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A b s t r a c t  

This paper presents a formal epistemic framework for dynamic games in which players, 
during the course of the game, may revise their beliefs about the opponents' utility functions. 
We impose two key conditions upon the players' beliefs: (a) throughout the game, every 
move by the opponent should be interpreted as a rational move, and (b) the belief about the 
opponents' relative utilities between two terminal nodes should only be revised if you are sure 
that the opponent has decided to avoid one of these nodes. Common belief about these events 
leads to the concept of persistent rationalizability. It is shown that persistent rationalizability 
implies the backward induction procedure in generic games with perfect information. We 
next focus on persistently rationalizable types having beliefs with "minimal complexity", 
resulting in the concept of minimal rationalizability. For two-player simultaneous move 
games, minimal rationalizability is equivalent to the concept of Nash equilibrium strategy. 
In every outside option game, as defined by van Damme (1989), minimal rationalizability 
uniquely selects the forward induction outcome. 

1. In troduct ion  

In the epistemic approach to noncooperative games every player is modeled as a decision maker 
under uncertainty, endowed with a preference ordering on the possible strategy choices. Under 
the assumption that  each player is of the expected utility type, such preference orderings may 
be represented by a utility function over the possible consequences and a subjective probability 
distribution, or belief, over the uncertain parameters in the game. Most episternic models 
that have been proposed in the literature assume that the players face no uncertainty about the 
opponents'  utility functions. This property is usually modeled by the presence of an exogenously 
given profile of utility functions and the implicit requirement that, whatever happens in the 
game, these utility functions are never to be questioned. The uncertainty faced by a player at a 
given instance of the game will then consist of the opponents' strategy choices, the opponents'  
beliefs about the other players' strategy choices, the opponents'  beliefs about the other players' 
beliefs about the other players' strategy choices, and so forth. 
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Within a given epistemic model for games, the problem of how to model rational behavior 
cannot be reduced to one-person decision theory since a player should not only choose rationally 
given his beliefs, but  these beliefs should also be based upon the conjecture that  his opponents 
choose rationally as well. Also should a player realize that  each of his opponents will hold beliefs 
that are based upon the conjecture that the other players act rationally, and so on. This intuitive 
argument may be formalized by the notion of common belief of rationality, a concept that  plays 
a central role in theories of rationality such as rationalizability (Bernheim (1984) and Pearce 
(1984)), Nash equilibrium and all refinements thereof. Indeed, Tan and Werlang (1988) have 
shown that,  within a formal epistemic model, the strategies that  may be chosen rationally when 
there is common belief of rationality coincide exactly with the set of rationalizable strategies. 

A fundamental problem arises, however, if the notion of common belief of rationality is to 
be applied to dynamic games, and no uncertainty about  the utility functions is allowed. The 
difficulty is that  there may be information sets in the game that  cannot be reached if players 
were to act in accordance with common belief of rationality. Reny (1992, 1993) has shown 
that for the class of perfect information games, this phenomenon occus on a rather structural 
basis. A natural question which then arises is: how should a player revise his beliefs about  
the opponents'  strategy choices and the opponents'  beliefs if an information set is reached that  
contradicts common belief of rationality? At this stage, the player should conclude that  there 
is at least one opponent who (a) did not act rationally given his beliefs, or (b) bases his beliefs 
upon the conjecture that  some other player does not act rationally given his belief, or (c) believes 
that  some other player believes that  some other player acts irrationally, and so on. A concept 
of rationality should specify which of the above scenarios is to be viewed as "most plausible", 
thus imposing a restriction on how beliefs are to be revised at such "problematic" information 
sets. 

In this paper we choose an alternative approach by allowing the players to revise their be- 
liefs about  the opponents'  utility functions during the game, while insisting on common belief 
of rationality at every possible instance in the game (see Pema (2002) for a similar approach 
within an equilibrium framework). Accordingly, we develop an epistemic model in which every 
player, at each of his information sets, has uncertainty about the opponents'  strategy choices, the 
opponents'  utility functions, the opponents'  first-order beliefs about  the other players' s trategy 
choices, the opponents'  first-order beliefs about  the other players' utility functions, the oppo- 
nents' second-order beliefs about  the other players' first-order beliefs, etcetera. This leads, for 
every player at each of his information sets, to an infinite hierarchy of preference relations. 

