating the transitive closure of the 
SubClassOf relationship, so efficient 
traversal of this relationshp must be 
possible within the software informa- 
tion system. 

InstanceOj The role of the InstanceOf 
relationship within software informa- 

-_ initial Layer 
- Superseding Layer 

FlGURE q. PIE Network LaverS. 

(a) 

tion systems requires some clarifica- 
tion. We see software information 
systems as containing representa- 
tions of classes, but generally not in- 
stances of these classes. Instances 
would be created and managed by 
applications constructed using the 
classes provided by a software infor- 
mation system. However, there are 
situations when an inter-class Zn- 
stanceOf relationship is useful. Some 
object-oriented languages contain 
metaclasses. In this case classes can 
be viewed as instances and the soft- 
ware information system would need 
to represent both classes and meta- 
classes as well as the relationship be- 
tween the two. A second potential use 
is in modeling parametric polymor- 
phism. Some object-oriented lan- 
guages contain constructs which can 
be expanded into class specifications 
by binding type parameters. Such 
polymorphic class specifications 
could be modelled as metaclasses, in 
which case the derived class would be 
an instance of the metaclass. 

DependsOn (ClientOJ PartOB. One 
class may depend on another in a 
variety of ways: A class may be a 
ClientOf (i.e., invoke) the methods of 
another class. One class may be 
PartOf a second, as when a class has 
instances of other classes among its 
instance variables. In strongly-typed 
object-oriented languages a class may 
depend on another by declaring it as 
the type of a method parameter. 
These are examples of a general 
De@ndcOn relationship that identifies 

0)) 

FlGURE 2. Alternative Views. 
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the various syntactic references 
between classes. A software informa- 
tion system should be able to deter- 
mine for a given class, which classes 
it depends on, and conversely, which 
depend on it. 

These relationships are common 
to many object-oriented languages. 
There are other relationships which 
are more language-dependent, such 
as the “friend” relationship found in 
C + + [40]. If one class declares a sec- 
ond as its friend, then the private 

-- 
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methods and instance variables of the 
first class are available to the second. 
Other examples result from aggrega- 
tions of classes such as “features” [17] 
and “frameworks” [45]. Both fea- 
tures and frameworks involve groups 
of classes: a feature is a language con- 
struct that specifies an interface to 
some group of classes while a frame- 
work is a subsystem design based on 
an inter-working group of classes. In 
these examples, one class may be 
related to another via participation in 

0 context 

0 class 

FBGURE I.C++ Class RelatiOnShiPS- 

n InvokerOf 

RefinementOf 

MethodOf 
FirstDedaredBy 
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DocumentationO/ / \ 
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the same feature or framework. In 
general, any language-dependent 
software information system may 
have to represent a number of addi- 
tional relationships derived from the 
language concerned. Figure 3 shows 
an example of a more extensive 
group of relationships used to repre- 
sent a C + + class collection. 

In addition to structural relation- 
ships such as SubClass, InstanceOJ; and 
DependrOn, class organization also re- 
quires relationships not derivable 
from source code. These include 
relationships that associate docu- 
mentation and other design informa- 
tion with classes. The nature of these 
relationships depends on many 
factors such as the procedures for 
adding a class to the software infor- 
mation system and documentation 
conventions and formats. For exam- 
ple, Figure 3 shows a simple “Docu- 
mentationof’ relationship between 
C++ classes and documents. In prac- 
tice, however, a more refined and 
versatile inter-linking of classes and 
documentation is likely to be necessary 

In addition to organizing classes in 
terms of inter-class relationships, it 
may be useful to have more abstract 
groupings of the class collection. In 
many object-oriented programming 
languages the class name space is 
essentially flat. This can be prob- 
lematic in a multi-user environment 
since a monolithic class hierarchy 
constrains the designer of new objects 
to avoid name clashes. A simple ex- 
ample would be a CAD programmer 
who wants to provide a “Window” 
object class for use in architectural 

. . 
applications but is unable to because 
of a conflict with a user-interface 
“Window” class. A more subtle form 
of this problem may also occur in ob- 
ject design. There is a tendency for 
the initial choice of object classes 
within a given application domain to 
prescribe the design of future ap- 
plications for the domain. It can 
be difficult for a designer to break 
out of the prescribed design by class 
specialization: 
1. inheritance is now working 

against the designer, and 
2. the designer really wants a reorga- 

nization of the class hierarchy. 
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As a result, the class hierarchy may 
become a rigid constraining struc- 
ture that hampers innovation and 
evolution. 

