
Simon Gibbs, Dennis Tsichritzis, Eduardo Casais,

CLASS
MANAGEMENT
FOR SOFTWARE
COMMUNITIES

Oscar Nierstrasz, and Xavier Pintado

90

http://crossmark.crossref.org/dialog/?doi=10.1145%2F83880.84525&domain=pdf&date_stamp=1990-09-01

Object-oriented programming may
engender an approach to software
development characterized by the
large-scale reuse of object classes.
Large-scale reuse is the use of a class
not just by its original developers, but
by other developers who may be from
other organizations, and may use the
classes over a long period of time.
Our hypothesis is that the successful
dissemination and reuse of classes re-
quires a well-organized community
of developers who are ready to share
ideas, methods, tools and code. Fur-
thermore, these communities should
be supported by software informa-
tion systems which manage and
provide access to class
collections. In the fol-
lowing sections we
motivate the need for
software communities
and software informa-
tion systems. The bulk
of this article discusses
various issues associated
with managing the very
large class collections
produced and used by
these communities.

tellectually taxing effort. Therefore,
it is different from most manufac-
tured products. Nevertheless, we still
dream of “software factories” which
will cheaply produce high quality
software (see [20] for an early expres-
sion of this idea). The problem, per-
haps, is that we approach software
development with the wrong para-
digm. If we approach software using
a mathematical paradigm, the pro-
gram resembles a proof of a stated
problem (the theorem). The empha-
sis is on structure, methodical devel-
opment and proof of correctness.
If we approach software with an en-
gineering/manufacturing paradigm,

call cooperative large-scale reuse. This
method can be illustrated by use of a
legal analogy. Suppose a program
corresponds to a legal case: its
development and maintenance par-
allel the legal effort associated with
building and presenting a legal case.
Such an analogy would have been
natural if the pioneers of computer
science had been lawyers rather than
mathematicians and engineers. Note
that, within this analogy, it is difficult
to talk about the correctness of soft-
ware, or software factories, for the
analogy immediately points out the
difficulties in considering correctness
of a legal case or a legal case factory.

so6tware
Communltles
Software development
and maintenance cause
major headaches for
most organizations. Al-
though it has been rec-
ognized as a problem for
many years now, soft-
ware development still
costs too much and in-
duces overruns and de-
lays. Advances have been made over
the years, particularly in the area of
Computer-Aided Software Engi-
neering (CASE) tools which aim to
improve productivity. In spite of
these improvements, software de-
velopment has resisted efforts at
mechanization or automation. It is
perhaps time to recognize that there
is something intrinsically different
about software development which
does not allow easy automation.

It is widely recognized that soft-
ware development is not repetitive
but requires much creative and in-

we view the program as a product
built by a well-known procedure
whose steps have to be streamlined.
Over the years, as a result of con-
siderable research activity we have
achieved some success using these
paradigms. However, the fact that
software development and mainte-
nance are still a problem should
encourage the search for other
paradigms.

One new paradigm is offered by
object-oriented programming. This
paradigm, when fully applied, pro-
motes a method of development we

The most interesting insights,
however, come in a positive sense
when we consider how lawyers go
about building a case. First, they base
their arguments on past experience
accumulated not only by themselves,
but especially by their colleagues.
Recording this experience is an in-
tegral part of the legal process. Sec-
ond, a legal case continuously
evolves. There is no notion of sepa-
rating design from implementation
or development from maintenance.
Instead, each legal case continuously
develops (through the appeal pro-

COYYUNICIITIOWSOCTREliCMIScptember 19901Vo1.33, No.9 91

I II I

cedure) and links up to previous and
eventually future cases. Two out-
standing characteristics of legal effort
seem, therefore, to be the reusability
of past experience and a continu-
ously evolving effort.

We will now draw parallels from
the analogy and a.pply the character-
istics of legal effort to software. The
two outstanding characteristics of
software development and mainte-
nance should be :reusability of expe-
rience and evolving software. To
increase productivity of software
development one should reuse past
experience, in the same way a lawyer
building a legal case uses past ideas,
arguments and cases. By the term
past experience we mean to include re-
quirements, specillcations, models,
designs and software components. To
promote evolving software we should
be able to interchange parts, such as
documentation, designs, and soft-
ware components, and link them in
various ways, just as a lawyer
enhances his case by continuously
rearranging his arguments, drawing
in new ones and abandoning those
that are unsuccessful.

Like legal work, software develop-
ment and maintenance are intellec-
tually taxing. Both can benefit from
proper organization and appropriate
use of technology to help manage
and locate information. The prevail-
ing software engineering methods
tend to cover all phases of software
development for every single project,
from requirements collection, anal-
ysis and specification, all the way to
coding. Reuse of experience and soft-
ware is effectively discouraged by
restricting the context to a single ap-
plication at a time [22]. We argue, on
the other hand, that long-term gains
in software productivity and reliabil-
ity can only be achieved by adopting
a more global view of software
development.

In particular., software develop-
ment can be viewed as taking place
within the context of a software com-
munity. Just as there are legal com-
munities-groups of lawyers with
common areas of legal expertise and
a shared history of legal cases-so
there should be software communi-

I I I

ties: groups of people engaged in the
development, and also the dissemi-
nation and end use, of pieces of soft-
ware. An essential characteristic of
any community is its history: an ac-
cumulation of collective past expe-
rience. The history of a software
community would be the experiences
gained in the design, development,
use and maintenance of software
for particular application domains.
For a software community to func-
tion efficiently it must learn from
and take advantage of this wealth
of experience.

In our ideal scenario, applications
would be based on generic software
components accumulated by a soft-
ware community familiar with the
application domain. To build a new
application, a developer could collect
requirements according to an ex-
isting, well-defined model of the
domain, select generic software com-
ponents according to these require-
ments, and initialize and compose
the selected components to construct
the running application. By analogy,
lawyers would like to handle all legal
cases as though they were slight
variations on textbook cases.

Although this scenario is rather
idealized, we believe it can be real-
ized to a greater or lesser extent,
depending on how well an applica-
tion domain can be characterized,
and on how routine the required ap-
plications will be. In fact, commer-
cially available generic software,
(such as spreadsheets, relational
databases, and hypertext systems), is
already proving this scenario work-
able for certain application domains.
Even in cases where clients have very
specific requirements, we believe a
large part of an application should be
boilerplate, with only a few software
components being designed specifi-
cally to meet the new requirements.

To approach this scenario as
closely as possible for any given ap-
plication domain, it is clear that we
must support the process of develop-
ing generic, reusable software. To this
end we must
1. organize and manage software

and information about software
development,

I I I I I

2. make it easy to find information
concerning prior projects that may
be relevant to new projects, and

3. provide support for the gradual
evolution of software and software
components.

Soitware
lniocmation systems
The use of software information systems
is one way of achieving the above
three goals and improving the effi-
ciency of software communities. A
software information system is a
repository, likely very large, contain-
ing all the information, including
documents, designs, and software
components, relevant to the func-
tioning of a particular software com-
munity. The system should be
readily available to members of the
community and continuously aug-
mented as software is developed or
refined.