Our first result is a representation theorem similar to Armbruster and Bbge (1979), Bbge and 
Eisele (1979) and Mertens and Zamir (1985) which shows that  the infinite preference hierarchies 
within our epistemic model can be handled elegantly by means of types. We then proceed by 
imposing some restrictions upon the types, eventually leading to the concept of persistent ra- 
tionalizability. The first two requirements, updating consistency and belief revision consistency, 
are concerned with the belief updating and belief revision policies carried out by the types. Up-- 
dating consistency simply states that  Bayesian updating should be used whenever the observed 
behavior is still in accordance with the previously held beliefs. Belief revision consistency states 
that,  whenever a player i type decides to revise his belief about player j ' s  utility function, he 
should not change the relative utilities between two terminal nodes unless player i is sure that  
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player j has decided to avoid one of these terminal nodes. 
The third condition we impose on types, belief in sequential rationality, reflects the principle 

that ,  whatever happens in the game, a player should always interpret observed moves as rational 
ones. In particular, if a player i observes a move that  would not have been optimal for an 
opponent j ,  were player i to keep his previously held belief about  j ' s  utility function, then 
player i should actually revise his belief about  j ' s  utilities in order to rationalize this move. 

The last condition, utility consistency, states tha t  the utility function of a type at  a certain 
stage of the game should always be in accordance with the utility function he held at the 
beginning of the game. Types that ,  throughout the game, respect common belief (1) about  
the event that  types are updat ing consistent, belief revision consistent and utility consistent, 
and (2) about  the event tha t  types believe in sequential rationality, are called persistently 
rationalizable. Strategies that  may be chosen rationally by persistently rationalizable types 
are called persistently rationalizable strategies. 

The literature usually assumes some exogenously given restrictions upon the players' utility 
functions, and the beliefs they have about  the opponents '  utilities, modeled by the specification 
of a fixed profile of utility functions. The  implicit interpretation is that  players are assumed to 
hold these utility tunctions, and are to believe throughout the game tha t  the opponents hold the 
utility functions as specified by the profile. As to link the concept of persistent rationalizability to 
existing rationality concepts for given utility functions, we subsequently impose some exogenous 
restrictions upon the players' utility functions and beliefs about  the opponents '  utilities. In order 
to do so, we proceed as above by taking as given a profile u of utility functions, but a different 
interpretation shall now be attached to it. Players are required to hold the utility functions 
as specified by u, and to respect common belief about  the event that  players initially believe 
that  opponents hold utility functions as given by u. Persistently rationalizable types tha t  satisfy 
these additional requirements are said to be persistently rationalizable for u. We thus leave open 
the possibility that  players may change their belief about  the opponents '  utilities as the game is 
under way, while requiring that  the players' beliefs agree on the same profile of utility functions 

at  the beginning of the game. 
Having established the concept of persistent rationalizability for a given profile u of utility 

functions, our next step is to present a refinement that  focusses on types holding beliefs that  are 
"as simple as poss.ible". As to formalize the latter, we introduce the notion of the complexity of a 
type ti, which, loosely speaking, represents the total  number of types tha t  ti considers directly or 
indirectly in his theory about  the game. More precisely, the complexity of a type ti first counts 
the number of types tj tha t  ti attaches positive probabili ty to in his beliefs throughout the game. 
For each of these types tj, one counts the number of types that  tj attaches positive probabili ty 
to and that  have not been counted already, and so on. By summing up all these types, one 
gets the total  number of types that  ti directly or indirectly refers to in his beliefs throughout 
the game, and this number is called the complexity of ti. For a given profile of utilRy functions 
u, we say that  a type is minimally rationalizable for u if (1) it is persistently rationalizable for 
u, and (2) it has minimal complexity among all types tha t  are persistently rationalizable for u. 
Accordingly, a strategy is called minimally rationalizable for u if it can be chosen rationally by 
a type that  is minimally rationalizable for u. 

The outline of this paper  is as follows. Section 2 presents some preliminary definitions in 



extensive form games. In Section 3 we develop the epistemic framework tha t  will be used as a 
basis for the rationalizability concepts. Section 4 lays out the concepts of persistent and minimal 
rationalizability, and discusses the relationship between proper rationalizability (Schuhmacher 
(1999) and Asheim (2001)) and persistent rationalizability, i t  is also shown that  for every profile 
of utility functions there exists at least one persistently rationalizable s trategy for each player. 
Section 5 focusses on the relationship between persistent and minimal rationalizability on the 
one hand, and backward induction, Nash equilibrium and forward induction in outside option 
games on the other hand. 

2. E x t e n s i v e  F o r m  S t r u c t u r e s  

In this section we present the notation and some basic definitions in extensive form games that  
will be employed throughout this paper. The rules of the game are represented by an extensive 
form structure S consisting of a finite game tree, a finite set of players I ,  a finite collection Hi 
of information sets for each player i and at each information set hi E Hi a finite collection A(hi) 
of actions for the player. The set of terminal nodes in S is denoted by Z, whereas H = t.JiEiH i 
denotes the collection of all information sets. We assume throughout tha t  the extensive form 
structure satisfies perfect recall and tha t  no chance moves occur. The  lat ter  assumption is not 
crucial for our analysis, but simplifies the presentation. Let Si denote the set of player i (pure) 
strategies, and let S = ×ielSi be the set of all s t rategy profiles. 