For large software information 
systems it appears that a single class 
hierarchy is just too simple. What is 
needed is a a context mechanism, so, for 
instance, the object classes deriving 
from a particular design for a par- 
ticular domain can be grouped to- 
gether. One possible solution may be 
context hierarchies, each context cor- 
responding to a class name space. As 
an example, Figure 4 shows three 
contexts: A, B and C. The class 
hierarchy visible within a given con- 
text consists of those classes visible 
within the context’s parent and any 
additional classes defined within the 
context in question. For instance, 
context B includes classes C,, C, and 
C3 from its parent, A, and the 
locally-defined class C,. A map of 
the context hierarchy, such as the 
small tree appearing in the left of 
Figure 4, provides a high-level global 
view of the class collection. 

class Selec+lon 
and ExploraCion 
We now discuss the general problem 
of retrieving information from a class 
collection. There are many program- 
ming situations where retrieval is 
necessary. A user (such as a pro- 
grammer or application developer) 
may, for example, be looking for a 
specific class-perhaps the class of 
complex numbers or a particular ver- 
sion of a window class. Alternatively, 
the user may be looking for func- 
tionality that is provided by any of a 
number of classes in the system, or 
simply trying to get a feel for the 
scope of the class collection. We can 
divide these retrieval activities into 
two groups: cla.s.s selection and class ex- 
ploration. Class selection refers to the 
situation in which the user has fairly 
specific selection criteria, such as the 
name of a class or method, or an area 
of functionality With class explora- 
tion, on the other hand, the user is 
not interested in individual classes 
but rather in the relationships among 
classes and the overall organization of 
the collection. This is the case, for 
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instance, when a programmer is im- 
plementing a new application and 
wants to determine which classes 
may be relevant to the application. 
The two methods commonly used for 
retrieval are querying and browsing. 
Querying is useful when search cri- 
teria are known, it is thus more ap- 
propriate for selection-while 
browsing is more appropriate for 
class exploration. 

CIass browsers 
Currently most programming envi- 
ronments do not contain extremely 
large numbers of classes-thus a 
single tool, a class browser, is used for 
both selection and exploration. This 
approach is exemplified by the 
Smalltalk- browser [13] which 
allows a user to browse through the 
class inheritance hierarchy, display 
instance variables and methods, and 
determine which classes send or 
receive a given message. Classes are 
grouped by functionality into pos- 
sibly overlapping categories, and it is 
possible to browse through categories 
of classes and methods. The Small- 
talk browser has been extended in 
many ways. For instance with the 
PIE browser [14], it is possible to 
associate textual components to 
classes, categories and other entities 
of the system in order to help in the 
understanding of the system. The 
PIE browser also provides multiple 
views. It is possible, for example, to 
present the user with a set of views 
adapted to different application do- 
mains. One such view might corre- 
spond to a development project 
where classes are being developed in- 
crementally and thus should be kept 
hidden from other users not involved 
in the development effort. The ability 
to define partial views can reduce the 
complexity of the system as it appears 
to a particular user. 

Most of the existing browsers have 
been tested on small- or medium- 
scale software projects. Although ex- 
trapolating their usefulness is not an 
easy task, it is natural to ask whether 
the Smalltalk approach is scalable 
and whether it will be able to cope 
with the potential size of software in- 
formation systems. We believe that 

current browsers are unlikely to be 
adequate for selection when class col- 
lections increase in size by a few 
orders of magnitude. 