To make the notion of a software
information system more concrete
we shall assume that applications are
developed using an object-oriented
approach and that individual soft-
ware components are primarily
classes written in an object-oriented
programming language. Object-
oriented languages, through mecha-
nisms of encapsulation, data ab-
straction, instantiation, inheritance,
genericity, and strong typing, have
demonstrated their potential in de-
veloping toolkits and libraries of
reusable software components. Al-
though we make few assumptions
about the nature of the particular
mechanisms supported by the lan-
guage of choice, we feel it reasonable
to suppose that object classes and
some form of class inheritance will
play an important role. A starting
point, then, is to consider a software
information system as a collection of
object classes.

There are a number of advantages
to collecting and organizing classes
within an information system. First,
the classes will be indexed to help
with retrieval. Second, by applying
quality control procedures to classes
added to the system, developers can
be more certain of the reliability of
classes obtained from the system.

I I I I I I I

Furthermore, a software information
system with knowledge about depen-
dencies between classes can ensure
that its contents be complete (miss-
ing files or definitions are often prob-
lems when reusing software). Finally,
by obtaining a class from a reposi-
tory, developers are more likely to get
a standard version rather than a
version full of undocumented local
modifications.

There has been considerable work
in the area of database support for
software development [3, 4, 15, 281,
primarily in the context of extending
programming environments with
database facilities for project and
configuration management. We view
a software information system in a
rather different light, as an autono-
mous service, not necessarily tightly
coupled with the programming de-
velopment tools but, nevertheless,
easily accessible by these tools. The
closest existing systems of this nature
are electronic bulletin boards and the
various software repositories scat-
tered over Internet. Such facilities,
while useful, are very limited in their
functionality.

We will call the task of maintain-
ing a collection of classes class manage-
ment. Class management includes
many traditional database manage-
ment issues such as data modeling,
access methods and authorization.
Additionally, class management en-
compasses new issues specific to
classes. For instance, as requirements
change or designs improve, classes
must change; we call this class evolu-
tion. When the collection is large,
developers may require assistance in
finding a class for reuse; we call this
class selection. There is the problem
of preparing classes for reuse: class
packaging. Other class management
issues pertain to security and pricing
policies. These include keeping the
class collection free from viral infec-
tion or, when a class is proprietary to
particular groups, helping to enforce
licensing contraints.

Next we explore the basic issues in
class management by discussing ap-
proaches to organizing and manag-
ing classes so as to support software
development and reuse, approaches

to browsing and querying a collec-
tion of object classes, and techniques
for the controlled evolution of object
classes and class hierarchies. Our ob-
jective is not to propose a design for
software information systems, but
rather to identify and categorize
some of the critical issues that must
be addressed when designing these
systems.

Class PackagIng

Object-oriented programming has
been described as a “packaging tech-
nology” [9]. Class packaging is the
problem of representing an object
class so that the information needed
to use the class can be easily located
and incorporated within an applica-
tion. A straightforward approach to
packaging would be to represent
classes by source text and store these
representations in a file system. The
information could be organized us-
ing simple mechanisms such as lile-
naming conventions and directories,
and accessed through standard util-
ities such as editors and file browsers.
However, even if the number of
classes is small, this representation
may present difftculties. For instance,
on a UNIX’” system a C++ pro-
grammer typically represents a class
X by two files: a source file, Xc, and
header file, X.h, containing public
declarations. Suppose X.h consists
Of:

#include “commonh”
#include “Y.h”
#include “Zh”
class X : public Y, public Z (

int x;
protected:

void setx(int);
int getx();

public:
X(int);

-x0;
1;
Given X.h, a programmer who

wants to make use of class X would
have to locate at least the following
information:
l the include files common.h, Y.h,

and Z.h,
l the source code or object code for

the methods X::setx, X::getx,
X::X, and X::-X, and

l the source code or object code for
methods of the classes Y and Z.

In addition the programmer
would have to consider

l whether the names (classes, struc-
tures, type definitions, etc.) used in
common.h, Y.h, or Z.h, are in con-
flict with names already in use,

l whether any of common.h, Y.h, or
Z.h, in turn refer to other include
files,

l if object code is available, whether
it is suitable for the run-time en-
vironment (processor, operating
system) the programmer intends to
use,

l if source code is available, whether
it is suitable for the development
environment (compiler, operating
system) the programmer intends to
use,

l whether X will be reused directly
or relined. In the first case the pro-
grammer may want to examine the
source of public methods of X; in
the second case the programmer
may also want source of private
and protected methods.

As the number of classes increases,
more problems appear with this rep-
resentation: it becomes difficult to
find classes, relationships between
classes are not explicitly represented
and so must be deduced from the
source code, and adding new classes
may involve rearranging the file
system. By choosing a richer, more
explicit representation of class struc-
ture, the software information system
can be of greater assistance in man-
aging large numbers of classes. For
instance, advanced querying and
browsing facilities, versioning, and
high-level interfaces to development
tools all require, to some extent,
knowledge of the structure and rela-
tionships of classes.

An early example of class packag-
ing can be found in Xerox’s PIE
(Personal Information Environment)
[14]. PIE is an extension of the
Smalltalk programming environ-
ment in which Smalltalk classes are
represented by layered networks.
The nodes of these networks contain
various chunks of code for the
associated class, (see Figure 1 for a

CCYM”IIIC.~IOWSCFT”EACCDliScptc~nber 199O/Vo1.33, No.9 93

I II I

simplified example). Each layer cor-
responds to a different design of the
class (in the example shown, class X
has one method in the initial layer
and a second me:thod added by the
superseding layer). One advantage of
representing classes by data struc-
tures rather than text is that software
can then be integrated with other
forms of information. This is illus-
trated by PIE since it supports the
creation of hypertext-like links be-
tween nodes containing code and
nodes containing documentation.

A more recent example of packag-
ing is found in the Trellis pro-
gramming environment [27]. As a
programmer defines new classes us-
ing the Trellis/Owl language, repre-
sentations consisting of the source
code of these classes are added to a
database. This information is shared
and augmented by t.he programming
tools within the environment, in-
cluding a cross-referencing tool and
a compiler which adds object code
and possibly error information. A
second advanta,ge of representing
classes by data structures, rather than
text, is that it is easier to build tools
which examine and manipulate
classes. Trellis is an open-ended en-
vironment where tools can be added
or modified. This is, at least in part,
a result of the packaging and sharing
of class definitions provided by the
database.

It is natural to ask what are the
characteristics of useful class repre-
sentations. We believe three things
are important: First, the representa-
tion should allow a structural decom-
position of the class into a number of
logical components. Second, the rep-
resentation should permit the attach-
ment of descriptive information.
Third, the representation should
support multiple views.

Structural Deco@xxition. By structural
decomposition we mean breaking the
representation of a class into a
number of interrelated components.
In choosing a decomposition for
classes written in a particular pro-
gramming language, one can be
guided by the constructs provided by
the language. So if the programming

I I I

language supports class and instance
variables, the representation should
contain structural components cor-
responding to both class and instance
variables. Similarly, if methods may
be private or public it should be pos-
sible to capture this distinction within
the representation. However, there is
a tradeoff between the granularity of
structural decomposition and sim-
plicity of the representation: as the
representation becomes more finely
detailed, its use by tools such as
browsers becomes more complex.

Descriptive Attachment. Not all com-
ponents of the class representation
need be derivable from source code.
The representation should allow one
to attach components corresponding
to descriptive attributes. Possible at-
tributes include the author of the
class, the date it was written, version
and release information, and com-
ments or documentation. For re-
trieval purposes it is useful to attach
textual descriptions of the class. This
could be a set of keywords, or de-
scriptors from a software classifica-
tion scheme such as described in [34].

