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Abstract 

The paper offers a complete probabilistic ch~acterization of the ab- 
ductive operator axiomatized by Maurice Pagnuco in [11]. The model as- 
sumes the axiomatic characterization of Conditional Coherence presented 
by Lester Dubins in section 3 of [8]. It follows, as a philosophical con- 
sequence, that a form of probabilism based on Dubins' conditional prob.. 
ability not only permits ampliative rules of inference, but that it also 
mandates them. This result is contrasted with various arguments pro- 
vided by Bas van Fraassen in [19] showing that the adoption of any form 
of Inference to the Best Explanation as a rule for belief revision must 
make one's belief system incoherent. 

In the second part of the paper a property of iterated probability 
change, called Cumulativity, is presented as well as the corresponding 
axiomatization for iterated abductive operators (in the style of [17] and 
[7]). Finally we consider non-cumulative methods of change constrained 
by the general principles of Conditional Coherence. 

1 Condit ional  Probabil i ty  and Condit ional  Co- 
herence 

Lester E. Dubins presents in [8] an axiomatizat ion of finitely addit ive conditional 
probability. The  axioms provide minimal  conditions of conditional coherence, 
which will result  nsefial throughout  the  article. So, I shall s tar t  by providing 
background on Dubins '  axioms 1 

A probability measure on a Boolean algebra .,4 with unit  fl  is a finitely addi- 
tive, non-negative function, normalized so as to  assume the value 1 on ft. 

If  7"~ is a sub-algebra of a Boolean algebra .,4, then  P is a conditional probabil- 
ity on (A, 7-/), and (,,4, ~ ,  P )  is a conditional probability space, if  P is a function 
whose domain  is ,,4 x 7--/o (7./o is 7"l without  the  null element of  7"/), satisfying: 

(1) P( . IA)  is a probabil i ty measure on .,4, for each A E 7"/°. 
(2) P(HIH ) = 1 for all H E 7"t °. 

1The term 'conditional coherence' is first used by Schervish et al. in [14], page 213. Nothing 
will be assumed in the paper about conditional coherence aside from the constraints provided 
by Dubins' axioms. The eventual addition of countable additivity for restricted examples will 
be clarified in footnotes. 
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(3) P ( B  fq CIA) = P(BIA)P(CIB  N A) for all A, B, C with A E A, B E 7-I °, 
CeT- / ° .  

A conditional probabili ty P on CA, ~ )  is full Con A) ifT"/= A. Dubins shows 
that  for every conditional probability space CA, 7-/, P),  there is an extension Q 
of P which is a full conditional probability on A. When P(A)  = 0, there might 
not be a unique such extension, but  each of the extensions provided by Dubins 
provides a meaningful manner of conditioning with events of measure zero. 

Axiom (2) is a mandatory constraint on any reasonable notion of conditional 
probability. The axiom seems to be constitutive of the notion of supposition 
which conditional probability intends to encode. Axiom (1) might be seen as 
restrictive for anyone familiar with the Kolmogorovian notion of probability, 
where countable addit ivity plays a crucial role. Nevertheless, countable addi- 
t ivi ty is far from being an uncontroversial axiom of probability. On the other 
hand, I shall review below arguments suggesting that  the price of adopting the 
Kolmogorovian view of conditional probabili ty is to abandon the full generality 
of Axiom (2). Axiom (3) has a long pedigree, which can be traced back at least 
to [10], where Jeffreys gave it the name of 'W. E. Johnson's product rule'. ~ 

There is, of course, a well-known tradit ion initiated by Kolmogorov capable 
of handling conditioning with events of measure zero. This well-known alterna- 
tive to the former view operates as follows. Let Cf~, B, P)  be a measure space 
where fl is a set of points,/3 a a-field of sets of subsets of ~2, with points w. Then 
when PC A) > o, A • I3, the conditional probabili ty over B given A is defined 
by: PC.I A) = PC. MA) / PCA). Of course, this does not provide guidance when 
P(A)  = O. For that  the received view implements the following strategy. Let A 
be a sub-a-field of B. Then PC.IA) is a regular conditional distribution [red] of 
B, given A provided that:  

(4) For each w • ~, PC.IA)(w) is a probabili ty on B. 
(5) For each B • B, P(BIA)( .  ) is an A-measurable function. 
(6) For each A • A,  P ( A  N B) = fA P(BIA) (w)dP(w)  

Kolmogorov shows that  PC-IA) is probabili ty not given an event, but  given 
a a-field. Blackwell and Dubins discuss in [8] conditions of propriety for rdcs. 
An red P(.IA)C w) on B given A, is proper at w, if P(.[A)C w) = 1, whenever 
w • A • A. P(.IA)(w) is improper otherwise. Recent research has shown 
that  when reds exist and A is countably generated, almost surely the reds are 
proper. Nevertheless when reds exist but  A is not countably generated, there 
are circumstances when the reds are maximally improper [16]. This is so in two 
senses. On the one hand the set of points where propriety fails has measure 1 
under P. On the other hand P(a(w) lA)(w ) = 0, when propriety requires that  
P(a(w)lA)Cw) = 1 - aCw) denotes here the A-atom containing the point w. 