As the size of the class collection 
increases, class selection becomes 
more difficult and query facilities are 
of greater benefit. There has been 
relatively little work in the area of 
class selection, although information 
retrieval techniques may be applica- 
ble [lo]. One proposal that appears 
promising is the software classifica- 
tion scheme developed by Prieto- 
Diaz and Freeman [34]. This scheme 
uses a six-tuple offacets or descriptive 
attributes, to classify software com- 
ponents according to such things as 
functional area, medium and system 
type. Furthermore, a conceptual dis- 
tance based on facet values can be 
used to estimate the match of a com- 
ponent to a particular query. 

Another question is whether 
browsing is sufficient for users who 
are interested in exploring the func- 
tionality of a class collection. The 
primary navigational structure used 
by browsers based on the Smalltalk 
approach is the inheritance hier- 
archy. However, in most object- 
oriented programming languages, 
the semantics of inheritance is not 
sufficiently constrained for it to give 
useful insight into the functionality of 
subclasses. This is illustrated by the 
following examples: 

l A subclass may add behavior to 
that of its superclass. 

l A subclass may provide the same 
interface as its superclass but 
reimplement the methods. 

l With multiple inheritance, a sub- 
class may override a method from 
one superclass with that from 
another. 

In general, it is possible that classes 
related by inheritance provide dis- 
similar functionality while classes 
unrelated by inheritance may pro- 
vide similar functionality, so merely 
knowing the inheritance relation- 
ships between classes gives little in- 
dication of how the functionality of a 
subclass differs from its superclass or 
why the subclass appears where it 
does in the hierarchy. Typically the 
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user will resort to cornpar& the code 
belonging to the two class&. How- 
ever, determining the structure and 
dependencies of a set of classes by ex- 
amining the code is difficult [41] and 
contrary to encapsulation. 

The problem of guiding a user en- 
gaged in exploring the class space is 
similar to the problem of providing 
navigational assistance in hyper- 
media environments, a subject that 
has received much attention recently 
[43]. Possible features that could be 
integrated in a class browser are 
global views of the organization of 
the system and navigation charts that 
help users visualize their position and 
the structure of the surrounding 
space. 

ANInliy brOw!Wmg 

Another approac.h to guiding ex- 
ploration is by providing means for 
determining the similarities between 
classes, their interfaces and their 
functionality. In this case the “near- 
est neighbors” of a class are not 
simply its super and subclasses but 
rather those classes which it somehow 
resembles. We call this UJ@$ brows- 
ing. The principal assumption of this 
approach is that in a software infor- 
mation system containing a large col- 
lection of inter-dependent classes, the 
relationships among these classes are 
complex and can be viewed in many 
ways. 

The affinity browser 1321 is an at- 
tempt to integrate navigational 
aspects of conventional browsing 
with query capabilities. The affinity 
browser provides the user with a set 
of two-dimensional views, each 
displaying some relationship among 
a set of classes. One view could be 
based on the usual inheritance rela- 
tionship while another could portray 
a grouping of classes based on their 
relevance to some query. An affinity 
function, which defines the intensity 
of a relationship, is associated with 
each view. When the view is dis- 
played, distances between classes 
convey their aflinity (i.e., pairs of 
classes with strong affinitv are 
displayed close together) while those 

example, classes that implement 
with less affinity lie further apart. For 
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similar functionality, or have similar 
signatures, could have a higher affin- 
ity, and would then cluster together 
when displayed. 

In order to apply affinity browsing 
to class exploration we need to define 
affinity functions for classes. Clearly 
there are many such functions, some 
more useful than others. Some po- 
tential candidates include the dis- 
tance between two classes on the 
inheritance hierarchy, the conceptual 
distance between two classes using 
some classification scheme such as 
facets, the textual similarity of the 
signatures of two classes, the amount 
of code shared between two classes, 
or a measure based on class depen- 
dency (where two classes are similar 
if they depend on the same classes). 