Throughout  the paper, we shall make the assumption tha t  the extensive form structure 
is with observable deviators (see Battigalli (1996), among others). In order to formalize this 
condition, we need the following definitions. For a given information set h, let S(h) be the set 
of s trategy profiles that  reach h. For a given player i, not necessarily the player who moves at  
h, let Si(h) be the set of strategies si that  do not avoid h. We say that  S is with observable 
deviators if S(h) = XielSi(h) for every information set h. Tha t  is, an information se t  h can only 
be avoided if there is at  least one player who chooses a s trategy tha t  already avoids h by itself. 

3. E p i s t e m i c  F r a m e w o r k  

In this section we formally model the players in an extensive form structure as decision makers 
u n d e r  uncertainty. In order to do so, we first introduce some preliminary decision theoretic and 
epistemic concepts upon which this model shall be built. 

3.1. Preference  Hierarchies 

The decision theoretic framework to be presented here is based on the models by Savage (1954) 
and Anscombe and Aumann (1963) for decision making under uncertainty. Let X be a compact  
metric space provided with some topology, and Y some finite set. Let z~(Y) denote the space 
of probability distributions on Y. By 9v(X, Y) we denote the set of all measurable functions 
f : X ~ ,~(Y) to which we shall refer as acts 1. The set X is to be interpreted as the space 

1The definition of an act as we use it coincides with the notion of compound horse lottery in Anscombe and 
Aumann (1963). 



of relevant variables about which the decision maker has uncertainty, whereas Y represents 
the set of possible consequences. As such, A(Y) contains all objective lotteries on possible 
consequences. For a given act .f in 9r(X, Y) and x E X, let f(x) E A(Y) be the objective lottery 
induced by x on Y, and let f(x)(y) be the objective probability that  f(x) assigns to consequence 
y. By 7~eu(x, Y) we denote the set of all nontrivial preference relations on .T'(X, Y) that  are of 
the expected utility type, that  is, for which is there is some probability distribution ~ on X and 
some nonconstant utility function u : Y ~ R such that  act f is weakly preferred over act g if 
and only if 

/xU(f(x)) d# >- /xu(g(x)) d#. 

Here, 

u(f(x)) = ~ f(x)(y) u(y) 
yEY 

denotes the expected utility induced by the objective lottery f(x) E A(Y) and the utility 
function u. 

Since for a given preference relation p E 7~eu(X, Y), the probability distribution ~ is unique 
and the utility function u is unique up to some positive affine transformation, we may uniquely 
identify every p E Peu(X, Y) with a pair (#, u) where # is a subjective probability distribution 
on X and u : Y -7 ~ with minyey u(y) = 0 and maxyey u(y) = 1. Let U(Y) be the set of all 
utility functions u : Y --~ R with the latter property, arid let A(X) be the set of probability 
distributions on X. Hence, we may identify Pe~(X,Y) with the set A(X)  × U(Y). Let ~-1 be the 
weak topology on A(X),  let y 2 be the natural topology on U(Y) and T the product topology 
on Peu(Z,Y) induced by ~'1 and T2. Then, the topological space (P*~(X,Y),~-) is a compact 
metric space. 

Having established the model for individual decision making under uncertainty, we may now 
formalize an epistemic model for extensive form games in which players, at each of their in- 
formation sets, have uncertainty about the opponents'  strategy choices, uncertainty about the 
opponents' first-order preference relations (including their utility functions), uncertainty about 
the opponents' second-order preference relations, and so forth. This will eventually lead to the 
concept of preference hierarchies for players. The epistemic model combines elements from Ep- 
stein and Wang (1996) and Battigalli and Siniscalchi (1999). Epstein and Wang (1996) propose 
a model for static' games in which players have uncertainty about the opponents'  preference 
relations (possibly including the opponents'  utility functions) and players may hold preference 
relations that  do not conform to expected utility. Battigalli and Siniscalchi (1999), in turn, pro- 
pose a model for dynamic games in which players hold expected utility preferences, players have 
no doubts about the opponents'  utility functions but  have uncertainty about the opponents' 
subjective probability distributions. 