It seems that  failures of propriety conspire against any reasonable episte- 
mological understanding of probabili ty of the type commonly used in various 

2The epistemologist W. E. Johnson of Cambridge seemed to have proposed it for the same 
time in a seminar in epistemology attended by both Jeffreys and Keynes. 
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branches of mathematical economics, philosophy and computer science. To be 
sure finitely additive probability obeying Conditional Coherence is not free from 
foundational problems, 3 but, by clause 2 of Conditional Coherence, each coher- 
ent finitely additive probability is proper. 

So, in this article I shall adopt Conditional Coherence, which captures some 
aspects of De Finetti 's idea of conditional probability given an event, rather 
than .given a a-field. 4 I shall add the axiom of Countable Additivity only to 
restricted applications where the domain f~, when infinite, is at most countable. 
s My first goal will be to show that a form of probabilism based on Conditional 
Coherence is tightly connected to recent axiomatizations of ampliative rules of 
inference. In particular I shall offer a complete probabilistic characterization of 
the abductive operator axiomatized in [11]. This will require defining qualitative 
belief from conditional probability by appealing to a procedure studied in [20], 
[3], [1]. 

2 Condit ional  Probabil i ty  and Bel ief  

I shall introduce the notion of probability core. I follow here ideas presented 
in [1], which, in turn, slightly modify the schema first proposed in [20]. A 
notion that plays an important role in these works is the notion of normality. 
Here this notion only has a marginal value. The basic idea is that an event 
A is normal for P as long as P(OIA) = O. Conditioning on-abnormal events 
would lead to incoherence. In this paper the underlying Boolean algebra will 
alway:s be tailored in such a way that abnormal events will never be available 
for conditioning. 

A probability core for P is an event [K] which is normal and satisfies the 
strong superiority condition (SSC) i.e. if A is a nonempty subset of [K] and B 
is disjoint from [K], then P(BIA  U B) = 0 (and so P(A[AU B) = 1). Thus any 
non-enapty subset of [K] is more "believable" than any set disjoint from K. 

Two important facts can now be established. First one can show that the 
family of cores induced by a two-place function P is nested [20]. Seconds it is 
possible to show (for countable spaces) that every countable additive function 
P is such that the chain of cores induced by it cannot contain an infinitely 
descending chain of cores. A proof of this fact is given in [2]. A similar result 
was p:roven in a different context in [18]. 

3perhaps the most poignant result is presented in [14], where it is shown that each finitely 
additive probability fails the property that De Finetti called conglomerability in some denu- 
merable partition. See also [8 I. 

4Conditional Coherence does not capture, nevertheless, important aspects of De Finetti's 
ideas about primitive conditional probabilities. Unlike probabilists, De Finetti uses a prim- 
itively given notion of information in order to define conditional probability. Such notion of 
information set does not admit, in his construction, a probabilistic account. Some repercus- 
sions of this aspect of De Finetti's notion will be discussed below. 

SThe addition of Countable Additivity will be specifically clarified. Otherwise it wilt be 
assumed that we are working with finitely countable measures. 
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2.1 Probability Cores, Full Belief and Expectation 

When the universe of points is at most countable, very nice properties hold. In 
general it can be shown that  (when countable addit ivity holds) for each function 
P there is a smallest as well as a largest core and that  the smallest core has 
measure 1. In addition, when the universe is countable we can add Countable 
Addit ivi ty without risking failures of propriety. In this case we have that  the 
smallest core is constituted exactly by the points carrying positive probabili ty 
[1]. 

