
OBJECT REPRESENTATION ON A HETEROGENEOUS NETWORK

C Gray GIRLING

Cambridge University Computer Laboratory
Corn Exchange Street, Cambridge, England

This paper documents some of the author's recent research into
representation and naming in local area communication networks. It outlines a

simple and practical method of providing what could be called 'network
capabilities', an effort being made to keep this topic distinct from those of

data security, data communication, network configurations and protocols.

I. Introduction

The provision of a general method of naming and accessing abstract objects

is an essential prerequisite to the construction of a system that manipulates
them. In particular a distributed operating system needs to refer to and

manipulate the resources that it controls.

A capability-like approach is proposed in which the possession of a 'key'

for a particular object provides access to that object, such a key being easily
passed from one holder to another.

The environment (a network), in which this paper is set, needs to be only
roughly defined: it contains a n~m~ber of independent communicating entities

(called serv~es), each with the ability tic communicate via an address with any
other service necessary. The interface to each of these services consists of a
number of entries each one corresponding to a different kind of request made to

it.

In the above context an "independent communicating entity" is one which is

able to withhold information from other services if it chooses. The mode of
communication, protocols used, and the topology of such a collection of services

are irrelevant to this paper. The security of data passed from one service to

another is also an independent issue since the system described is implemented
upon a network in which the desired level of data integrity has already been

49

http://crossmark.crossref.org/dialog/?doi=10.1145%2F850726.850730&domain=pdf&date_stamp=1982-10-01

achieved° Examples of such an environment could be as follows: a telephone system

(in which a caller corresponds to a service), the postal system (in which a

senders and receivers of post correspond to services), or a network of computers

(in which processes (for example) correspond to services). This paper is

particularly interested in the case characterized by the inability of callers on

the telephone system to recognize each other's voices, postal system users to

recognize each other's handwriting and processes in a network of computers to

verify the origin of each otherVs messages.

2. Authentication and Object RePresentation

Authentication may be necessary for people, operating systems, and files

(at least) all of which may show themselves to be "authentic" in different ways

(a user because his password matches his name, a document because its name refers

to a file containing it, and so on). Moreover, some of these forms of

authentication (e.g. reading in a whole file to see if it corresponds to a

document on hand) may be very expensive. In general it would be desirable to do

this authentication only once, then to generate some sort of 'ticket' which says

"this is to introduce such-and-such: which is a valid something-or-other", and

then pass it around with the object, so that it would not have to be

authenticated again. Such a ticket constitutes a representation for the

authenticated object and is similar to a card of introduction, a bank card or

even a pound note. A representation, although it is not actually the object it

represents, will very often do instead (e.g. a pound note). This is very important

in a computer network, because it is often impossible to move the actual object

(e.g. a person or a computer) from one place to another.

It would be possible to operate a system in which representations were

different for each object (e.g. a name and password for people, a document name

and the contents of a file for documents), but such anarchy would be rather

inconvenient for recipients; they would have to cope with a potentially large

number of ways of verifying representations. A better idea would be to have some

standard format for a representation; e.g. the statement "this is so-and-so", and

something to prove that proposition. The statement ,'this is so-and-so" admits

only a single authority, since either this can be proved (and so has been

universally authenticated) or not - there is no question about the recipient of

the representation discriminating about who says "this is so-and-so"; it must

either be accepted absolutely or ignored. A more general statement would be

"such-and-such says that this is so-and-so", so that there may be many

authorities that authenticate objects; each recipient of a representation could

decide exactly which authorities it is prepared to believe.

Two components of a representation system have been isolated:

i) Propositions of the form: "X says that this is Y"

50

ii) Things which prove the propositions in i)

It is easy to see how a proposition can be passed around a network; the two names,

X and Y (in some standard format) would be sufficient. X here is the identity of
the authority under which the proposition was made. It will be referred to as the

authentity (from authority identity) of the representation. Something (a key)

that is related to a proposition in such a way that its holder can see that they

are associated would do as proof. This demonstrates the need for the third

component of a representation system which is:

iii) A relation between the propositions in i) and the proofs in ii).