Consider some player i in an extensive form structure. Let h0 be the information set that  
coincides with the beginning of the game, and let H~' = Hi U {h0}. The primary source of 
uncertainty faced by player i at information set hi E H i concerns the strategy choices by his 
opponents. We may thus define the first-order space of uncertainty Xil(hi) by 

Xil(h~) -- S-i(h~), 



where S-i(hi)  = xj¢iSj(hi) .  If hi = h0, we set Sj(hi) ---- Sj for all players j .  Let Z(hi) be the 
set of terminal nodes that  follow hi. Every player i strategy si E Si(hi) may now be identified 
with an act fs, : X~(hi) ~ Z(hi) assigning to every s - i  e X~(hi) the terminal node z • Z(hi) 
reached by the strategy profile (si, s- i ) .  Hence, every strategy si • Si(hi) corresponds to an 
act in f ( X ~ ( h i ) ,  Z(hi)). We assume that  player i holds a nontrivial preference relation of the 

e u  1 expected utility type p~(hi) • P (X  i (hi), Z(hi)). We refer to Pe~(X~(hi), Z(hi))  as the set of 
first-order preference relations for player i at hi. 

At information set hi, player i does not only have uncertainty about the strategies chosen by 
the opponents, but also about the first-order preference relations held by his opponents at each 
of their information sets. The second-order space of uncertainty for player i at hi is therefore 
given by 

X~2(hi) = S-i(hi)  x (x j¢ i  Xh~e.; 7Peu(X)(hj),Z(hj))) 

= X¢(hi)  x (x j# i  Xh~eH; Peu(X) (h j ) ,Z(h j ) ) ) ,  

which, together with the product topology induced by the topologies on X~ (hi) and 7 ~eu (X~ (hi), Z(hj)) ,  
is a compact metric space. 

By the same argument as above, player i at hi is assumed to hold a second-order preference 
relation p~2(hi) • peu(xi2(hi) , Z(hi)). Since player i has uncertainty about the second-order 
preference relations held by the other players at each of their information sets, the third-order 
space of uncertainty at hi becomes 

~:~eu c x 2 [ h . "~ X2(h ) = X?(hi )  × ×h eH; . , Z ( h j ) ) ) ,  

which, together with the induced product topology, is again a compact metric space. By repeat- 
ing this construction, We obtain an infinite sequence of "succesively richer" spaces of uncertainty, 
defined by 

~ e u ( x k - l [  h X~k(hi) =Xik- l (h i )  × (Xj~i ×h,e , ;  , j ~ j , ,Z (h j ) ) )  

for k > 2, which are all compact metric spaces. 
i preference hierachy for player i at hi is a sequence pi(hi) = (p~(hi))keN where p~(hi) • 

7Peu(Xi k (hi), Z(hi)) for all k. Hence, it specifies an infinite hierarchy of expected utility preference 
relations over succesively richer spaces of uncertainty. A vector Pi = (Pi(hi ) )h~eH~,  specifying a 
preference hierarchy at each of player i information sets, is simply called a preference hierarchy 
for player i. Let Pi be the set of all preference hierarchies for player i. 

3.2. Coherence  of  Preference Hierarchies 

A preference hierarchy Pi is called coherent if it holds a sequence of preference relations that  
do not contradict one another at overlapping layers. Let P~ be the set of coherent preference 
hierarchies for player i, and let P-i  = x j¢ iPj  be the set of all opponents'  preference hierarchies. 

L e m m a  3.1. For every player i, the space P~ of coherent preference h/eraxchies is homeomor- 
phic to the space × hi~H~ :peu( s_i (  hi ) X P-i ,  Z ( hi ) ). 
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Hence, there is a homeomorphism fi from P~ to Xh, eHTPeu(S_i(hi) x P-i,  Z(hi)) for every 
player i. Hence, ew~ry preference hierarchy Pi • P~ can be identified with the vector 

fi(Pi) = (Pi(Pi, hi), ui(pi, hi))h,e,; 

where #i(Pi,hi) • ,~(S-i(hi) x P-i) and ui(pi, h~) • U(Z(hi)). A subset E C S-i(hi) x P-i  is 
called an event at information set hi. We say that  preference hierarchy Pi • P~ believes the 
event E at information set h~ if 

supp #i(Pi, hi) C E.  

We do not only require that  every preference hierarchy is coherent, but  also that  there be 
common belief among the players that  all preference hierarchies are coherent. This may be 
formalized as follows. Let PC i = ×34,P~. Define the sets p~,l, p~,2, ... by 

p~,l = {Pi • PSI Pi believes S-i(hi) x pc._, at every hi • Hi} ,  

p~,k = {Pi • p~,k-l[ Pi believes S-i(hi) x PC_'ik-1 at every hi • H i}  

• OC,O0 C ,k  for k > 2. Define ~i = NkeNP~ for all players i. We say that  p~,Oo is the set of preference 
hierarchies for player i which respect common belief of coherence. We now obtain the following 
representation result for infinite preference hierarchies respecting common belief of coherence. 
The result is similar in spirit to results in Armbruster and BSge (1979), BSge and Eisele (1979), 
Mertens and Zamir (1985) and Epstein and Wang (1996). 