All cores carry probability one, but, of course, only the innermost core lacks 
subsets of zero measure. There is, in addition, a striking difference between the 
largest and the smallest core (and between the largest and any other core). In 
fact, any set S containing the largest core is robust with respect to suppositions 
in the sense that,  P ( S  ] X) = 1 for all X, and the complement of S is abnormal. 
So, the largest core encodes a strong doxastic notion of certainty or full belief, 
while the smallest encodes a weaker notion of 'almost certainty' .  Both formal 
and conceptual reasons are provided in [1] for understanding the weaker notion 
as a notion of qualitative expectation. 6 So, when the universe is countable and 
countable addit ivi ty is imposed we can define two main at t i tudes as follows: an 
event A is expected if it contains the smallest core, whereas it is fully believed if 
it contains the largest. I should point out here in passing that  Bas van Fraassen 
prefers to identify the smallest core for P with the full beliefs for P .  We will 
comment on this option below. 

In the general case there is still enough structure to define both atti tudes. In 
fact, in this case the existence of the innermost core cannot be guaranteed. But 
the definition of full belief needs no modification and the notion of expectation 
can be characterized as follows: an event A is expected if it is entailed by some 
COre. 

In the following sections I shall show how the notions just  presented can be 
used in order to provide a model of operators implementing ampliative rules of 
inference. The following section is devoted to an axiomatic characterization of 
such operators. 

3 Ampl ia t ive  inference and theory change oper- 
ators 

Let a theory K encode the epistemic commitments for full belief of an agent 
at  some time t. ~ I shall call such theory a belief set. Then, in the presence of 
an epistemic input a consistent with K, the resulting (abductively) expanded 
belief set will be a superset of K containing c~. Intuitively one is looking for an 

6The te rm 'expec ta t ion '  is not  decision theoret ical ly  mot ivated.  I t s  mot iva t ion  comes from 
the  field of non-monotonic  logic, where ' expec ta t ion '  models  of defeasible reasoning are usual  
- see [3] for details.  

71n the  sense t h a t  the proposi t ion [K] corresponding to  K is such t h a t  an event  A is a full 
belief when [K] C A. 
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(eventual) extension of Cn(K U {a}), which can explain the incoming data. 8 
In order to analyze these expansions it is useful to focus on the part i t ion of 
maxiraaUy consistent supersets of K implying a.  Let K ±  a denote the elements 
of this partit ion. 

Following a well-known strategy often used in the so-called theory of theory 
change (see [9]), one can define an ampliative operator @ as follows. Let 7 be 
a selection function on K ±  a,  picking the best elements of K ±  a.  Define then 
K@a as AT( K ±  a) ,  when K ±  a is nonempty and as Cn(±)  = K±,  otherwise. 
Any such operator will be called a partial meet abductive expansion operator. 

Tiffs characterization avoids inferring too little or too much. If one just 
takes 7( KL a) ,  the resulting ampliative inference ' jumps'  to a maximal and 
consistent state, and, on the other hand, if one takes O( K L  a)  this just collapses 
into Cn(K U {a }),which is a non-ampliative outcome, given the background 
theory and incoming data. 

Pagnuco [11] has axiomatized an operator of abductive expansion, which is 
characterizable via the previous constructions in terms of selections on K L  a.  
Here are the postulates he proposed. 

(1)For any sentence a,  and belief set K, K@a is a closed belief set. 
(2) a E K ~ a  (success) 
(3) K C_ K@a (inclusion) 
(4) If -1 a E K, then K@a = K± (inconsistency) 
(5) If -~ a t / K ,  then K@a ~ K± (consistency) 
(6) If a ~ f~ E Cn(K), then K@a = K@/~ (irrelevance of syntax) 
(7) K@a C_ Cn(K@(aVB) U {a }) 
(S) If -~a ¢ K@(aVj3), then K@(aVj3) C_ K@a 

Tim first two postulates are self-explanatory. The third postulate indicates 
that  the operation is ampliative, it cannot lead to the retraction of beliefs. The 
fourth postulate indicates, again, that  the operation @ is an expansion, not 
a revision of the current data.  The fifth postulate encodes the idea that  the 
explanatory process of the da ta  that  @ intends to represent does not introduce 
inconsistencies. In other words, whenever it is possible to find an explanation of 
the data, it  is supposed to be consistent. Of course, this is not so for consistent 
da ta  in general, but only for da ta  consistent with the current view. The first five 
postulates provide a natural  notion of abduction as follows. Pagnuco proves that  
the function @ satisfies the first five postulates if and only if K@a is identical to 
Cn(K U {f~}), for some fl such that  (i) a is deducible from K O {fl} and (fi) K U 
{/3} is consistent. On the other hand K@a is set to K ff such a fl does not exist. 
So, the idea behind the operator ¢ is as follows: the agent a t tempts  to find an 
abduction of the epistemic input with respect to the current epistemic state, 
and adds this abduction to the current epistemic state, taking the deductive 
closure. If an abduction cannot be found - because the information contradicts 
the current bel ief-  the epistemic state is not changed. 