As a specific example of an affin- 
ity function and view generation, 
consider Figure 5 which shows the in- 
heritance structure of a set of classes, 
C = {C,, . . . . C,}, and the methods 
defined (and redefined) by each class. 
Assume that classes recursively in- 
herit methods from their super- 
classes. Let M(‘X) be the set of 
methods in the interface to class X 
For instance 

M(G) = {a, b, e,J; ij, 4 ~1. 

slightly in the case of redefinition of 

We want to define an affinity func- 
tion that conveys the extent to which 
classes provide similar functionality. 
As a candidate function, suppose we 
define A(X, v, the affinity between 
class X and class I: as 

A (X, v = card (M (X) fl M (r)) 

card (M (X) U M (v) 

where curd0 is a function that returns 
the cardinality of a set. For example, 
to evaluate A(&, C+), we have 

M(C$ = {a, b, g, h) and 
M(G) = {Q, b, i, j), so 
card(M(Cj) fl M(G)) = 2 and 
card(M(C& U M(C,)) = 6. Hence, 
A(&, C,, = l/3. 

Of course other definitions are pos- 
sible and it may be necessary to per- 
form a few iterations before one 
obtains views which convey a good 
intuition of the underlying relation- 
ship. To illustrate this point, the 
above function could be modified 
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an inherited method (such as method 
a of class Cl). Suppose we want to 
emphasize that redefined functional- 
ity differs from inherited functional- 
ity. Let m be the inherited method 
and m’be its redefinition. In the case 
where both m and m’appear in M(X) 
U M(v then in the affinity calcula- 
tion we consider m = m’ in M(X) fI 
M(g while in M(X) U M(v we take 
m # m! This produces a slight reduc- 
tion of the affinity between classes 
where one redefines a method of the 
other. 

Figure 6 depicts a typical view 
generated by the affinity browser us- 
ing the previously defined measure of 
affinity. The highlighted class, C,, is 
the current class. The Znspect Window 
displays the names of the classes 
within the view, these can be selected 
to obtain further information about 
each class. 

The affinity browser promotes the 
local exploration of the class space. 
The user selects a class, it becomes 
the current class, and the tool 
displays the classes that are within a 
user-defined affinity neighborhood 
(i.e., those that have an affinity with 
the current class that is greater than 
a user-defined limit). Selecting a new 
current class causes a shift in the 
neighborhood; new classes enter the 
view while others disappear. Views 
can be connected in the sense that 
they can be constrained to have the 
same current class. Each view then 
provides a different exploration con- 
text; they are centered on the same 
class but have different neighbor- 
hoods since different affinity func- 
tions are involved. 

It should be pointed out that given 
a measure of affinity it is not possi- 
ble, in general, to generate a two- 
dimensional representation that 
satisfies all the affinity constraints. 
The view layout algorithm [31,33] at- 
tempts to find a good approximate 
solution. For example, it does not 
assign the same weight to each aflin- 
ity constraint. It assumes that it is 
more important to provide an accu- 
rate representation of affinity be- 
tween the current class and the other 
classes of the view than between two 
arbitrary classes. 
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CIUSS EwOlUtlOn 

Issues 

Classes developed with an object- 
oriented language frequently un- 
dergo considerable reprogramming 
before they become readily reusable 
in a wide range of applications or do- 
mains. There are a number of rea- 
sons for this phenomenon: 

l Experience shows that stable, reus- 
able classes are not designed from 
scratch, but are “discovered” 
through an iterative process of 
testing and improvement [16]. 

l Classes are difficult to arrange in 
predefined taxonomies. 

l Because user’s needs are rarely 
stable, additional constraints and 
functionalities have to be con- 
stantly integrated into existing 
applications. 

l Reusing software raises complex 
integration problems when teams 
of programmers share classes that 
do not originate from a common, 
standard hierarchy. 