L e m m a  3.2. For every player i, the space of preference hierarchies p~,oo respecting common 
ClOG belief of coherence is homeomorphic to the space x hiEH~Ocu(S_i(hi) X P-~i ' Z(hi)). 

3.3. Types, Common Belief and Complexity 

In view of Lernma 3.2, we may identify each preference hierarchy Pi E P~'~ with a vector specify- 
ing at each information set hi E H i an expected utility preference relation (Pi(Pi, hi), ui(pi, hi)) 
where #i(pi,hi) is a probability measure on S-i(hi) × p_C,~ and ui(pi, hi) is a utility function 
from Z(hi) to the real numbers. A preference hierarchy Pi E p~,C~ is called a type for player i, 
and by T~ ---- p~,oo we denote the set of all player i types. Hence, every type ti E Ti corresponds to 
a vector (~i(ti, hi).. ui(ti, hi))h, eH 7 where/~i(ti, hi) is a probability distribution on S-i  (hi) x T-i  
and ui(ti, hi) is a utility function on Z(hi) for every information set hi • H i .  Using Lemma 3.2, 
we thus obtain the; following representation result for types. 

C o r o l l a r y  3.3. /~br every player i, the space ~ of player i types is homeomorphic to the space 
×haEH~ 7~eu( s-i(hi)  × T-i, Z(hi) ). 

We now formalize what it means that  a type respects common belief about the event that  
types have certain properties. In order to do so, we use the following definitions. For a given type 
ti, information set hi E H i ,  and opponent j ,  let Izi(ti, hil Tj) be the marginal of the probability 
distribution Izi(ti, hi) on the set of player j types. By 

T~(t~, hi) = supp #~(ti, hil Tj) 
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we denote the set of player j types that  ti attaches positive probability to at hi, whereas 

l ) l ( t i )  = Uh, H:Tjl(t,, h,) 

is the set of player j types that ti attaches positive probability to somewhere in the game. For 
j -- i, we define T~(ti) = {ti}. Let 

Tl( t i )  = OjelTjl(ti). 

Hence, in some sense, Tl( t i )  is the set of types that  ti uses at the first level in his theory about  
the opponents'  behavior and beliefs. In turn, the behavior of each of the types t in Tl( t i )  is 
driven by the beliefs that  t has about the other players' types throughout the game. More 
exactly, every t E Tl(ti)  uses the set Tl(t) of types at a first level for his theory about  the other 
players' behavior and beliefs. By 

T2(ti)-~ U Tl( t )  
teTl(Q) 

we denote the set of types that  ti uses, at a first or second level, for his theory about  the game. 
By repeating this argument recursively, we obtain that  

Tk(t') = ~J Ti(t)  
teT~-~(t~) 

for k >_ 2 represents the set of types that ti uses, up to level k, in his theory about  the game. 
By T°~(ti) = t2keNTk(t~) we denote the set of types that  t~ uses, directly or indirectly, for his 
theory about the opponents'  strategy choices and beliefs, and upon which ti shall base his final 
decision. By 

c(ti) = IT°°(ti)l 

we denote the complexity of the type ti. Hence, it specifies how many different types are used 
by ti in his theory about the opponents'  decisions and the opponents '  beliefs. For every player 
j ,  let ~°°(ti) be the set of player j types in T°°(ti). Note that  Ti°°(ti) may contain more types 
than ti, since ti may believe that  his opponents believe that  player i has some other type than 

ti. 
Now, let T C_ x je iTj  be some set of profiles of types, or, simply, and event. We say that  type 

t~ respects common belief about T if T°°(ti) C_ T. That  is, in his theory about the opponents '  
behavior and the opponents'  beliefs, type ti only uses, directly or indirectly, types that  belong 
to T. Or, in other words, ti believes that  all opponents'  types belong to T, believes that  all 
opponents' types believe that all the other players' types belong to T, and so forth. 

4. Persistent and Minimal Rationalizabil ity 

4.1. P e r s i s t e n t  R a t i o n a l i z a b i l i t y  

In the concept of persistent rationalizability we impose four conditions on types, to which we 
refer as common belief about updating consistency, utility consistency, belief revision consistency 
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and belief in sequential rationality. Types tha t  satisfy these requirements are called persistently 
rationalizable, and strategies that  are sequentially optimal for a persistently rationalizable type 
are called persistently rationalizable strategies. 