The two names, X and Y, and the key are kinds of name (Unique IDentifiers or UIDs
for short) associated with an object's representation. X and Y, each object names,

are permanent and so are called PUIDs (Permanent UIDs). The key, which is the

essence of a representation, only exists when the object is being

represented [I] and so is called a TUID (Temporary UID).

In order to be able to name uniquely all the objects that a network is

likely to encounter during its lifetime, PUIDs must have a large n~ber of bits;

64 are used in the Cambridge implementation. This does not, in any way, imply that
PUIDs should be difficult to guess. Indeed, since a PUID will always refer to a

single object and never be used for another, it is quite acceptable to "write

them into" the code of programs etc. in the same way that one might a file name,

or the name of a user.

In the same way that a pound note enables its holder to use the thing that

it represents (some gold), the holder of a key is granted access to the object

that it represents. Naturally, if 'the holder' of a key is to be distinguishable

from all other potential holders it must possess that key uniquely. It is

therefore important that a potential key holder cannot steal or guess keys

belonging to a genuine key holder.

2.1 Stealing Keys

Above, all the things that communicate (the potential key holders) on a

network have been grouped together under the single term "service" (there being

a small distinction between "service" and "server" which is a service that

serves something). If services are constrained to communicate only through the

network (i.e. not through shared memory etc.), then it becomes impossible for one

service to steal another's TUID (since the initiative must be taken by the

g iver).

[I] A user, for example, has a name (PUID) which always refers to him but
there need only be a key representing him on a network when he is
actually logged on.

51

~2C~essing Keys

A key can be made arbitrarily difficult (but not impossible) to guess

simply by extracting it from a sufficiently large name space. That keys cannot be

made absolutely impossible to guess is unimportant, because the chances of a key

being guessed at random can be made smaller than the chances of any other part of
the network failing. In particular a state can always be obtained in which the

probability that a key will be guessed is smaller than the probability that the

security of the network's communications will be compromised. In the Cambridge

implementation TUIDs are effectively 48 bit random numbers.

Having decided on the attributes of PUIDs for propositions and TUIDs for

keys the design of some relationship between authentities, FUIDs and keys is all

that is necessary before a full object representation system can be produced.

3. Active Object Tables

One way to provide the relation between propositions and proofs referred

to above it is to use the one that an encryption function creates between plain

text and encrypted data. The relation between a key and the proposition "X says

this is Y" can be set up by choosing the key to be the one for which <X,Y> will be
its encrypted form. Thus a key will prove the proposition if its encrypted form

is <X,Y> [2]. Note that <X,Y> cannot be "decrypted" to reveal its key.

This method suffers several disadvantages not the least of which is the

expense of the encryption and decription operations. In addition, it is

impossible to have more than one key for an object (a user could not log on twice

and have his two instances distinguished, for example), it is impossible for a

key to represent more than one object (so a user's representation could not

simultaneously be valid under more than one authentity), and representations

cannot be revoked (e.g. users cannot log off). A better method implements the

relation in the same way that a relational data base does: as a table.

Each object active on the network will have a proposition involving its
name and authentity associated with a key representing it in one of the tuples

of a central table (called an Active Object Table or ACT for short). For example

Fig. I shows an ACT in which an authority called USER has authenticated (i.e.

logged on) user CGG and given him representation key ~L

[2] Naturally, assuming private key encryption, both the encryption and
decryption would be done in some central service(s) to prevent
misappropriation of the encryption key.

52

The key, K, can be used to prove that "USER says that this is CGG" simply by

checking that K, CGG and USER constitute one of the tuples (or active object

references) in the AOT. When the representation is to be invalidated the active

object reference is simply removed from the table, whereupon such a check would

fail (an operation similar to revoking a capability).

~1 Creating act ive ob ject references

It is clear that there must be some control over the creation of active
object references in the AOT. Otherwise it would be possible for any arbitrary

service to be able to gain a representation for any object simply by creating a
new tuple for it in an AOT.

To solve this problem, a request to create a new active object reference
must include the representation of an authority. The AOT service will check this

association before allowing a new active object reference to be created, making

it impossible for an authority to create any tuples in the AOT except those

marked with its name. The AOT recognises the representation of an authority by

the fact that its authentity is a fixed name (called 'auth').