To apply such powerful techniques 
as inheritance, genericity, and de- 
layed binding efficiently, real-world 
concepts have to be properly encap- 
sulated as classes so they can be 
specialized or combined in a large 
number of programs. Inadequate 
inheritance structure, missing ab- 
stractions in the hierarchy, overly 
specialized classes or deficient object 
modeling may seriously impair the 
reusability of a class collection. The 
collection must therefore evolve to 
eliminate such defects and improve 
its robustness and reusability. 

Several approaches, ranging from 
class tailoring to class reorganization, 
have been proposed to improve class 
collections. We will now describe 
some relevant techniques developed 
recently for controlling evolution in 
object-oriented environments, and 
discuss their respective merits. 

Class tallorlng 

Object-oriented languages have 
always provided simple constructs for 
tailoring class hierarchies, notably by 
allowing the redefinition of inherited 
properties. The body of a method, 
for example, can be completely 
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FwxmE 5. Inheritance Structure of a Set of Classes. 

FIGURE 6. Affinity Browser Display. 

modified in a subclass, although its 
name and its signature remain iden- 
tical. Therefore, it is possible to im- 
plement specialized or optimized 
versions of the same method, rather 
than using the general, and perhaps 
inefficient algorithm defined in a 
superclass. Some languages, such as 
Eiffel, allow the type of inherited 
variables, parameters and function 
results to also be overridden, pro- 
vided the new type is compatible 
with the old one [21]. With the object- 
oriented variants of LISP, the pro- 
grammer can choose how to combine 
inherited methods in a new class [24]. 

A similar, but more formal ap- 
proach is described in [7]. The 
author proposes a mechanism for ex- 
cusing abnormal cases that arise 
when modeling an application do- 
main, and that do not fit with the ex- 
isting class hierarchy. For example, a 
system for managing information on 
students may have to cope with the 
case of people who did part of their 
studies in foreign countries with dif- 
ferent grading schemes and aca- 
demic titles. Contradictions between 
the definition of the “foreign stu- 
dent” class and its superclass (“nor- 
mal student”) must be explicitly 
acknowledged. The explicit redehni- 

tion of inherited attributes according 
to a formal model integrating excuses 
with inheritance facilitates the detec- 
tion of type violations and the correct 
handling of database queries (with- 
out overlooking exceptional entities). 
Moreover, exceptions are handled 
locally, and do not require the factor- 
ing of common properties into nu- 
merous intermediate classes. 

These techniques are useful for 
performing limited adjustments to a 
class collection, but they do not pro- 
vide any help for detecting design 
flaws. Over-reliance on tailoring and 
excuses may quickly lead to an in- 
comprehensible specialization struc- 
ture, overloaded with special cases 
and difficult to manage efficiently 
with current database technology. 
Such a situation is generally a strong 
indication that the hierarchy does not 
contain the proper abstractions and 
that it should be reorganized. 

Class surgery 

Whenever changes are brought to the 
modeling of an application domain, 
corresponding modifications must be 
applied to the classes representing 
real-world concepts. Modifying a 
class hierarchy is a delicate operation 
because of the multiple connections 
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between class definitions that must 
be taken into account to guarantee 
the consistency of the hierarchy. 

This problem also arises in the 
area of object-oriented databases. 
There, the availalble techniques [l, 
291 first determine a set of integrity 
constraints that a class collection 
must satisfy. For example, all in- 
stance variables of a class should bear 
distinct names, no loops are allowed 
in the hierarchy, the attributes de- 
fined in a class should be inherited by 
all its subclasses, and so on. In a sec- 
ond step, a taxonomy of all possible 
updates to the system is established. 
These changes concern the structure 
of classes, like “add a method,” 
“rename a method,” or “restrict the 
domain of a variable”; they may also 
refer to the hierarchy as a whole, as 
with “suppress a class,” or “add a 
superclass to a class.” 