Multiple Views. Structural decompo-
sition of classes is a very general
mechanism which can be used in a
number of ways. One use is in ver-
sioning, the advantage being that
only those components differing
from a previous version need be
stored. This is demonstrated by PIE.
Structural decomposition is also
useful for browsing-since the
browser can then display or highlight
different parts of the class in different
ways, and for querying-since it is
then possible to express and evaluate
queries which refer to different parts
of the class. However, the represen-
tation of a class may become rather
complex. Considering only version-
ing there are many complications.
Versions may have different designs
(i.e., different signatures), may refer
to different stages of development,
their implementations may differ
(i.e., different choices for internal
data structures and algorithms), and
their compilations may differ (i.e.,
object code for various machine ar-
chitectures). In order to cope with

I I I I I

this complexity it is useful if multiple
views of a class are supported.

Some examples of views include
the private and public parts of a class,
the implementations of a class (see
Figure 2), and owner-versus-user
views of a class [42]. Other examples
of views can be found in the ways
various object-oriented languages
organize methods. For instance,
Smalltalk conventionally groups
methods into categories. In CV++
[37], an extension of C ++ , methods
can be grouped into a number of in-
terfaces. Other proposals group
methods into roles-each object has
a current role and will only respond
to methods associated with that role
[30,36]. In such cases one may want
to be able to view a class from the
perspective of a particular category,
interface, or role. Finally, in a multi-
language environment where, for in-
stance, both C++ and Smalltalk
classes are needed, it may be useful
to have a coarse language-indepen-
dent view, showing perhaps only class
names and method names, in addi-
tion to more detailed, language-
dependent views. In general, as these
examples show, a view mechanism
allows classes to be dealt with at dif-
ferent levels of detail and in more
flexible ways.

Class Orqanlzation
Class packaging deals with the
representation of single classes. Class
organization, on the other hand, deals
with the relationships and dependen-
cies that occur in collections of
classes. A software information sys-
tem should capture the relationships
between classes for a number of
reasons. First, it is needed for reuse;
although classes have been proposed
as units of code reuse, it is often the
case that one class depends on an-
other and so it is not single classes but
groups of classes which are reused.
Second, knowledge of class relation-
ships can help with browsing since a
browser needs to identify related
pieces of information. Finally, class
relationships can also help to detect
inconsistencies or incompleteness.
For example, a software information
system would be incomplete if it con-

94 September 199O/Vo1.33, No.9ICOYYUWICITIOWSOFTREICI

I I I I I I I

tained a. class but not its superclass.
It is useful to distinguish two cat-

egories of relationships involving
classes. The first, structural relation-
ships, are derivable from source
code. Examples include the SubckzssOf
or inheritance relationship, Instance-
Of; and a DependrOn relationship.
Relationships of the second category
are those which are not derivable
from source code; instead these are
explicitly defined by some agency ex-
ternal to the software information
system. For example, a project could
define a relationship for the purpose
of collecting the classes which it uses.
We now look at some of the issues in-
volved in representing relationships
among classes.

SubclassOf (inheritance). Inheritance is
one of the standard features of object-
oriented languages [44]. Thus we
would expect a software information
system to keep track of which classes
are subclasses of other classes. Rep-
resenting this relationship itself is
straightforward; single inheritance is

a l-n relationship between classes
while an m-n relationship is needed
for multiple inheritance. An interest-
ing question is to what extent the
software information system need
model the semantics of inheritance.
There are many varieties of in-
heritance [25,39]. To take one exam-
ple, object-oriented programming
languages differ on whether the in-
stance variables of a superclass are
visible to the methods of a subclass.
If we want the software information
system to provide a view of a class
showing all available instance vari-
ables or all available methods, as does
the “flat” view of Eiffel [21], then it
will be necessary to model some of
the semantics of inheritance. Fur-
thermore, such views involve calcu-
lating the transitive closure of the
SubClassOf relationship, so efficient
traversal of this relationshp must be
possible within the software informa-
tion system.

InstanceOj The role of the InstanceOf
relationship within software informa-

-_ initial Layer
- Superseding Layer

FlGURE q. PIE Network LaverS.

(a)

tion systems requires some clarifica-
tion. We see software information
systems as containing representa-
tions of classes, but generally not in-
stances of these classes. Instances
would be created and managed by
applications constructed using the
classes provided by a software infor-
mation system. However, there are
situations when an inter-class Zn-
stanceOf relationship is useful. Some
object-oriented languages contain
metaclasses. In this case classes can
be viewed as instances and the soft-
ware information system would need
to represent both classes and meta-
classes as well as the relationship be-
tween the two. A second potential use
is in modeling parametric polymor-
phism. Some object-oriented lan-
guages contain constructs which can
be expanded into class specifications
by binding type parameters. Such
polymorphic class specifications
could be modelled as metaclasses, in
which case the derived class would be
an instance of the metaclass.

DependsOn (ClientOJ PartOB. One
class may depend on another in a
variety of ways: A class may be a
ClientOf (i.e., invoke) the methods of
another class. One class may be
PartOf a second, as when a class has
instances of other classes among its
instance variables. In strongly-typed
object-oriented languages a class may
depend on another by declaring it as
the type of a method parameter.
These are examples of a general
De@ndcOn relationship that identifies

0))

FlGURE 2. Alternative Views.

95

I I

the various syntactic references
between classes. A software informa-
tion system should be able to deter-
mine for a given class, which classes
it depends on, and conversely, which
depend on it.

These relationships are common
to many object-oriented languages.
There are other relationships which
are more language-dependent, such
as the “friend” relationship found in
C + + [40]. If one class declares a sec-
ond as its friend, then the private

--

I I I

methods and instance variables of the
first class are available to the second.
Other examples result from aggrega-
tions of classes such as “features” [17]
and “frameworks” [45]. Both fea-
tures and frameworks involve groups
of classes: a feature is a language con-
struct that specifies an interface to
some group of classes while a frame-
work is a subsystem design based on
an inter-working group of classes. In
these examples, one class may be
related to another via participation in

0 context

0 class

FBGURE I.C++ Class RelatiOnShiPS-

n InvokerOf

RefinementOf

MethodOf
FirstDedaredBy
RefinedBy
InheritedBy

UsesPrivatesOf ‘?* Fzdson

DocumentationO/ / \

Document 6 u SubClassOf

FecuRE o.Clas;s Hierarchieswithin Contexts.

I I I I I

the same feature or framework. In
general, any language-dependent
software information system may
have to represent a number of addi-
tional relationships derived from the
language concerned. Figure 3 shows
an example of a more extensive
group of relationships used to repre-
sent a C + + class collection.

In addition to structural relation-
ships such as SubClass, InstanceOJ; and
DependrOn, class organization also re-
quires relationships not derivable
from source code. These include
relationships that associate docu-
mentation and other design informa-
tion with classes. The nature of these
relationships depends on many
factors such as the procedures for
adding a class to the software infor-
mation system and documentation
conventions and formats. For exam-
ple, Figure 3 shows a simple “Docu-
mentationof’ relationship between
C++ classes and documents. In prac-
tice, however, a more refined and
versatile inter-linking of classes and
documentation is likely to be necessary

In addition to organizing classes in
terms of inter-class relationships, it
may be useful to have more abstract
groupings of the class collection. In
many object-oriented programming
languages the class name space is
essentially flat. This can be prob-
lematic in a multi-user environment
since a monolithic class hierarchy
constrains the designer of new objects
to avoid name clashes. A simple ex-
ample would be a CAD programmer
who wants to provide a “Window”
object class for use in architectural

. .
applications but is unable to because
of a conflict with a user-interface
“Window” class. A more subtle form
of this problem may also occur in ob-
ject design. There is a tendency for
the initial choice of object classes
within a given application domain to
prescribe the design of future ap-
plications for the domain. It can
be difficult for a designer to break
out of the prescribed design by class
specialization:
1. inheritance is now working

against the designer, and
2. the designer really wants a reorga-

nization of the class hierarchy.