Active Object Table

' TUID I PUID S AUTHENTITY ' t !

f l ! I
i l I i

' auth ' ' ' l l l i

key I USER J auth 1
@ t @ @

! ! l t
i t l i
! ! t !
l l I !

@ F @ +

,' key 1 CGG ', USER i'

I ! ! !
i I I !

authority to
create new tuples

new tuple

Fig. I. A tuple for the object CGG has been created. The

AOT has checked that 'auth key' and USER, which were

provided with the creation request, form a tuple with the

authentity 'auth', to authenticate the operation.

53

32 Deleting active object references

Deletion, in terms of AOT tuples, is trivial: the tuple corresponding to a

particular PUID, TUID and authentity is removed from the table so that the key

will no longer be able to prove the proposition indicated by the corresponding

PUID and authentity.

As with creation, some control over the deletion of tuples from an AOT is

desirable. If deletion of an entry merely required the TUID, PUID and authentity

of the tuple to be quoted then any service to which the TUID of an object is

passed could potentially delete it behind the original owner's back (since its

PUID and authentity might be easy to guess from the context). A distinction

between permission to use an object and the ownership of that object seems

desirable here since, in general, the owner of an object may want only to give
away permission to use a particular object rather than give it away entirely. The
ability to control the existence of an object is taken here as the distinction

between ownership and 'permission to use'. Accordingly an AOT tuple contains a

further key, the possession of which distinguishes the owner of the object. For

historical reasons this TUID-like nt~nber is called a T~ID. When deleting an

object both its TUID and TPUID must be quoted.

4-- + + • + P

I TPUID I TUID l PUID I AUTHENTITY I TIMEOUT I
4 4- + 4. + P

I I I I
, o o l , I
! ! ! I ! !
I I I I I I
I I I I I I
i : l : i : s : ~ : I

' ' ' I s e c o n d s t o J , owner I use ,
I key I key I name I type I deletion I
I • I I • I I • I
I • I : I • I : I • I

I I I I I I
I I I I I I

4 ! I + I- 4-

Fig. 2. The holder of 'owner key' can change 'seconds to

deletion'. It is decremented each second and when it

reaches zero the tuple is removed from the table.

In practice each AOT tuple includes a timeout value, at the end of which

time the tuple will be deleted automatically. Only the possessor of the TPUID for
an object can update this timeout value. Thus it is the TPUID's holder that is

responsible for either maintaining the active object reference's existence or

(either implicitly or explicitly) deleting it. Explicit deletion is achieved by

setting a tuple's timeout to zero.

54

33 Verifying aetlve object references

An AOT service must provide a method for checking that a particular key is

a valid reference to an active object under a given authority. Indeed the AOT

exists principaly to fulfil this function.

Two forms of tuple verification are provided: the first verifies that a

given TUID represents a given PUID under a given authentity. The second does the

same except that the tuple's TPUID is also checked• The former verifies

permission to use an object and the latter verifies its ownership.

34 Enhancing active object references

By repeatedly creating active object references to just one object many

TUIDs can be associated with a single PUID and authentity. In contrast, enhancing

an active object reference enables several PUIDs to be associated with a single

TUID under more than one authentity. This last type of call to an AOT service is

equivalent to creating a new active object reference except that the key (TUID)

for the new tuple is specified in advance. This has practical advantages when a

large number of references to different objects needs to be passed about s

network simultaneously since it can be accomplished using only one TUID. Thus a

TUID may be present in more than one tuple and can be verifiable under a number
of different names and authentities. The owner of such a multi-attributed TUID

can arbitrarily control the "power" associated with it by using his TPUIDs for

each of the active object references that it forms to individually control their

ex istances.

I)
2)
3)
4)

5)
6)

+ ! !