For each of these update catego- 
ries, a precise characterization of its 
effects on the class hierarchy is given, 
and the conditions for its application 
are analyzed. Generally, additional 
reconfiguration procedures have to 
be applied in order to preserve in- 
tegrity constraints. It is, for example, 
illegal to suppress an attribute from 
a class C if this attribute is really in- 
herited from a superclass of C, if the 
attribute can be suppressed, it must 
also be recursively dropped from all 
subclasses of C, or possibly replaced 
by another variable with the same 
identifier inheriteld through another 
subclassing path. As another exam- 
ple, deleting a class Sfrom the list of 
ancestors of another class C is not 
allowed if this operation leaves the in- 
heritance graph disconnected. If the 
operation does not cause any prob- 
lems, the inheritance links are 
reassigned to point from C to the 
superclasses of S Of course, the 
properties of S no longer belong to 
the representation of C, nor to those 
of its subclasses. 

Decomposing all class modifica- 
tions into update primitives and 
determining their consequences 
brings several advantages. During 
class design, this approach helps 
developers detect implications of 
their actions on the class collection 
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and maintain the consistency of class 
specifications. During application 
development, it guides the propaga- 
tion of changes to where the class is 
reused. For example, renaming an 
instance variable of a class, chang- 
ing its type or defining a new de- 
fault value, has no impact on an 
application using the class. Changing 
or deleting methods, on the other 
hand, generally leads to changes in 
applications. 

Depending on the class model and 
on the integrity constraints, a soft- 
ware information system may pro- 
vide different forms of class surgery. 
This approach, however, limits its 
scope to local, primitive kinds of 
evolution; it forms a solid framework 
for defining “well-formed” class 
modifications, but it gives no guid- 
ance as to when these modifications 
should be performed. 

Class uersIonlng 

Versioning is a particularly appeal- 
ing technique for managing class 
development and evolution. It en- 
ables programmers to try different 
paths when modeling complex ap- 
plication domains and to record the 
history of class modifications during 
the design process. Versioning also 
helps in keeping track of various im- 
plementations of the same class for 
different software environments and 
hardware platforms. 

A basic problem to deal with con- 
cerns the identity of classes. It is no 
longer enough to refer to a class by its 
name, since the name might corre- 
spond to many versions of the same 
class. An additional version number 
must be provided to identify unam- 
biguously the class referred to. When 
this version number is absent, a 
default class is assumed: the very first 
version of the class referred to, or its 
current version, or its most recent 
version when the software compo- 
nent making the reference was 
created. 

If only the most recent version can 
give rise to new versions, there is in 
principle no need for an elaborate 
structure to keep track of the history 
of classes: their name and version 
number suffice to identify their rela- 

tionship to each other. The case 
where versioning is not sequential, 

( i.e., where new versions can be 
derived from any previous version), 
requires that the software informa- 
tion system record a hierarchy of ver- 
sions somewhat similar to the 
traditional class hierarchy. 

Another difficulty arises because 
of the superimposition of versioning 
on the inheritance graph. For exam- 
ple, when creating a new version for 
a class should one derive new ver- 
sions for the entire tree of subclasses 
attached to it as well? A careful 
analysis of the differences between 
two successive versions of the same 
class gives some directions for deal- 
ing with this kind of problem. If the 
interface of a class is changed, then 
new versions should be created for all 
its subclasses and all its dependent 
classes. If only nonpublic parts of the 
class are modified, such as methods 
visible only to subclasses, or the types 
of instance variables, then versioning 
can be limited to its existing 
subclasses. If only the implementa- 
tions of the class’s methods are 
changed, no new versions for other 
classes are required. 

Application developers may want 
to consider objects instantiated from 
previous class versions as if they 
originated from the current version, 
or they may want to forbid objects 
from an old version to refer to 
instances of future versions. These 
effects are rarely achieved by fully 
automatic means. For every new ver- 
sion, one must program special func- 
tions for mapping between old and 
new class structures [6, 381. These 
functions filter the messages sent to 
objects, so that proper actions can 
be taken, like translating between 
method names, returning a default 
value when accessing a non-existent 
variable, or simply aborting an un- 
successful operation. 