96

I I I 8 I I I

As a result, the class hierarchy may
become a rigid constraining struc-
ture that hampers innovation and
evolution.

For large software information
systems it appears that a single class
hierarchy is just too simple. What is
needed is a a context mechanism, so, for
instance, the object classes deriving
from a particular design for a par-
ticular domain can be grouped to-
gether. One possible solution may be
context hierarchies, each context cor-
responding to a class name space. As
an example, Figure 4 shows three
contexts: A, B and C. The class
hierarchy visible within a given con-
text consists of those classes visible
within the context’s parent and any
additional classes defined within the
context in question. For instance,
context B includes classes C,, C, and
C3 from its parent, A, and the
locally-defined class C,. A map of
the context hierarchy, such as the
small tree appearing in the left of
Figure 4, provides a high-level global
view of the class collection.

class Selec+lon
and ExploraCion
We now discuss the general problem
of retrieving information from a class
collection. There are many program-
ming situations where retrieval is
necessary. A user (such as a pro-
grammer or application developer)
may, for example, be looking for a
specific class-perhaps the class of
complex numbers or a particular ver-
sion of a window class. Alternatively,
the user may be looking for func-
tionality that is provided by any of a
number of classes in the system, or
simply trying to get a feel for the
scope of the class collection. We can
divide these retrieval activities into
two groups: cla.s.s selection and class ex-
ploration. Class selection refers to the
situation in which the user has fairly
specific selection criteria, such as the
name of a class or method, or an area
of functionality With class explora-
tion, on the other hand, the user is
not interested in individual classes
but rather in the relationships among
classes and the overall organization of
the collection. This is the case, for

CCYM”IIICATICW~C~T”EACM/September 199O/Vo1.33, No.9

instance, when a programmer is im-
plementing a new application and
wants to determine which classes
may be relevant to the application.
The two methods commonly used for
retrieval are querying and browsing.
Querying is useful when search cri-
teria are known, it is thus more ap-
propriate for selection-while
browsing is more appropriate for
class exploration.

CIass browsers
Currently most programming envi-
ronments do not contain extremely
large numbers of classes-thus a
single tool, a class browser, is used for
both selection and exploration. This
approach is exemplified by the
Smalltalk- browser [13] which
allows a user to browse through the
class inheritance hierarchy, display
instance variables and methods, and
determine which classes send or
receive a given message. Classes are
grouped by functionality into pos-
sibly overlapping categories, and it is
possible to browse through categories
of classes and methods. The Small-
talk browser has been extended in
many ways. For instance with the
PIE browser [14], it is possible to
associate textual components to
classes, categories and other entities
of the system in order to help in the
understanding of the system. The
PIE browser also provides multiple
views. It is possible, for example, to
present the user with a set of views
adapted to different application do-
mains. One such view might corre-
spond to a development project
where classes are being developed in-
crementally and thus should be kept
hidden from other users not involved
in the development effort. The ability
to define partial views can reduce the
complexity of the system as it appears
to a particular user.

Most of the existing browsers have
been tested on small- or medium-
scale software projects. Although ex-
trapolating their usefulness is not an
easy task, it is natural to ask whether
the Smalltalk approach is scalable
and whether it will be able to cope
with the potential size of software in-
formation systems. We believe that

current browsers are unlikely to be
adequate for selection when class col-
lections increase in size by a few
orders of magnitude.

As the size of the class collection
increases, class selection becomes
more difficult and query facilities are
of greater benefit. There has been
relatively little work in the area of
class selection, although information
retrieval techniques may be applica-
ble [lo]. One proposal that appears
promising is the software classifica-
tion scheme developed by Prieto-
Diaz and Freeman [34]. This scheme
uses a six-tuple offacets or descriptive
attributes, to classify software com-
ponents according to such things as
functional area, medium and system
type. Furthermore, a conceptual dis-
tance based on facet values can be
used to estimate the match of a com-
ponent to a particular query.

Another question is whether
browsing is sufficient for users who
are interested in exploring the func-
tionality of a class collection. The
primary navigational structure used
by browsers based on the Smalltalk
approach is the inheritance hier-
archy. However, in most object-
oriented programming languages,
the semantics of inheritance is not
sufficiently constrained for it to give
useful insight into the functionality of
subclasses. This is illustrated by the
following examples:

l A subclass may add behavior to
that of its superclass.

l A subclass may provide the same
interface as its superclass but
reimplement the methods.

l With multiple inheritance, a sub-
class may override a method from
one superclass with that from
another.

In general, it is possible that classes
related by inheritance provide dis-
similar functionality while classes
unrelated by inheritance may pro-
vide similar functionality, so merely
knowing the inheritance relation-
ships between classes gives little in-
dication of how the functionality of a
subclass differs from its superclass or
why the subclass appears where it
does in the hierarchy. Typically the

97

I II I

user will resort to cornpar& the code
belonging to the two class&. How-
ever, determining the structure and
dependencies of a set of classes by ex-
amining the code is difficult [41] and
contrary to encapsulation.

The problem of guiding a user en-
gaged in exploring the class space is
similar to the problem of providing
navigational assistance in hyper-
media environments, a subject that
has received much attention recently
[43]. Possible features that could be
integrated in a class browser are
global views of the organization of
the system and navigation charts that
help users visualize their position and
the structure of the surrounding
space.

ANInliy brOw!Wmg

Another approac.h to guiding ex-
ploration is by providing means for
determining the similarities between
classes, their interfaces and their
functionality. In this case the “near-
est neighbors” of a class are not
simply its super and subclasses but
rather those classes which it somehow
resembles. We call this UJ@$ brows-
ing. The principal assumption of this
approach is that in a software infor-
mation system containing a large col-
lection of inter-dependent classes, the
relationships among these classes are
complex and can be viewed in many
ways.

The affinity browser 1321 is an at-
tempt to integrate navigational
aspects of conventional browsing
with query capabilities. The affinity
browser provides the user with a set
of two-dimensional views, each
displaying some relationship among
a set of classes. One view could be
based on the usual inheritance rela-
tionship while another could portray
a grouping of classes based on their
relevance to some query. An affinity
function, which defines the intensity
of a relationship, is associated with
each view. When the view is dis-
played, distances between classes
convey their aflinity (i.e., pairs of
classes with strong affinitv are
displayed close together) while those

example, classes that implement
with less affinity lie further apart. For

I I I

similar functionality, or have similar
signatures, could have a higher affin-
ity, and would then cluster together
when displayed.

In order to apply affinity browsing
to class exploration we need to define
affinity functions for classes. Clearly
there are many such functions, some
more useful than others. Some po-
tential candidates include the dis-
tance between two classes on the
inheritance hierarchy, the conceptual
distance between two classes using
some classification scheme such as
facets, the textual similarity of the
signatures of two classes, the amount
of code shared between two classes,
or a measure based on class depen-
dency (where two classes are similar
if they depend on the same classes).