8Cn is the standard (Tarskian) notion of logical consequence. 
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The sixth postulate is a strong condition for the irrelevance of syntax, com- 
mon in theories of belief revision. Concerning the last two postulates, they can 
be presented in a more familiar form for people acquainted to the theory of 
theory change. In fact, given well-known results in belief revision theory (see 
Appendix A of [9]) one can show that the following two postulates are equivalent 
to (7) and (8) in the presence of the other basic postulates: 

(9) K@(aAfl) C Cn((Kec~) U {~ }) 
(10) If -~a • KSj3, then Cn((K@/9) U {c~}) c_ K@(aAfl). 

Let a selection function 7 be called relational if and only if: 7( K_k c~) 
---- {K' E K.L c~: K" < K'  for a l l K "  E K ±  ~ }. When < is transitive, the 
corresponding relation is a transitively relational selection function. Pagnuco 
[11] shows a full characterization of transitively relational partial meet expansion 
operators in terms of axioms (1)- (8). There are, of course, other types of 
characterization results capable of fully representing this family of operators. 
In the coming section we will show a probabilistic characterization in terms of 
primitive conditional probability. 

4 A Probabil ist ic  reconstruct ion of  ampliat ive  
rules 

Given a theory K, let [K] denote the proposition expressed by K. The letters 
A, B, etc denote the propositions expressed by sentences a,/3, etc. Let F(P) be 
the outermost core of P. If [K] is the proposition expressed by the background 
theory K, let .A[K:] be the quotient algebra modulo [K]. In addition, let Q[A](.I.) 
= Q(-I. M A), defined on AlL:in.a, for all A compatible with [K]. 

T h e o r e m  4.1 Let Q(.[.) be a full conditional measure with outermost core [K] 
(characterized relative to a countable (Ale:i, ~ ,  P)). For all consistent sentences 
c~ such that [c~] e Apc], define [g@a] C [fl] i] and only if B is entailed by some 
core for Q[A]. Then the corresponding operation satisfies the postulates (1)-(8). 

In addition we can completely characterize 6~ in probabilistic terms. Some 
precisions about models of ~ are needed first. For every ~9 satisfying (1)-(8) 
and for every belief set K, it is possible to prove that  there is a nested collection 
CK, of subsets of fl satisfying; 

(1.) CK is totally ordered by C 
(2.) [K] is in CK and it is the C-maximal element of CK. 
(3.) CK is dosed under unions and non-empty intersections. 

This internal grading on [K] is such that  for every [c~] N [K] ¢ 0, [K~c~] C 
[/3] if and only if [/3] is entailed by the intersection of [a] with some element 
of CK. Following Pagnuco's notation we will call CK an internal system of 
spheres centered on [K]. I do not include this part  of the proof heredue to space 
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l imitations.  The first concept we need is the concept of rank system for a regular 
system, of spheres CK induced by O. Construct  an enumerat ion  of spheres, such 
that  tlm outermost sphere [K] -- K0. For any n: 0, 1, ...; define a rank system 
rn for CK as follows: 

(ranks) r,~ = {w E ~: w E Kn  - Kn+ l ,  where Ki • CK } 

T h e o r e m  4.2 Let ~ be any function satisfying (1)-(8) for the belief set K and 
let A be a non-empty proposition. There is a countable probability space (,A[~], 
7"l, P )  which can be extended to a full conditional probability Q(.I.) on A[iCl, 
such that [goo~] C_ [/3] if and only if B is entailed by some core for Q[A]. 

Sketch of the proof. The proof proceeds along similar lines than  the proof of 
Theorem 3 in  [8]. I shall focus first on the case when A[ICl is finite. 9 In this case 
we can define a sequence of nonzero elements of 7"/, {ri: 1,...,n} par t i t ioning the 
space-- by appearing to the ranks defined above. Introduce now a sequence {pi: 
1 ..... n} of probabil i ty measures such tha t  pn(u) > 0 for every point  u in  the 
univer~se ft, such that  u • r~ and p,~(u) = 0, for every other point  in f~. We can 
then  work with a P such tha t  P ( r l )  = p l ( r l )  = 1, and P(r21r~) = p2(r2) = 1; 
and  in general P(ri+ll(rx U ... U r~) c) = pi+z(ri+i) = 1. 