I TPUID I TUID I PUID
4 ~" +

I l l
I l l

tpuidl I tuid I CGG
I tpuid2 I tuid I CGG
I tpuid3 I tuid I GRAY

I 4 I-

I AUTHENTITY I TIMEOUT I

I l !
I ! l

' USER ' t i m e 1 ' ! I I

I NETUSER I time2 I
I USER I time3 I

1 t i m e 4 1
I • I
! • I

I time5 I
1 time6 I
l • I
l ° I
l !
l I

+ +

I tpuid4 I tuid ILABUSER Z PRIVILEGE
I I • I ! •
i : I • I : I •

I tpuid5 Ibitrep I BITI I FACTORYI
I tpuid6 Ibitrep Z BIT2 I FACTORY2
I l I • ! •
I : I : I " l •
I I I I
I I I I

4 I I 4

Fig. 3- Active object references can refer to different

objects, even though they share the same TUID.

55

Enhancing an active object reference has several uses: by varying the name

and the authentity associated with the TUID it can be used as a combined

reference to several different objects -- e.go I) and 4) in Fig. 3; by varying

just the name the active object can be given synonyms -- e.g. I) and 3); and by

varying only the authentity an authority (i.e. the possessor of an authentity

TUID) can "confirm" an existing TUID and PUID association (to give something

analogous to an unforgeable signature of approval to an active object reference)

-- e.g. I) and 2). An alternative view of enhancement is that it enables compound

active objects to be created - the single TUID being the representation of a

complex object consisting of several different parts, each with different names

and authentities. In order to verify such an object it is necessary to verify
each of its component parts -- e.g. 5) and 6).

4. ACT Service Entry Summary

The different functions explained above, constitute the entries that an
AOT service must support. In summary they are as follows:

entry send receive

* gettuid PUID,auth.t ,auth.tp,AUTY,timeout TUID, TPUID
ver i fy TUID, PUID, AUTY <nothing>
identify TUID, TPUID, PUID, AUTY <nothing>
refresh TUID, TPUID, PUID, AUTY, timeout <nothing>

* enhance TUID, PUID, auth.t ,auth.tp,AUTY,timeout TPUID

{* an entry in which a valid authentity is necessary}

In addition to whatever appears under "receive" in the above a return code

is given indicating the success or otherwise of the operation. AUTY, auth.t, and

auth.tp are related in the above by the fact that identify(auth.t, auth.tp, AUTY,
'auth') must succeed.

GETTUID is used to create new active object references.

VERIFY is used to prove that a key represents a particular active object.

IDENTIFY is used to prove that a key represents a particular active object

representation.

REFRESH is used to maintain or delete an active object reference.

56

ENHANCE is used to enhance an active object reference that already exists.

5. Authority Representation

A service could obtain a TUID for any authentity it is allowed by applying

to a service that has the authority to give away particular authentity TUIDs to

specific services. Such a service would need to obtain a TUID for a particular

authentity (call it 'auth') in order to create authentity active object

references. That is, this service needs a greater authority to create lesser

ones. Indeed, any particular level of authority must be delegated from a higher

level. Such a process of delegation must stop at some level in the network and

continue in authoritarian hierarchies outside (e.g. line management!). Within the

network there need be only one place from which all authority can be delegated.

This point is the Source Of All Power (SOAP) for the network and can be

arbitrarily protected by its immediate superiors (e.g. physically, with stone

walls, iron bars etc.). The details of the way in which a service might actually
obtain a TUID for an authentity from the kind of server (provided by SOAP)

outlined above relies upon service identification methods (which are beyond the

scope of this paper).

Authentity can be used to implement the concept of 'type'. Consider a

service that possesses the unique ability to create flowers and which presents

an interface to the network providing flower orientated operations. This service

has a valid TUID for an authentity which we shall call 'auth.flower'. Each of the
active object references which the service creates in the AOT will be marked

with 'flower' in its authentity field and, as long as the flower service can be

trusted to create nothing but flowers (with its 'auth.flower' TUID), this
authentity can be taken to indicate the (unforgeable) type of the objects

created. New flowers which are passed about the network represented as TUIDs can
always be seen to be of the type 'flower' since they will not match any AOT tuple

except ones with 'flower' in their authentity field. When such a TUID is used at

another flower manipulating service the fact that the object was created by

'flower' server can be verified and the inference made that this object must

indeed be a flower.