As a specific example of an affin-
ity function and view generation,
consider Figure 5 which shows the in-
heritance structure of a set of classes,
C = {C,, C,}, and the methods
defined (and redefined) by each class.
Assume that classes recursively in-
herit methods from their super-
classes. Let M(‘X) be the set of
methods in the interface to class X
For instance

M(G) = {a, b, e,J; ij, 4 ~1.

slightly in the case of redefinition of

We want to define an affinity func-
tion that conveys the extent to which
classes provide similar functionality.
As a candidate function, suppose we
define A(X, v, the affinity between
class X and class I: as

A (X, v = card (M (X) fl M (r))

card (M (X) U M (v)

where curd0 is a function that returns
the cardinality of a set. For example,
to evaluate A(&, C+), we have

M(C$ = {a, b, g, h) and
M(G) = {Q, b, i, j), so
card(M(Cj) fl M(G)) = 2 and
card(M(C& U M(C,)) = 6. Hence,
A(&, C,, = l/3.

Of course other definitions are pos-
sible and it may be necessary to per-
form a few iterations before one
obtains views which convey a good
intuition of the underlying relation-
ship. To illustrate this point, the
above function could be modified

I I I I I

an inherited method (such as method
a of class Cl). Suppose we want to
emphasize that redefined functional-
ity differs from inherited functional-
ity. Let m be the inherited method
and m’be its redefinition. In the case
where both m and m’appear in M(X)
U M(v then in the affinity calcula-
tion we consider m = m’ in M(X) fI
M(g while in M(X) U M(v we take
m # m! This produces a slight reduc-
tion of the affinity between classes
where one redefines a method of the
other.

Figure 6 depicts a typical view
generated by the affinity browser us-
ing the previously defined measure of
affinity. The highlighted class, C,, is
the current class. The Znspect Window
displays the names of the classes
within the view, these can be selected
to obtain further information about
each class.

The affinity browser promotes the
local exploration of the class space.
The user selects a class, it becomes
the current class, and the tool
displays the classes that are within a
user-defined affinity neighborhood
(i.e., those that have an affinity with
the current class that is greater than
a user-defined limit). Selecting a new
current class causes a shift in the
neighborhood; new classes enter the
view while others disappear. Views
can be connected in the sense that
they can be constrained to have the
same current class. Each view then
provides a different exploration con-
text; they are centered on the same
class but have different neighbor-
hoods since different affinity func-
tions are involved.

It should be pointed out that given
a measure of affinity it is not possi-
ble, in general, to generate a two-
dimensional representation that
satisfies all the affinity constraints.
The view layout algorithm [31,33] at-
tempts to find a good approximate
solution. For example, it does not
assign the same weight to each aflin-
ity constraint. It assumes that it is
more important to provide an accu-
rate representation of affinity be-
tween the current class and the other
classes of the view than between two
arbitrary classes.

98

I I I I I I I

CIUSS EwOlUtlOn

Issues

Classes developed with an object-
oriented language frequently un-
dergo considerable reprogramming
before they become readily reusable
in a wide range of applications or do-
mains. There are a number of rea-
sons for this phenomenon:

l Experience shows that stable, reus-
able classes are not designed from
scratch, but are “discovered”
through an iterative process of
testing and improvement [16].

l Classes are difficult to arrange in
predefined taxonomies.

l Because user’s needs are rarely
stable, additional constraints and
functionalities have to be con-
stantly integrated into existing
applications.

l Reusing software raises complex
integration problems when teams
of programmers share classes that
do not originate from a common,
standard hierarchy.

To apply such powerful techniques
as inheritance, genericity, and de-
layed binding efficiently, real-world
concepts have to be properly encap-
sulated as classes so they can be
specialized or combined in a large
number of programs. Inadequate
inheritance structure, missing ab-
stractions in the hierarchy, overly
specialized classes or deficient object
modeling may seriously impair the
reusability of a class collection. The
collection must therefore evolve to
eliminate such defects and improve
its robustness and reusability.

Several approaches, ranging from
class tailoring to class reorganization,
have been proposed to improve class
collections. We will now describe
some relevant techniques developed
recently for controlling evolution in
object-oriented environments, and
discuss their respective merits.

Class tallorlng

Object-oriented languages have
always provided simple constructs for
tailoring class hierarchies, notably by
allowing the redefinition of inherited
properties. The body of a method,
for example, can be completely

I I I I I I I I I lIllIlEI~ ONlNCT-ONlNNTND DESIQN

FwxmE 5. Inheritance Structure of a Set of Classes.

FIGURE 6. Affinity Browser Display.

modified in a subclass, although its
name and its signature remain iden-
tical. Therefore, it is possible to im-
plement specialized or optimized
versions of the same method, rather
than using the general, and perhaps
inefficient algorithm defined in a
superclass. Some languages, such as
Eiffel, allow the type of inherited
variables, parameters and function
results to also be overridden, pro-
vided the new type is compatible
with the old one [21]. With the object-
oriented variants of LISP, the pro-
grammer can choose how to combine
inherited methods in a new class [24].

A similar, but more formal ap-
proach is described in [7]. The
author proposes a mechanism for ex-
cusing abnormal cases that arise
when modeling an application do-
main, and that do not fit with the ex-
isting class hierarchy. For example, a
system for managing information on
students may have to cope with the
case of people who did part of their
studies in foreign countries with dif-
ferent grading schemes and aca-
demic titles. Contradictions between
the definition of the “foreign stu-
dent” class and its superclass (“nor-
mal student”) must be explicitly
acknowledged. The explicit redehni-

tion of inherited attributes according
to a formal model integrating excuses
with inheritance facilitates the detec-
tion of type violations and the correct
handling of database queries (with-
out overlooking exceptional entities).
Moreover, exceptions are handled
locally, and do not require the factor-
ing of common properties into nu-
merous intermediate classes.

These techniques are useful for
performing limited adjustments to a
class collection, but they do not pro-
vide any help for detecting design
flaws. Over-reliance on tailoring and
excuses may quickly lead to an in-
comprehensible specialization struc-
ture, overloaded with special cases
and difficult to manage efficiently
with current database technology.
Such a situation is generally a strong
indication that the hierarchy does not
contain the proper abstractions and
that it should be reorganized.

Class surgery

Whenever changes are brought to the
modeling of an application domain,
corresponding modifications must be
applied to the classes representing
real-world concepts. Modifying a
class hierarchy is a delicate operation
because of the multiple connections

99

I II I

between class definitions that must
be taken into account to guarantee
the consistency of the hierarchy.

This problem also arises in the
area of object-oriented databases.
There, the availalble techniques [l,
291 first determine a set of integrity
constraints that a class collection
must satisfy. For example, all in-
stance variables of a class should bear
distinct names, no loops are allowed
in the hierarchy, the attributes de-
fined in a class should be inherited by
all its subclasses, and so on. In a sec-
ond step, a taxonomy of all possible
updates to the system is established.
These changes concern the structure
of classes, like “add a method,”
“rename a method,” or “restrict the
domain of a variable”; they may also
refer to the hierarchy as a whole, as
with “suppress a class,” or “add a
superclass to a class.”