In spite of their overhead, class 
versioning techniques have proved 
indispensable in important domains 
like CAD/CAM and office informa- 
tion systems. They have therefore 
been integrated in object-oriented 
systems, such as Orwell [42] AVANCE 
[5], ORION [i], and IRIS [2]. 
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Clcrss reorpcmlzatlon 
Class evolution is intimately linked 
with class design. Suppose program- 
mers build applications chiefly in a 
bottom-up fashion by reusing ex- 
isting classes. Classes may then re- 
quire adaptations so that they fully 
suit the needs of software developers. 
This is a, L ieved by redefining or sup- 
pressing attributes (instance vari- 
ables and methods), reimplementing 
methods, changing class interfaces, 
etc. Such modifications indicate that 
the current hierarchy is not satisfac- 
tory: if classes cannot be reused as 
they are, if subclasses cannot be de- 
rived from other classes without con- 
siderable tailoring, then one needs to 
look for missing abstractions, to 
make some classes more general, to 
increase modularity, in short, to re- 
organize, at least in part, the hier- 
archy. Tools that automatically 
restructure a class collection and sug- 
gest alternative designs can reduce 
considerably the efforts required for 
carrying out these tasks. 

One solution is to algorithmically 
restructure the hierarchy when in- 
troducing new classes by creating in- 
termediate nodes, shuflling attributes 
among them, and rearranging in- 
heritance paths, so as to avoid the 
need for explicitly redefining or re- 
jecting attributes [8]. In the example 
of Figure 7, we want to insert a class 
that inherits attributes A and D, in- 
troduces E, but suppresses attributes 
B and C. The second part of Figure 
7 shows how the graph has to be 
modified to accommodate class 
ADE; notice that two intermediate 
classes are required for its integration 
in the hierarchy. These additional 
classes represent shared modules of 
functionality; they correspond to 
constructs, such as the “mixins” of 
Lisp with Flavors [23], whose main 
purpose is not to describe real-world 
entities, but rather to support the im- 
plementation of other classes. More 
importantly, the classes introduced 
during the reorganization process 
can serve as a rough estimate for the 
abstractions that are missing from 
the modeling of an application do- 
main.. Such defects are unavoidable; 
it is exceptional to achieve a stable, 
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FIGURE 7. 
ReOr#ailiZiIl# a class Hierarchy. 

definitive class design without going 
through several iterations. New 
classes and inheritance links corre- 
spond to the places in the hierarchy 
warranting redesign. 

This approach works incremen- 
tally and preserves the structure of all 
original classes, except for their in- 
heritance links. It can be extended to 
take into account information on 
types, on mutual dependencies be- 
tween attributes, and on multiple in- 
heritance. When typical evolution 
patterns emerge, they can help guide 
the design process [18]. 

An analogous technique is used to 
fully recast a class hierarchy, by 
getting rid of obsolete classes or 
unwanted versions. Global restruc- 
turing algorithms keep as much in- 
formation as is needed to reconstruct 
all original classes, if needed; they try 
to enforce some properties, like al- 
lowing an attribute to be introduced 
at only one point in the hierarchy [8]. 

Reorganization can also improve 
the quality of classes. Some class 
design methods prohibit certain 
kinds of references to the attributes of 
objects [19]. Thus, a method should 
never access variables that do not 
belong to the class where it is defined 
or are not passed to it as parameters. 
Such unsafe expressions can be de- 
tected and replaced with appropriate 
method calls automatically. By elim- 
inating unnecessary dependencies, 
classes should encapsulate function- 
ality more tightly and show better 
resilience to change. 

Reorganization algorithms appear 
useful for detecting missing abstrac- 
tions, for proposing generalizations 
of very specialized classes, and for 
cleaning up a hierarchy. However, 
because they perform strictly struc- 
tural transformation on object de- 
scriptions, their results require user 
intervention to compensate for the 
lack of knowledge concerning the ap- 
plication domain and the concepts 
embodied in the class collection. 