Define now Q(AIB ) as pi(A fq B) / pi(B),  where i is the largest integer such 
that  B A r~ ¢ 0. It is not  difficult to check that  Q(AIH ) = P ( A I H  ) for nonzero 
H in 7"[, and that  the axioms (1), (2) and (3) are obeyed. It  can also be checked 
that  the cores for Q are exactly the system of spheres CK used in order to define 
the ranks ri.  

Assume now [Kea]  c [/3], and [a] N [K] ¢ 0. So, there is a core C for Q 
such that  C N A  entails B.  Therefore since C N A  is a core of Q[A] - the proof of 
this appears in [5] - we have that  there is a core for Q[A] entail ing B. On the 
other hand,  if there is a core for Q[A] entail ing B, we need to show that  [K~c~] 
c [/3]. This  is also immediate  now, given that  - again, via the argument  in [5] - 
any  core C ~ for Q[A] can be represented as the intersection C ~ = C fq A, where 
C is a core for Q. 

Final ly  we can appeal to (b) of Lemma 8 in [8] in order to get a proof for 
general ,A[x:]. The idea is to s tar t  with an (countably) infinite sequence of ranks 
providing the nonzero elements of 7-/, and define P along the  lines exhibited 

A 0 above. So we have a P defined on a subset 79 of .A[lCl × pc] , i.e. on D = 
,A[x:] × 7"/°. Let .F" be a finite sub-algebra of the general .AIJcl. 7-/1 = .F" f3 7-I is a 
sub-algebra of ~ and P restricted to .T'× 7-/°1 is a conditional probability. Since 9 v 
is finite there exist a full conditional probabil i ty which agrees with P on .T × 7-/°. 
Now, by the aforementioned lemma, the existence of this full measure agreeing 
with P on the intersection of :D and .~ × .Y ° is equivalent to the existence of a 
full conditional probabil i ty on the general ,A[ic], with agrees with P on :D. The 
rest of the proof proceeds as in the finite case.* 

9A very similar method of proof can be used for countable additive conditional probability 
defined over a countable space .Ai~:], 
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The previous method of proof does not give a direct idea of how to proceed 
• when the core system contains infinitely descending chains of cores, which are 
permitted by the previous definitions. When [K@a] has finitely many elements, 
we can provide a moredirect  definition as follows. Assume the space is countable 
and start  with an infinite parti t ion of the space given by the ranks {ri: 1,...,n, 
...}. Given the assumptions, each rank contains finitely many elements. Then, 
if there is a smallest integer i such that  A O Ci ¢ 9, define Q(BIA) as before: 
p i (A O B) / pi(A). Otherwise set Q(BIA) to 1 if there is ri such that  A O Ci 
0, and AACi c B and Q(BCIA) to 0 for Bs satisfying the given conditions. For 
the remaining infinite sets such that  both B and B e are infinite, arbitrari ly set 
one of them to 1 and the complement to 0. Finally set Q(BIA) to 0 for every 
other event in the space. 

So, as an example, let the space be the (power set of the) positive integers and 
consider E = {2n: n = 1, ...} be the even integers in the space, and let O = {2n- 
1: n = 1, ...} be the odd integers in the space. Let P(i) = {1/2" : i f i =  2n}and 
let P(i) = O, otherwise. So the unconditional P is countably additive, whose 
support  is the even integers E. But P(.[O) might be uniform on the odd integers. 
This can be reflected by the fact that  there is a core system over O defined as 
follows: Let the outermost core C1 = O. Then C2 = {1} c, C3 = {1,3} ~, etc. 
Each rank contains exactly one odd number with r l  -- {1}. According to the 
definition proposed in the previous paragraph each co-finite set in O has measure 
1 (because it is entailed by at  least a core) and each number in O carries zero 
probability. Of two infinite but not co-finite sets, say S -- {1, 5, 9,. .} and H = 
{3, 7, 11 . . . .  }, we can assign 1 to the set of lower rank (so S carries measure 1 and 
H zero). Notice that  there are events that  carry measure one even when they are 
not 'believed', in the sense that  they are not entailed by any core (for example, 
S). This is a concrete case where we have an infinitely descending chain of cores 
and finitely additive probability defined for those cores. Different core systems 
for O determine different conditional extensions P(.]O). The doxastic structure 
provided by the given set of cores has in this case some salient features. For 
example, for each finite sequence of odd numbers the largest is expected and 
the complement of each particular number is expected, which can be seen as 
entailing that  each number is expected to be a 'loser' in this transfinite lottery. 
Nevertheless, it  is not the case that  all odd numbers are expected to be losers. 
The result of defining expectations in terms of what is entailed by some core 
determines a logical closure for expectations which does not satisfy the rule of 
Adjunction (or AND rule). 