For each of these update catego-
ries, a precise characterization of its
effects on the class hierarchy is given,
and the conditions for its application
are analyzed. Generally, additional
reconfiguration procedures have to
be applied in order to preserve in-
tegrity constraints. It is, for example,
illegal to suppress an attribute from
a class C if this attribute is really in-
herited from a superclass of C, if the
attribute can be suppressed, it must
also be recursively dropped from all
subclasses of C, or possibly replaced
by another variable with the same
identifier inheriteld through another
subclassing path. As another exam-
ple, deleting a class Sfrom the list of
ancestors of another class C is not
allowed if this operation leaves the in-
heritance graph disconnected. If the
operation does not cause any prob-
lems, the inheritance links are
reassigned to point from C to the
superclasses of S Of course, the
properties of S no longer belong to
the representation of C, nor to those
of its subclasses.

Decomposing all class modifica-
tions into update primitives and
determining their consequences
brings several advantages. During
class design, this approach helps
developers detect implications of
their actions on the class collection

I I I I I I I

and maintain the consistency of class
specifications. During application
development, it guides the propaga-
tion of changes to where the class is
reused. For example, renaming an
instance variable of a class, chang-
ing its type or defining a new de-
fault value, has no impact on an
application using the class. Changing
or deleting methods, on the other
hand, generally leads to changes in
applications.

Depending on the class model and
on the integrity constraints, a soft-
ware information system may pro-
vide different forms of class surgery.
This approach, however, limits its
scope to local, primitive kinds of
evolution; it forms a solid framework
for defining “well-formed” class
modifications, but it gives no guid-
ance as to when these modifications
should be performed.

Class uersIonlng

Versioning is a particularly appeal-
ing technique for managing class
development and evolution. It en-
ables programmers to try different
paths when modeling complex ap-
plication domains and to record the
history of class modifications during
the design process. Versioning also
helps in keeping track of various im-
plementations of the same class for
different software environments and
hardware platforms.

A basic problem to deal with con-
cerns the identity of classes. It is no
longer enough to refer to a class by its
name, since the name might corre-
spond to many versions of the same
class. An additional version number
must be provided to identify unam-
biguously the class referred to. When
this version number is absent, a
default class is assumed: the very first
version of the class referred to, or its
current version, or its most recent
version when the software compo-
nent making the reference was
created.

If only the most recent version can
give rise to new versions, there is in
principle no need for an elaborate
structure to keep track of the history
of classes: their name and version
number suffice to identify their rela-

tionship to each other. The case
where versioning is not sequential,

(i.e., where new versions can be
derived from any previous version),
requires that the software informa-
tion system record a hierarchy of ver-
sions somewhat similar to the
traditional class hierarchy.

Another difficulty arises because
of the superimposition of versioning
on the inheritance graph. For exam-
ple, when creating a new version for
a class should one derive new ver-
sions for the entire tree of subclasses
attached to it as well? A careful
analysis of the differences between
two successive versions of the same
class gives some directions for deal-
ing with this kind of problem. If the
interface of a class is changed, then
new versions should be created for all
its subclasses and all its dependent
classes. If only nonpublic parts of the
class are modified, such as methods
visible only to subclasses, or the types
of instance variables, then versioning
can be limited to its existing
subclasses. If only the implementa-
tions of the class’s methods are
changed, no new versions for other
classes are required.

Application developers may want
to consider objects instantiated from
previous class versions as if they
originated from the current version,
or they may want to forbid objects
from an old version to refer to
instances of future versions. These
effects are rarely achieved by fully
automatic means. For every new ver-
sion, one must program special func-
tions for mapping between old and
new class structures [6, 381. These
functions filter the messages sent to
objects, so that proper actions can
be taken, like translating between
method names, returning a default
value when accessing a non-existent
variable, or simply aborting an un-
successful operation.

In spite of their overhead, class
versioning techniques have proved
indispensable in important domains
like CAD/CAM and office informa-
tion systems. They have therefore
been integrated in object-oriented
systems, such as Orwell [42] AVANCE
[5], ORION [i], and IRIS [2].

100 September 199OlVo1.33, No.9ICoYYUNICITIOWSOFT”E~CIII

I I I I I I I

Clcrss reorpcmlzatlon
Class evolution is intimately linked
with class design. Suppose program-
mers build applications chiefly in a
bottom-up fashion by reusing ex-
isting classes. Classes may then re-
quire adaptations so that they fully
suit the needs of software developers.
This is a, L ieved by redefining or sup-
pressing attributes (instance vari-
ables and methods), reimplementing
methods, changing class interfaces,
etc. Such modifications indicate that
the current hierarchy is not satisfac-
tory: if classes cannot be reused as
they are, if subclasses cannot be de-
rived from other classes without con-
siderable tailoring, then one needs to
look for missing abstractions, to
make some classes more general, to
increase modularity, in short, to re-
organize, at least in part, the hier-
archy. Tools that automatically
restructure a class collection and sug-
gest alternative designs can reduce
considerably the efforts required for
carrying out these tasks.

One solution is to algorithmically
restructure the hierarchy when in-
troducing new classes by creating in-
termediate nodes, shuflling attributes
among them, and rearranging in-
heritance paths, so as to avoid the
need for explicitly redefining or re-
jecting attributes [8]. In the example
of Figure 7, we want to insert a class
that inherits attributes A and D, in-
troduces E, but suppresses attributes
B and C. The second part of Figure
7 shows how the graph has to be
modified to accommodate class
ADE; notice that two intermediate
classes are required for its integration
in the hierarchy. These additional
classes represent shared modules of
functionality; they correspond to
constructs, such as the “mixins” of
Lisp with Flavors [23], whose main
purpose is not to describe real-world
entities, but rather to support the im-
plementation of other classes. More
importantly, the classes introduced
during the reorganization process
can serve as a rough estimate for the
abstractions that are missing from
the modeling of an application do-
main.. Such defects are unavoidable;
it is exceptional to achieve a stable,

I I I I I I II 111111111- OuBCT-o~HTSD DEBIQN

initial situation

\

AB

final situation

FIGURE 7.
ReOr#ailiZiIl# a class Hierarchy.

definitive class design without going
through several iterations. New
classes and inheritance links corre-
spond to the places in the hierarchy
warranting redesign.

This approach works incremen-
tally and preserves the structure of all
original classes, except for their in-
heritance links. It can be extended to
take into account information on
types, on mutual dependencies be-
tween attributes, and on multiple in-
heritance. When typical evolution
patterns emerge, they can help guide
the design process [18].

An analogous technique is used to
fully recast a class hierarchy, by
getting rid of obsolete classes or
unwanted versions. Global restruc-
turing algorithms keep as much in-
formation as is needed to reconstruct
all original classes, if needed; they try
to enforce some properties, like al-
lowing an attribute to be introduced
at only one point in the hierarchy [8].

Reorganization can also improve
the quality of classes. Some class
design methods prohibit certain
kinds of references to the attributes of
objects [19]. Thus, a method should
never access variables that do not
belong to the class where it is defined
or are not passed to it as parameters.
Such unsafe expressions can be de-
tected and replaced with appropriate
method calls automatically. By elim-
inating unnecessary dependencies,
classes should encapsulate function-
ality more tightly and show better
resilience to change.

Reorganization algorithms appear
useful for detecting missing abstrac-
tions, for proposing generalizations
of very specialized classes, and for
cleaning up a hierarchy. However,
because they perform strictly struc-
tural transformation on object de-
scriptions, their results require user
intervention to compensate for the
lack of knowledge concerning the ap-
plication domain and the concepts
embodied in the class collection.