Object-oriented development has 
an iterative nature and successive 
stages of subclassing, class tailoring, 
class modification, version creation 
and reorganization are needed to 
build increasingly general, reusable 
and robust classes. We expect, 
therefore, software information 
systems to take advantage of a spec- 
trum of tools and techniques for 
managing class evolution. 

Conclusion 
In the preceding sections we have 
argued that object-oriented pro- 
gramming, augmented by the avail- 
ability of large class collections, leads 
to a new method of software develop- 
ment which encourages the design 
and reuse of generic components by 
communities of software developers. 

In establishing this method there 
appear to be three sets of issues which 
must be addressed. First, there are 
basic questions related to the design 
of systems for maintaining the class 
collection-what we have called soft- 
ware information systems. Second, 
we need to understand how to in- 
tegrate such systems with software 
development methods. And, third, 

101 



I I I 

there is the question of establishing 
the appropriate infrastructure to 
assure wide acc:essibility of these 
systems. 

We have been more concerned 
with the first set. of issues; in par- 
ticular we have focused on class 
management, or how to organize and 
maintain large class collections. We 
have looked at various alternatives for 
representing classes and their rela- 
tionships, for assisting developers to 
select classes, and for allowing the 
class collection to evolve over time. 
There has been little experience 
working with very large, shared class 
collections and so we plan to evaluate 
some of the techniques described 
above. Currently we are implement- 
ing a prototype, called Xos, or “ex- 
ternal object system” which has been 
specifically designed for modeling 
object classes [ll, 121. Xos allows ap- 
plication development tools to con- 
currently create, query and modify 
class representations. We plan to use 
Xos to capture a large C + + hier- 
archy and then evaluate various que- 
rying and browsing facilities, such as 
affinity browsing, and experiment 
with class reorganization algorithms. 

Regarding the role of software in- 
formation systems and class collec- 
tions in the development life cycle, it 
is useful to distinguish between two 
kinds of development activity: com- 
ponent development and application 
development. The former consists of 
designing and implementing reus- 
able or generic components while the 
latter consists of constructing ap- 
plications from primarily prede- 
signed components. For reuse to 
occur there must be an increased 
emphasis on the development, eval- 
uation and refinement of compo- 
nents, as opposed to final products or 
applications. Furthermore, tools 
must be provided that aid in conlig- 
uring existing components into new 
applications. 

We are exploring this approach by 
participating in Ithaca [35], a large 
European ESPRIT project, the aim 
of which is to build an environment 
to support the development of object- 
oriented applications in a variety of 

. . 
application domains. The environ- 
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ment includes an object-oriented 
language with database support, a 
software information base (SIB) 
which stores and manages informa- 
tion concerning reusable software 
and its intended use, a selection tool 
for browsing and querying the SIB 
and a variety of application develop- 
ment tools built around the SIB. 
Among these tools is a visual scripting 
tool for interactively constructing 
running applications from visual 
representations of packaged applica- 
tion objects [26]. 

Finally, we believe that the greatest 
benefits of large-scale class reuse will 
occur when software information 
systems are publicly available 
resources rather than confined within 
single organizations. Despite 
facilities such as electronic mail and 
bulletin boards, software develop- 
ment is still too isolated an activity. 
The past decade has seen the estab- 
lishment of on-line services in areas 
such as finance and travel. These 
services are decentralizing and inter- 
connecting workers in many occupa- 
tions. Using the class as a unit of 
interchange, software development 
may also become a more open, net- 
worked, cooperative activity. This 
raises a number of pragmatic issues, 
some of which we have alluded to in 
this article. For instance, if proprie- 
tary software is placed in publicly ac- 
cessible systems will it be possible to 
ensure that licensing and copyright 
conditions are met? Who will operate 
these systems and what services will 
be provided? How will they be ac- 
cessed? These pragmatic issues, in 
addition to the technical problems of 
class management, must be ad- 
dressed before large-scale reuse of 
object classes can be realized. 
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