PUIDs under different authentities form separate naming domains. A PUID

used under one authentity need not refer to the same object that the same PUID

refers to under a different authentity. For example, if a network contains a

service which managed the type 'weed' weeds with a PUID 'daisy' (for example)

could be generated. The flower service could equally well produce a flower of
type 'flower' with the same FUID. The two objects could always be distinguished,

(indeed they cannot be confused since the relevant TUIDs cannot be verified as

the same object in any ACT) since one has the authentity 'weed' and the other

'flower'. Services which choose to operate only on flowers will accept only the

57

latter and those which choose to operate only on weeds only the former. Note

that, because of the size of the PUID name space, such double use of a PUID is

highly unlikely. In practice it is desirable to maintain a one to one mapping

between PUIDs and objects thus avoiding ambiguous PUIDs°

Authentity TUIDs are themselves active object references distinguished by
a common authentity ('auth'). The AOT service can recognize a TUID representing a

valid authentity because the relevant AOT tuple will contain the PUID 'auth' in

its authentity field which marks the TUID as something that allows the creation

of objects in the AOT (i.e. a valid authentity).

The possessor of a TUID for the 'auth' authentity can create valid TUIDs

for arbitrary authentities and hence can create and manage 'types' in the sense

given above. Thus 'auth' could be considered as a the name of the type 'type'.

The logical extension from the concept of type of 'type' would be type of

"type of 'type'" and so on. This path leads to a hierarchical naming scheme in

which each part of a name denotes an extra layer of authority. Such a scheme can

be practically produced by extending the idea ofauthentity to a (possibly null)

list of PUIDs (i.e. a hierarchical name with one less component than the name it

is forming). This type of scheme has many advantages but, in general, shares many

properties of the, easier to handle, two level scheme being described.

Accordingly it is not discussed further.

6. Object Representation and Secure Communication

As stated above there has been an attempt to segregate the topic of this

paper (i.e. object representation) from those concerning the characteristics of

network communications. This paper is concerned with what should be sent where,

and not with how it is to get there. Obviously the mechanics and reliability of

any particular underlying communications system will greatly influence the

reliance that can be put on the mechanisms give n above. No attempt, however, is
being made to increase a network's security, only to provide a way of utilizing

it.

The mechanisms given can be likened to a bolt on a door that represents a

network's data communication system. The bolt does not make the door any stronger

(even if it is stronger than the door) it only keeps the door shut: without it

the door, no matter how strong it is, would provide no security at all.

Object Representation can be thought of as a network facility which can be

built on top of a layer in which secure communication (using encryption, for

example, or just well protected hardware) has been provided.

58

7o Practicability

An initial system consisting of an AOT service, a user authenticator, an

authentity server, SOAP and a privilege manager has been built on the Cambridge

Ring. Initial connection and file transport protocols which make use of active

object references have been designed and implemented. A revision of an existing

machine allocation mechanism is under way which will use them to represent

network resources. However, the system is not yet in a state in which heavy

regular use is made of it. This is largely due to the current lack of higher
level software.

The present AOT service has room for about 500 active object references

and can easily be changed to cope with more. Whether this will be necessary

remains to be seen. The service itself runs on a Z80 microprocessor connected

only to the Ring and is designed so that the cost of verifying references is

minimal in comparison to the cost of creating them. It seems that the requesting

machine's software is likely to use the lion's share of the time needed to

perform these functions taken in inter-process communication and protocol

software (though this is not so true of the microprocessors). The AOT resides in

store for fast access. Since the maximum timeout for a representation (about six

months) is large in comparison with the likely mean time between failures of the

service it has proved necessary to automatically backup the table in a secret

file on the Ring's file server every now and again. This has proved a success and,

at the time of writing, at least one active object reference has been valid for a

period of one and a half years.

The interface to AOT services and the structure of PUIDs and TUIDs has

been chosen so that multiple AOT services can be provided on a network -- each

with a portion of the total number of object references. Whether the load on the

existing service will ever justify another is also unknown.

A full evaluation of the practicability of the system will not be possible

until active object orientated services have been produced in sufficient numbers

to replace the current insecure access methods.

59