The following (more concrete) example adapts one example proposed by 
Pagnuco in [11]. Let O stand for ' the restaurant is open', L for 'lights on in 
restaurant ' ,  and C for ' the restaurant is being cleaned'. Let wl be the point 
(-~O, ~C, -~L), w2 = (O, C,L), wa = (O, -~C, L), w4 = (-10, C, L), w5 = (-~O, 
-~C, L), w6 = (O,-~C, -~L), w7 = (O, C, -~L), ws = (~O, C, -~L). 

An agent can be represented by a P-function which concentrates all the 
probabili ty mass in wl. Nevertheless P determines a system of cores Cp with 
outermost core 3, according to the following picture. So, the agent fully believes 
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only the logical consequences of {O --o L, C --~L} = F(Cp).  But he can still make 
distinctions among points receiving zero measure. For example, P({w4 }]{w3 } U 
{w4}) = 0. So, if the light is on the agent will expect that  the restaurant is 
open, even when he is 'almost sure' that: the restaurant is now closed, it  is not 
being cleaned and the lights are off. 

• 2p Possible worlds 
I wl 

i w2, w3 

5 w5 
w6, w7 

Notice that  a standard 'expansion' of F(Cp) does not provide much infor- 
mation. In fact Cn({O --~ L, C ---~L} U {L}) = Cn({L}). 1° That  is to say 
the agent only knows that  the light is on. The internal grading of full beliefs 
permits to ' jump'  to the conclusion that  the restaurant is open when it is sup- 
posed or learned that  the lights are on. Notice also that  the definitions we are 
using separate the notions of full belief and probability one. There are events 
of measure one, of which the agent is not completely certain. One can see the 
background certainties as law-like generalizations that  guide the agent's reason- 
ing process. They are not open to revision in the probabilistic representation, 
which provides no guidance for (full) belief revision. Nevertheless the agent is 
capable of ' jumping'  to an abductive conclusion, given da ta  compatible with the 
background certainties.  And this capacity is encoded probabilistically by the 
comparisons the agent makes among events carrying zero measure. Of course, 
all fully believed items carry measure one. But, separating certainty (full belief) 
from probability one events helps with paradoxes like the so-called paradox of 
the lottery. It is clear form the construction method used to prove theorem 
2 thai; postulate (5) only holds when countable additivity holds. Intuitively 
the abandonment of CA permits the existence of infinitely descending chains of 
cores, even for propositions logically compatible with the largest core. Together 
with (5) various important  consequences of the postulates also fail, like the fol- 
lowing condition, which follows from (1)-(8) (specifically from 10 and 5): (11) 
If ~ E K@~ and ,7 E K ~ a ,  then '~ E K@aA~. 

4 . 1  A r e  a b d u c t i o n  r u l e s  ' b o n a  f i d e '  r u l e s  o f  i n f e r e n c e ?  

Bas vim Fraassen intends to show in [19] that:  'adopting any form of Inference 
to the Best Explanation (IBE) as a rule for belief revision must eventually make 
one's belief system incoherent' (see [19], ch. 7, section 4). The central idea of the 
argument is the adoption of a variant of David Lewis's 'dynamic'  Dutch Book, 
showing that  upon learning A at  t+j  (j  > 0) one leaps to incoherence if one does 
not assigns credence r to any proposition B such that  at t: P(BIA ) = r. This 
is tantamount to adopt what Isaac Levi calls temporal credal conditionalization. 

l°Notice also that as long as a tiny probability is spread among the points inside the cores, 
aside from wl, we have an equally uninformative response after conditioning with the event 
that the lights are on. 
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I do not intend to discuss here the issue of whether such dynamic books 
are or not legitimate extensions of their synchronic counterparts - see [13] or 
[6] for arguments against the force of dynamic Books. I would like to focus 
here instead on using the previous theorems in order to construct the following 
argument. Even ff temporal credal conditionalization were assumed for a form 
of prohabilism based on positing conditional probabili ty as the main epistemo- 
logical primitive, this would entail commitment to the use of ampliative rules 
of inference as rules for belief revision. 

I would like to stress that  van Fraassen does allow for 'practices of ampliation 
beyond evidence' as long as they a r e  relegated to the realm of  pragmatics, or 
what in philosophy of science is called ' the context of discovery' rather than the 
'context of justification'. It  is the implementation of an abductive rule as a rule 
for belief revision, what van Fraassen finds incorrect. But the rules formalized 
by 6~ are exactly an a t tempt  to formalize ampliative rules as rules for belief 
change. 