In the previous section, we have seen that  every type ti E ~ corresponds to a vector 
(pi(ti, hi), ui(ti, hi))hieH~ , where pi(ti, hi) is a probability measure on S-i(hi)  x T-i and ui(ti, hi) 
is a utility function o n  Z(hi)  for every information set hi E H i • Updating consistency states that ,  
whenever the game moves from a player i information set h~ to another player i information 
set h~, player i should derive his new belief/zi(t i ,hi  2) from his old belief tzi(ti, hi 1) by Bayesian 
updating, if possible. 

hi , h i E H~ , D e f i n i t i o n  4.1. A type ti is said to be updating consistent Lffor aH information sets 1 2 • 
where hl 2 follows h~', it holds that 

, , ( t i ,  hl)(E)  
#i(tl, = #i(ti, h )(S_i(hi2) x T-i)  

for a11 events E C S_i(hi 2) x T-i ,  whenever #i(ti, h~)(S-i(hi 2) x T-i) > O. 

Utility consistency simply states that  the utility function of a type should be time-consistent 
in the sense that  his utility function at  some later stage in the game should not contradict his 
utility function earlier on in the game. 

D e f i n i t i o n  4.2. A type ti is called utility consistent i f  ui(ti, hi) = ui(ti, ho)iz(h~) for a11 hi E H~. 

Here, ui(ti, ho)iz(h,) denotes the restriction of ui(ti, ho) on the terminal nodes following hi. 
While updat ing consistency states how to change the belief when the observed behavior is 

still in accordance with the previously held beliefs, belief revision consistency imposes a condition 
upon the players' belief revision policies when the observed behavior contradicts the previous 
beliefs. In words, the condition states that ,  whenever player i at  some information set hi is led to 
revise his beliefs about  some opponent j ' s  utility function, then he should not change his belief 
about  j ' s  relative utilities between two terminal nodes unless i is certain that  j has decided to 
avoid one of these nodes. More precisely, if player i finds himself at hi, then, by the observable 
deviators property, player i knows that  opponent j has chosen some strategy in Sj(hi), without 
knowing which one;. Let Zj(hi) be the set of terminal nodes that  may be reached by strategies 
in Sj(hi).  Hence, the event of reaching information set hi only tells player i that  player j has 
decided to avoid terminal nodes tha t  are not in Zj(hi). Belief revision consistency then states 
that  player i may only revise his belief about  j ' s  relative utilities between two nodes if at  least 
one of these nodes is not in Zj(hi). 

D e f i n i t i o n  4.3. A type ti is said to be belief revision consistent i f  for every two information 
2 sets h~,h~ 2 e H i such that hi 2 follows h~ 1 the following holds: ff  tj e supp#i(ti, hi2[ Tf) then 

there exists some • supp ,(t,,h t Tj) such that uj(t ,hj)lz (h ) = uj(t ,hj)lz (h ) for every 
hj E H;.  
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Here, #i(ti, h~[ Tj) and pi(ti, h/2] Tj) denote the marginals of the probability distributions 
#i(ti,h~) and #i(t i ,hi  2) on Tj, and uj(t~,hj)[zAh~) and 2 uj (tj, hi)[Z~(h~) denote the restrictions of 

the  utility functions uj(t) ,  hi) and uj(t~, hi) on the terminal nodes in Z(hj)  M Zj(hi2). 
We finally define belief in sequential rationality. For a given strategy si, let H~(si) be the 

Set of information sets in H~' that  are not avoided by si. A strategy-type pair (si,ti) E S i x  
is called sequentially rational if at every information set hi E H~(si), we have that  

~ i ( s i , t d  hd  = m a x  ~(s~,til hd. 

• Here, ui (si, ti[ hi) denotes the expected utility induced by strategy si with respect to the prob- 
ability distribution mrg(#i(t i  , hi)I S- i(hi)  ) E A(S- i (h i )  ) and the utility function ui(ti, hi). Let 
(Si x ~)s r  be the set of sequentially rational strategy-type pairs, and let (S- i  x T_i) 8r = 
x j~i (S j  X Tj) st. By 

T~ r = {ti E Til supp#i(ti, hi) C (S-i  x T_i) sr for every hi E H i }  

we denote the set of those player i types that  believe in sequential rationality. 