Object-oriented development has
an iterative nature and successive
stages of subclassing, class tailoring,
class modification, version creation
and reorganization are needed to
build increasingly general, reusable
and robust classes. We expect,
therefore, software information
systems to take advantage of a spec-
trum of tools and techniques for
managing class evolution.

Conclusion
In the preceding sections we have
argued that object-oriented pro-
gramming, augmented by the avail-
ability of large class collections, leads
to a new method of software develop-
ment which encourages the design
and reuse of generic components by
communities of software developers.

In establishing this method there
appear to be three sets of issues which
must be addressed. First, there are
basic questions related to the design
of systems for maintaining the class
collection-what we have called soft-
ware information systems. Second,
we need to understand how to in-
tegrate such systems with software
development methods. And, third,

101

I I I

there is the question of establishing
the appropriate infrastructure to
assure wide acc:essibility of these
systems.

We have been more concerned
with the first set. of issues; in par-
ticular we have focused on class
management, or how to organize and
maintain large class collections. We
have looked at various alternatives for
representing classes and their rela-
tionships, for assisting developers to
select classes, and for allowing the
class collection to evolve over time.
There has been little experience
working with very large, shared class
collections and so we plan to evaluate
some of the techniques described
above. Currently we are implement-
ing a prototype, called Xos, or “ex-
ternal object system” which has been
specifically designed for modeling
object classes [ll, 121. Xos allows ap-
plication development tools to con-
currently create, query and modify
class representations. We plan to use
Xos to capture a large C + + hier-
archy and then evaluate various que-
rying and browsing facilities, such as
affinity browsing, and experiment
with class reorganization algorithms.

Regarding the role of software in-
formation systems and class collec-
tions in the development life cycle, it
is useful to distinguish between two
kinds of development activity: com-
ponent development and application
development. The former consists of
designing and implementing reus-
able or generic components while the
latter consists of constructing ap-
plications from primarily prede-
signed components. For reuse to
occur there must be an increased
emphasis on the development, eval-
uation and refinement of compo-
nents, as opposed to final products or
applications. Furthermore, tools
must be provided that aid in conlig-
uring existing components into new
applications.

We are exploring this approach by
participating in Ithaca [35], a large
European ESPRIT project, the aim
of which is to build an environment
to support the development of object-
oriented applications in a variety of

. .
application domains. The environ-

I I I

ment includes an object-oriented
language with database support, a
software information base (SIB)
which stores and manages informa-
tion concerning reusable software
and its intended use, a selection tool
for browsing and querying the SIB
and a variety of application develop-
ment tools built around the SIB.
Among these tools is a visual scripting
tool for interactively constructing
running applications from visual
representations of packaged applica-
tion objects [26].

Finally, we believe that the greatest
benefits of large-scale class reuse will
occur when software information
systems are publicly available
resources rather than confined within
single organizations. Despite
facilities such as electronic mail and
bulletin boards, software develop-
ment is still too isolated an activity.
The past decade has seen the estab-
lishment of on-line services in areas
such as finance and travel. These
services are decentralizing and inter-
connecting workers in many occupa-
tions. Using the class as a unit of
interchange, software development
may also become a more open, net-
worked, cooperative activity. This
raises a number of pragmatic issues,
some of which we have alluded to in
this article. For instance, if proprie-
tary software is placed in publicly ac-
cessible systems will it be possible to
ensure that licensing and copyright
conditions are met? Who will operate
these systems and what services will
be provided? How will they be ac-
cessed? These pragmatic issues, in
addition to the technical problems of
class management, must be ad-
dressed before large-scale reuse of
object classes can be realized.

Acknowledgments.
The authors would like to thank their
past and present colleagues at the
Centre Universitaire d’Informatique
and the members of the Ithaca proj-
ect for helping voice the questions
which led to this paper. The authors
would also like to thank the reviewers
for their many constructive comments.

References

1. Banerjee, J., Kim, W., Kim, H.-J., and

8 I I I

Korth, H.F. Semantics and implementa-

tion of schema evolution in object-

oriented databases. In Proceedings of the

ACM (SIGMOD) Conference on the Manage-

ment ofData. (San Francisco, California,

May 27-29). ACM, New York, (1987),

pp. 311-322.
2. Beech, D., and Mahbod, B. Generalized

version control in an object-oriented

database. In Proceedings ojthe 4th IEEE Zn-

temational Conference on Data Engineering.

(Feb. 1988).

3. Bernstein, P. Database system support for

software engineering. In Proceedingsojthe

International Conference on Software Engineer-

ing. (1987), pp. 161-178.

4. Biggerstaff, T., Ellis, C., Halasz, F.,

Kellog, C., Richter, C., and Webster, D.

Information management challenges in

the software design process. MCC Tech.

Rep. STF039.87. 1987.

5. BjGmerstedt, A., and Britts, S. AVANCE:

An object management system. In Pro-

ceedings oJOOPSLA ‘88 (Sept. 1988). pp.

206-221.

6. Bjijmerstedt, A., and Hulttn, C. Version

control in an object-oriented architecture.

In Object-Oriented Concepts, Databases and

Applications. W. Kim and F. Lochovsky,

Eds. Addison-Wesley/ACM Press, 1989,

pp. 451-485.

7. Borgida, A. Modeling class hierarchies

with contradictions. In Proceedings of the

ACM SIGMOD Conference on the Manage-

ment ofData (Chicago, June l-3). ACM,

New York (1988), pp. 434-443.

8. Casais, E. Reorganizing an object system.

In Object On’mtedDeoelopment, D. Tsichrit-

zis Ed., Centre Universitaire d’Informa-

tique, Universitt de Genke, 1989.

9. Cox, BJ. Object-Oriented Programming: An

Eoolutionary Approach. Addison-Wesley,

Reading, Mass., 1986.

10. F&es, W.B., and Gandel, P.B. Classifica-

tion, storage, and retrieval of reusable

components. In Proceedings of the ACM

SIGIR ConJmence on Research and Development

in Information Retrieual, (Cambridge,

Mass., June 25-28). ACM, New York

(1989) pp. 251-254.

11. Gibbs, S. Querying large class collections.

In Object Management, D. Tsichritzis Ed.

Centre Universitaire d’Informatique,

UniversitC de Gen?ve, 1990.

12. Gibbs, S. and Prevelakis, V. Xos: An

overview. In Object Management, D. Tsich-

ritzis Ed. Centre Universitaire d’Infor-

matique, UniversitC de Ge&ve, 1990.

13. Goldberg, A. Smalltalk-80: The Interactive

Pmgmmning Environment. Addison-Wesley,

Reading, Mass., 1984.

14. Goldstein, I.P., and Bobrow, D.G. A

layered approach to software design. Rep.

CSL-80-5, Xerox, 1980.

I

102 Sepwmbcr 1990,Vo,.33, Na9ICOMYUWICATIONS 0FT”EACM

I I I I I I II I I I I lllllllllml~ Ou16cT4MENTSD DEMON

15. Hudson, S.E., and King, R. Object-

oriented database support for software

environments. In Proceedings of the ACM

SIGMOD Conference on the Management of

Data (1987), pp. 491-503.

16. Johnson, R.E., and Foote, B. Designing

reusable classes. J. Object O&ted Program-

mins Uune-July 1988), 22-35.