In the case of countable domains it is clear that  the adoption of temporal  
credal conditionalization puts a constraint on updates. Notice that  in the count- 
able case any function, P having [K] as its largest core is such that,  according 
to van Fraassen's characterization of full belief, the agent's flail beliefs after the 
update  are given exactly by K~BA. So, as long as temporal creedal conditional- 
ization holds, there is a direct commitment to a rule of abduction as a rule for 
belief revision. 

Our own understanding of the role of cores is more liberal. The new full 
beliefs after the update with A are given by the intersection of A with the 
largest core for P.  I t  is the smallest core (if it  exists) the one tha t  encodes the 
abductive jump. In our interpretation the content of the abduction is expected, 
not fully believed. 

Notice in addition that  (in the finite case) if P is a probabili ty function 
with largest core [K], [K@T] encodes the function's smallest core, which, in 
this case, is constituted by the points of positive probability. So, updates with 
propositions compatible with this smallest core should yield as output  exactly 
the intersection of the input with the said core. This is indeed a consequence of 
Pagnuco's axioms: 

(12) I f -~a  ¢ K~BT, then Cn((K@T) U {a}) = K@a. 

So, da ta  A compatible with the smallest core is considered, one should take 
the intersection of this core and the data. Taking any strict subset of this in- 
tersection leads to incoherence in the tradit ional Bayesian sense. But when one 
shifts perspective by adopting as primitive a function P(.[.), and one considers 
da ta  compatible with the largest core of P (but incompatible with the smallest 
core for P),  the cores of P provides guidance towards implementing an 'a im 
pliative extension' of the held certainties. This is so 'ex ante',  without even 
considering the problem of temporal  shifts. The type of probabilism defended 
by van Fraassen in [20] (based on assuming conditional probabili ty as the only 
epistemological primitive) seems to be capable of accommodating ampliative 
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rules of inference - unlike the garden variety of probabilism defended in [19]. 

5 Cumulativity 

This section and the following section will be devoted to analyze iteration. First 
we wiU focus on the consequences of the following principle (K below is back- 
ground knowledge for P):  

( C umulativity) Let PK [A] (. I.) = Q (-I-) be a conditional probability function 
extending P.  Then the update of Q with B, written Q[B](.I. ) is given by 
PK[A N B](.I.). 

In order to see which is the scope of this principle, it is useful to notice that 
even if we do not impose it for every Q(.) = P(.I A) there is always a Dubins' 
extension P' of P representing Q(.IB), in the sense that Q(.I B) = P'(.I A o B). 
Cumulativity is instead a condition on iteration which requires that Q[B](.) 
should be represented by updating the original measure P with A O B. 

Given every function P and associated core C, we can consider a function Ex 
yielding the innermost core of C (when it exists) and a function F yielding C's 
outermost core. These functions apply to the core system C (this appeals to art 
approach first proposed by W. Spohn in [17] and then extended axiomatically 
in [7]). By the same token we can consider an operation @ on core systems, 
such that given a core system and a proposition compatible with F(C), yields 
a new core system. In [5] it is shown that, as long as Cumulativity is adopted, 
the result of this operation is the system of cores obtained from the first by 
taking the intersection of each initial core with the incoming proposition [a]. 
The following axioms are then motivated (and provable from the properties of 
countable P - [3], [4] elaborate on some applications): 

Entailment:Ex( C) C F( C) 
Full belief expansion: F(P) n A = F(C @ A) 
Success: Ex(C @ A) _C A 
Preservation: If Ex(C) n A ~ O, then Ex(C) o A = Ex(C @ A) 
Restricted consistency preservation: If A n F(P) ~ ~, then Ex(C @ A) ~ O. 
Entertainability: If F(P) n A = O, then Ex(C @ A) = F(C @ A) = O 
Cumulativity: Ex((C @ A) ~ B) = Ex(C ~ (A O B)) 

There is no easy translation between the principles of change stated in the 
former way and the principles stated in the manner used by Pagnuco. One can 
mention as a heuristics that F(C) in the new setting corresponds intuitively to 
[K] in the previous setting; and that Ex(C @ A) is the equivalent of [K @ o~]. So, 
Success is in this new notation the counterpart of Pagnuco's postulate 2. By the 
same token, the counterpart of postulate 3: Ex(C@A) C F(C) is derivable from 
the given postulates. And the counterpart of condition 11 follows easily from 
Cumulativity and Preservation. Of course, Restricted consistency preservation 
fails when CA does not apply. Now, it is quite evident that Cumulativity is 
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a rather strong postulate for belief dynamics. Data incorporated in a data 
sequence is never forgotten in subsequent stages of learning or supposing. The 
following section is devoted to present a view of conditional probability, which 
manages to circumvent Cumulativity. 