Definit ion 4.4. A type ti E Ti is called persistently rationalizable i f  it respects common befie£ 
about the events that (1) types are updating consistent, (2) types are utility consistent, (3) types 
are belief rev/sion consistent, and (4) types believe in sequentiM rationality. A strategy si E Si 
is cMled persistently rationalizable i f  there is some persistently rationMizable type ti such that 
( si, ti) is sequentially rational 

4.2. Exogenous  Restrictions on Uti l i ty Functions and Beliefs 

In the literature, it is usually assumed that  there be common belief about  the players' actual 
utility functions throughout the game, and these utility functions are usually modeled as being 
part of the extensive form game itself. Indeed, an extensive form game is normally defined 
as a pair (8 ,u) ,  where S is an extensive form structure and u = (ui)iel is a profile of utility 
functions, the interpretation being that  at any stage of the game, there is common belief about 
u. Therefore, if we wish to compare our concept of persistent rationalizability to other rational- 
izability concepts proposed in the literature, we should formalize what it means in our model 
that  players "face an exogenously given profile of utility functions", while allowing these players 
to revise their belief about the opponents'  utility functions as the game proceeds. 

Let $ be an extensive form structure and u = (Ui)iel an exogenously given profile of utility 
functions. We say that  a type ti initially believes u if pi(ti, h0) assigns probability one to the 
event that  every opponent j has some type tj with uj(t j ,  hi) = ujiz(h~ ) for all h i E H~. 

Definit ion 4.5. We say that a type ti is persistently rationalizable for (S, u) i f  (1) ti is persis- 
tently rationMizable, (2) ui(ti, hi) = Ui[Z(h,) for all hi e H i ,  and (3) ti respects common belief 
about the event that types initiMly believe u. 
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4.3. M i n i m a l  R a t i o n a l l z a b i l i t y  

We shall next focus on types that are persistently rationalizable for a given extensive form game 
(,S, u), and, moreover, have a complexity that  is as small as possible. Recall from Section 3.3 
that  the complexity of 'a  type ti denotes the total number of types that  ti uses in his theory 
about the opponents. 

Definition 4.6. Let (S, u) be an extensive form game. Then, a type ti is called minimally 
rationalizable for (,5;, u ) / f  ti is persistently rationalizable for ( S, u) and has minimal complexity 
among all player i types that are persistently rationalizable for (S, u). A strategy si is said to 
be minimally rationalizable for (S, u) f f  there is some minimally rationalizable type ti for (S, u) 
such that (si, ti) is sequentially rational 

Reducing the complexity of a persistently rationalizable type ti to a minimum typically 
implies that  ti should involve as few belief revisions as possible during the course of the game. 
The reason is that  belief revisions typically increase the complexity of a type. In order to see 
this, note that  a belief revision is necessary whenever ti, at some information set h~, holds some 
belief about the possible types of opponent j ,  and discovers at a later information set h/2 that  
none of these types could have chosen a strategy leading to hi 2 that  is in accordance with common 
belief of sequential rationality. In such a case, ti should include new player j types to his theory, 
at least at a first level, in order to explain the event of reaching information set hi 2, and this will 
typically increase tlhe complexity of ti. 

Moreover, minimizing the complexity of a type ti also typically implies that  ti should restrict 
his attention, in his theory about the opponents, as much as possible to types that  use few belief 
revisions. The reason should be clear: if ti, directly or indirectly, uses a type tj  with many 
belief revisions in his theory, then t j 's  complexity will typically be large, which in turn would 
contribute to a larger complexity of type ti. 

4.4. Existence and Relation to Proper  Rationalizability 

Schuhmacher (1999) introduced the concept of proper rationalizabily as some non-equilibrium 
analogue to proper equilibrium, and showed that  it uniquely selects the backward induction 
strategies in generic games with perfect information. Subsequently, Asheim (2001) provided a 
characterization of proper rationalizability in terms of lexicographic beliefs for the case of two 
players, which can 'be extended to games with more than two players. Asheim's characterization 
states, in words, that  a properly rationalizable type should respect common belief about the event 
that  (1) types take all opponents'  strategies into account, and (2) types deem one opponent 
strategy infinitely more likely than some other strategy whenever the opponent prefers the 
former over the latter. We show that  for a given extensive form structure S and profile u of 
utility functions, every properly rationalizable strategy for (,S, u) is persistently rationalizable 
for ($, u). Since properly rationalizable strategies always exist for every (S, u), this result implies 
the existence of persistently rationalizable strategies for every (S, u). 

T h e o r e m  4.7. Let S be an extensive form structure with observable deviators and u --- ( ui )i~l a 
profile of utility ftmctions. Then, every properly rationafizable strategy for (S, u) is persistently 
rationalizable for (.S, u). 
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5. Rela t ion  to  Other  C o n c e p t s  

5.1. B a c k w a r d  I n d u c t i o n  

In this section we will see that  in generic games with perfect information, every player has a 
unique persistently rationalizable strategy, namely his backward induction strategy. A game 
with perfect information (S, u) is said to be in generic position if for every player i and every 
pair zl, z2 of different terminal nodes, we have that  ui(zl) ~ ui(z2). For such a game, let 
a*(hi) E A(hi) denote the unique backward induction action at information set hi. For every 
player i, there is a unique strategy s~ with sT(hi) = a*(hi) for all hi E Hi(sT), to which we shall 
refer as the backward induction strategy. 