17. Kaiser, G.E., and Garlan, D. MELDing

data flow and object-oriented program-

ming. In ProceedingsofOOPSLA ‘87(0ct.

1987), pp. 254-267.

18. Li, Q, and McLeod, D. Object flavor

evolution through learning in an object-

oriented database system. In Proceedingsof

the 2nd International Conference on Expert

Database Systems, (Tysons Corner, Vir-

ginia, April 25-27, 1988), 241-256.

19. Lieberherr, K.J., and Holland, I.M.

Assuring good style for object-oriented

programming. IEEE Softw. (Sept. 1989),

38-48.

20. McIlroy, M.D. Mass produced software

components. In Software Engineering P.

Naur and B. Randell Ed. NATO Science

Committee (Oct. 1968), 138-150.

21. Meyer, B. Object-OrientedSoftware Con&u-

tion. Prentice Hall (1988).

22. Meyer, B. The new culture of software

development: Reflections on the practice

of object-oriented design. In ToOLS’89,

13-23.

23. Moon, D.A. Object-oriented program-

ming with flavors. In Proceedings of

OOPSLA ‘86 (Sept. 1986), pp. 1-8.

24. Moon, D.A. The common LISP object-

oriented programming language. In

Object-Oriented Concepts, Databases, andAp

plications. W. Kim and F. Lochovsky Ed.

Addison-Wesley/ACM Press, 1989, 49-78.

25. Nierstrasz, O.M. A survey of object-

oriented concepts. In Object-Oriented

Concepts, Databases, and Applications.

W. Kim and F. Lochovsky Ed. Addison-

Wesley/ACM Press, 1989, 3-21.

26. Nierstrasz, O.M., Dami, L., de Mey, V.,

Stadelmann, M., Tsichritzis, D., and

Vitek, J. Visual Scripting: Towards in-

teractive construction ofobject-oriented

applications. In Object Management, D.

Tsichritzis Ed. Centre Universitaire d’In-

formatique, UniversitC de Genke, 1990.

27. O’Brien, PD., Halbert, DC., and Kilian,

M.F. The Trellis programming environ-

ment. In ProceedingsojOOPSLA ‘87(0ct.

1987), pp. 91-102

28. Penedo, M.H., and Stukle, E.D. PMDB:

A project master database for software

engineering environments. In Proceedings

of the International Conference on Software
Engineering. (1985), pp. 150.157.

29. Penney, D.J., and Stein, J. Class Modi-

fication in the GEMSTONE object-

oriented DBMS. In Proceedings ofOOPSLA

‘87 (Oct. 1987), 111-117.

30. Pernici, B. Objects with roles. In Pro-

ceedings of the ACM Conference on Office In-

formation Systm (Apr. 1990), pp. 205-215.

31. Pintado, X., and Fiume, E. Grafields:

Field-directed Dynamic Splines for Inter-

active Motion Control. til. 13, no I, Com-

puters &’ Graphics. pp. 77-82, Pergamon

Press (1989).

32. Pintado, X., Tsichritzis, D. An Affinity

Browser. In Active Object Environments.

D. Tsichritzis Ed. Centre Universitaire

d’Informatique, UniversitC de Genke,

1988.

33. Pintado, X., Tsichritzis, D. Satellite: A

Visualization and navigation tool for

hypermedia. In Proceedings ojtheACM Con-

ference on Office Information System (Apr.

1990), pp. 271-280.

34. P&o-Diaz, R., and Freeman, P. Classi-

fying software for reusability. IEEE Softw.

(Jan, 1987), 6-16.

35. PrGfrock, A., Tsichritzis, D., Miiller, G.,

and Ader, M. ITHACA: An overview. In

Proceedings of the European Unix Users Group

(EUUG) Conference, (Spring 1990), pp.

99-105.

36. Reenskaug, T., and Nordhagen E. The

Description of Complex Object-Oriented

Systems: Version 1. Senter for Industri-

forskning, Oslo, 1989.

37. Schilling, J.J., and Sweeney, P.F. Three

steps to views: Extending the object-

oriented paradigm. In Proceedings of

OOPSLA ‘89 (Oct. 1989), pp. 353-361.

38. Skarra, A.H., and Zdonik, S.B. The

management of changing types in an

object-oriented database. In Research Direc-

tions in Object-Oriented Programming. The

MIT Press, Cambridge, Massachusetts,

1987, 393-415.

39. Snyder, A. Encapsulation and inheritance

in object-oriented programming lan-

guages. In Proceeding-s of OOPSLA ‘86

(Sept. 1986), pp. 38-45.

40. Stroustrup, B. The C++ Programming

Language. Addison-Wesley (1986).

41. Taenzer, D., Ganti, M., and Podar, S.

Problems in object-oriented software

reuse. In Proceedings of ECOOP 89 Con-

ference, (July 1989), Cambridge Univer-

sity Press, pp. 25-38.

42. Thomas, D., and Johnson, K. Orwell: A

configuration management system for

team programming in Proceedings of

OOPSLA ‘88 (Sept. 1988), pp. 135-141.

43. Utting, K., Yankelovich, N. Context and

orientation in hypermedia networks.

ACM i’kmactionr on Ofjice Information

$dm.r 7, 1 (Jan. 1989), 58-84.

44. Wegner, P. Dimensions of object-based

language design. In Proceedings of OOPSLA

‘87 (Oct. 1987), pp. 168-182.

45. Wirfs-Brock, R.J., and Johnson, R.E. A

survey of current research in object-

oriented design. In CACM, (see this issue)

Sept. 1990.

Categories and Subject Descriptors:
D.2.2 [Software Engineering]: Tools and

Techniques-Software libraries; K.6.3 [Man-
agement of Computing and Information
Systems]: Software Management

General Terms: Design, Languages,

Management

Additional Key Words and Phrases: Class

libraries, class management, reuse, software

communities, software information systems

About the Authors:
SIMON GIBBS is an assistant professor at

the University of Geneva. His research inter-

ests include database support for software de-

velopment, computer-supported cooperative

work, multimedia systems, and semantic data

modeling.

EDUARDO CASAIS is a research assistant

at the University ofGeneva, from which he re-

ceived a “licence” in business-oriented infor-

matics. He is currently working for his Ph.D.

on class reorganization in object-oriented

systems.

OSCAR NIERSTRASZ is currently an assis-

tant professor at the University of Geneva. His

current research interests include computa-

tional models for object-oriented concurrency,

and interactive tools for object-oriented ap-

plication construction.

XAVIER PINTADO is a research assistant

at the University of Geneva. He holds a

“diplhme ” in electrical engineering and a

“licence” in information systems. He is cur-

rently working for his Ph.D. on class selection

and exploration within an object-oriented

graphics approach.

DENNIS TSICHRITZIS is a professor of

computer science and director of the Centre

Universitaire d’Informatique at the Univer-

sity of Geneva. His research interests include

object-oriented environments, databases and

office information systems.

Authors’ Present Address: Centre Univer-

sit&e d’Informatique, 12 rue du Lac, Geneva

1207, Switzerland. simon@cui.unige.ch;

casais@cui.unige.ch; oscar@cui.unige.ch;

pintado@cui.unige.ch; dt@cui.unige.ch.

0 1990 ACM OOOl-0782/90/0900-0090 $1.50

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advan-
tage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given
that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

103