6 Condit ional  Coherence  wi thout  Cumulat iv i ty  

In this final section I shall sketch how to proceed in order to maintain the 
constraints imposed by Dubins' axioms without assuming Cumulativity. The 
gist of the idea is to define extended conditional probability as coherent degree 
of belief on qualitatively given suppositions. So, one can start with a qualitative 
notion of supposing. Given background knowledge K and a proposition A, let 
K*A denote the suppositional scenario, relative to K, where A is assumed as 
true. Assume as well that  for each K and K 'A ,  we have probability measures 
corresponding to them and attributing probability only to events compatible 
with background knowledge. So PK and PK.A are the measures corresponding 
to K and K*A. We also assume that if K entails A, P[K] (A) = 1 and that the 
function '*' obeys the axioms of the so-called AGM notion of belief revision (for 
an overview see [9]). 

Now one can define PK[A](.I. ) = PK.A(.[.)- Notice that while PK(.I Y) is only 
defined for events Y compatible with the background knowledge K, PK [A] (.I Y) 
is defined for events Y compatible with K*A. This strategy permits defining 
conditioning on events of measure zero and fails to obey Cumulativity as long 
as the underlying notion of supposing fails to obey (K*A)*B = K*(A fq B) - as 
in AGM. Nevertheless we are supposing that Dubins' axioms are obeyed. The 
proposed definition permits focusing on a particular extension PK*A(.I.) of PK. 
The following example can be used to illustrate that  other possible extensions of 
PK can be obtained by appealing to a different function *', as long as *' obeys 
the AGM axioms. 

Consider a case where the space is finite, constituted by 3 atoms (a, b, c) 
and 8 points. Let (a, b, c) = wl; (a, -b, -c) = w2, and let K = wl, w2. The 
initial PK is such that PK(wl) = .3; PK(W2) = .7. Now let (a, b, -c) = w3, (-a, 
b, -c) = w4; and (a, -b, c) = w'; (-a, -b, c) = w. In addition let A = {w3, w4, 
w', w} and B = {w, w'}. Consider now the following three revisions which are 
compatible with the AGM axioms: K*A = {w3, w4} and (K*A)*B = {w}, and 
well as K*(A n B) = {w'}. 

Now PK[A](.[.) is given by P[K * A](.[.). This function is determined as 
follows: P[I f  • A]({w3}lf~) = .5 and P[K * Al(Iw4}lf~ ) - -  .5. Now the function 
Q[B](.I.) = PK[A, B](.[.) = P[(K * A) * B](.I.) is determined by the underlying 
revision in the sense that P[(K* A) * B] ({w} li2) = 1. And finally PK [A fq B] (.[.) 
is such that PK[A n B]({w'}]~2) = 1. So, Cumulativity is violated in the sense 
that PK[A fq S](.J.) ~ Q[B](.[.). 

Notice, nevertheless, that Conditional Coherence guarantees the existence 
of some extension P '  of PK such that Q [B] (.I.) = P~¢ [An B] (. I.), even when the 
latter measure is not obtained via our proposed definition of Q[B] in terms of 
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P[K*A], for a fixed function *. In other words, P~:[ANB](.].) ~ PK.(AnB)(.I.). 
Consider for example the belief revision function *' such that K*'(A n B) = 
{w}. This function is permitted by the AGM axioms, even when it is not the 
one we used in order to construct the example. By using this function we can 
show that there is indeed a manner of representing Q[B](.t. ) via P~[A n B](.I.), 
namely by the function PK.,(AnB)(.].). la 

Recently T. Williamson considered as well transitions where the background 
knowledge is contracted- similar ideas were first proposed by Isaac Levi in [12]. 
This permits that an event of measure 1, relative to K, ceases to have measure 
1, relative to background knowledge K+A, where + is a contraction operation 
on qualitative belief (see [21], chapter 10). Defining probability kinematics 
for a notion of finitely additive probability without Cumulativity (as we did 
in this section) seems to require the use of notions of background knowledge 
and qualitative supposition for which there is no probabilistic account, denying 
thereibre radical probabifism. 
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