T h e o r e m  5.1. Let ($, u) be a game w/th perfect ipfformation in generic position. Then, a 
strategy is persistently rationafizable for ( S, u) if and only i f  it is a backward induction strategy 
for ($, u). 

In view of Theorem 5.1, the concept of persistent rationalizability may be employed as an al- 
ternative epistemic foundation for backward induction in games with perfect information. There 
is an important difference with other foundations proposed i n  the literature, such as Aumann 
(1995), Samet (1996), Balkenborg and Winter (1997), Stalnaker (1998) and Asheim (2000), as 
persistent rationalizability allows players to revise their conjectures about the opponents'  utility 
functions during the game, whereas the latter foundations do not. In turn, persistent rationaliz- 
ability requires players to interpret "unexpected moves" (in this case, moves that  deviate from 
the backward induction play) always as being in accordance with common belief of rationality. 

5.2. Nash Equilibrium Strategies 

In Section 4, we have defined minimally rationalizable types for ($, u) as those persistently 
rationalizable types for (S, u) that  have minimal complexity. Recall that  the complexity of 
a: type ti denotes the total number of types that  ti, directly or indirectly, uses in his theory 
about the opponents'  strategy choices and opponents'  beliefs. It  turns out that  the minimal 
complexity criterion has non-trivial implications even for the class of simultaneous move games 
in which belief revision plays no role. In these games, persistent rationalizability is equivalent 
to rationalizability, as defined in Bernheim (1984) and Pearce (1984). Minimal rationalizability 
thus restricts attention to those strategies by player i that  can be justified by an epistemic 
rationalizability theory (cf. Tan and Werlang (1988)) which involves as few types as possible. 
We prove that  for the case of two-player simultaneous move games, this concept is equivalent to 
the notion of Nash equilibrium strategies. 

In order to formalize this result, we first need the definition of a Nash equilibrium strategy. 
For a given two-person simultaneous move game, a first-order belief about player i is a probability 
distribution #i E A(Si), reflecting player j ' s  belief about player i's strategy choice. A profile 
(#1, #2) of first-order beliefs is a Nash equilibrium if #i(si) > 0 implies that  si is a best response 
against #j.  A strategy si is a Nash equilibrium strategy if there is some Nash equilibrium (#1, #2) 
such that  si is a best response against #j. Since not every rationalizable strategy in a two-player 
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game is a Nash equilibrium strategy, the following result implies that minimal rationalizability 
is indeed stronger than rationalizability in two-player simultaneous move games. 

Theorem 5.2. Let ($, u) be a two-player simultaneous move game. Then, si is minimally 
rationalizable for (S, u) if  and only if si is a Nash equilibrium strategy for ($, u). 

The characterization result no longer holds for more than two players, since in this case a 
minimally rationalizable strategy need no longer be a Nash equilibrium strategy. 

5.3. Forward Induc t ion  in Outs ide  Opt ion Games 

In the class of so-called outside option games, the concept of minimal rationalizability singles 
out the unique forward induction outcome, as defined in van Damme (1989). An outside option 
game is a two-player game ($, u) with the following properties: 
(1) At the beginning, player 1 may choose an outside option and leave the game or not choose the 
outside option and stay in the game; actions that will be denoted by Out and In, respectively. 
(2) When taking the outside option, player 1 receives utility ul(Out). 
(3) If player 1 does not take the outside option, players 1 and 2 enter a simultaneous move 
games with action sets A1 and A2. In this subgame, there is a strict Nash equilibrium (a~,a~) 
which yields player I utility Ul (a~, a~) > ul(Out). All other Nash equilibria (#1, #2) in first-order 
beliefs yield player 1 an expected utility strictly lower than ul (Out). 

In van Damme (1989) it is argued that (In, at) and a~ are the unique "forward induction 
strategies" in this game. The argument runs as follows. If player 2 observes that player 1 has 
not chosen the outside option, he should conclude that player 1 is heading for the only Nash 
equilibrium that dominates the outside option for him, that is, (a~, a~). As such, he should believe 
that player 1 will play a~, and hence player 2 should respond with a~. Player 1, anticipating on 
player 2 reasoning in this way, should therefore choose (In, a~). The following theorem shows 
that this argument is supported by the concept of minimal rationalizability. 

Theorem 5.3. Let (8,u) be an outside option game in the sense o£van Damme (1989). Then, 
the unique minimally rationaJizable strateg/es for (S, u) are the forward induction strategies 
(In, a~) and a~. 
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