
INFORMATION PROCESSING 77, B. GILCHRIST, EDITOR
© IFIP, NORTH-HOLLAND PUBLISHING COMPANY (1977)

(Reprinted by permission)

DIRECT-EXECUTION COMPUTER ARCHITECTURE

YAOHAN CH[J
University of Maryland
College Park, Maryland

The D~rect-Execution Architecture is a language-directed computer architecture. It can accept a high-
level-language program and directly executes it without compilation, assembly, linkage editing or
loading. It offers a means to eliminate compilers, loaders etc. and attacks the problem of mounting
software cost. In addition, the advent of microprocessors has demonstrated that highly complex digital
hardware can be built reliably and inexpensively. Using this hardware to implement the Direct-Execu-
tion Architecture redistributes apportionment of costs between the hardware and software. The paper
surveys the Direct-Execution Architecture, presents the relationship between language and architecture,
and explains how a Direct-Execution system works, It also brings up the use of Direct-Execution for a
highly interactive program writing, debugging, execution system. With this system, program writing
could proceed like English composition. This paper then discusses the issue of a single high-level
machine language, and the potential role of the interpreters. Finally, it attempts to fortell what

could happen to the Direct-Execution Architecture in the next five to i0 years.

i. INTRODUCTION

W.M. McKeeman [14] pointed out at a Joint Computer
Conference that it was an accident that the digital
computer was organized like a desk calculator. As
a result, the digital computer of today requires a
large amount of software. The software consumes
more memory, needs more time to debug, takes more
programmers, spends more overhead computer time, and
becomes less reliable than necessary. The progress
of computer utilization and application is now
limited by and tied to the development of software.
Yet, the progress of software development is handi-
capped by the desk-calculator-like organization.

Barry W. Boehm, [3] stated in the Symposium on the
High Cost of Software that the annual expenditure of
the U.S. Air Force on software in the fiscal year
1972 was somewhere between 1 and 1.5 billion dollars,
which amounts to about 4 to 5 percent of the total
Air Force budget. In comparison, the cost of the
hardware was something between 300 and 400 million
dollars. He also showed that the cost of software
exceeded the cost of hardware during 1968 and, if
the present trend persists, the cost of software
would become 90% of the total military hardware and

software cost by 1985.

The advent of microprocessors in 1971 demonstrated
that semi-conductor device technology has reached
the point where highly complex hardware can be built
reliably and inexpensively. It could be rewarding
if the semiconductor technology could be used to
solve the problem of software cost. This could be
feasible if the computer architects would re-examine
the desk-calculator-like organization and create new
architecture that would help solve the problem of

software cost.

2. DIRECT-EXECUTION ARCHITECTURE

The Direct-Execution Architecture is a language-
directed computer architecture. [14] It can
directly accept a high-level language program and
directly execute it without any code conversation.
There is no assembly language, no relocatable code,
and no absolute code. The high-level programming

language is the machine language.

The advent of high-level programming languages
during the middle 1950's allowed computer program-
ming to be greatly eased and non-professional
programmers (or users) could then readily use the

computer. However, in the process of providing high-
level languages to the users and simplifying com-
puter operations to the operator, multiple layers

of software have been created.

One of the motivations for using the Direct-Execu-
tion Architecture is to remove the multiple layers
of software and thus reduce the mounting software
cost. With a Direct-Execution Architecture, the
programmer can follow the program execution directly
as the computer hardware executes each symbol, each
clause, and each statement of the high-level-lan-
guage program. There is no need for compilers,
assemblers, linkage editors, or loaders. The entire
operation of the computer could be controlled by an
adequately designed high-level language which is an
embodiment of the language-directed-computer

architecture.

In contrast to the Direct-Execution Architecture, an
indirect execution architecture first translates
this high-level language program into an intermedi-
ate language and then executes this intermediate
language code. It is a compiler-directed process

where the compiler can be hardware or software.

3. A SURVEY

The direct-execution architecture has a rather
limited history. Anderson [i] proposed a computer
organization that could directly execute an Algol-
60 program. This proposal probably was the first
direct-execution architecture ever reported. This
architecture was basically an extena&on of Burroughs

B5500 architecture.

Mullery et al. [16] and Mullery [15] designed a
problem-oriented symbol processor called ADAM and
concluded that a high-level language could be
implemented with a reasonable amount of hardware. A
high-level language was designed and a machine
organization was proposed to implement this language
directly. The most significant feature of the ADAM
machine was the way in which the variable-length
data were structured. Special symbols were actually
placed within the data for describing the data struc-
ture. This concept was extended and actually imple-
mented in hardware in the Symbol Computer System.[21]

A number of APL interpretive processors have been
proposed or implemented in software or firmware. A
recent implementation is the MCM/70 (Micro Computer
Machines). Another recent implementation, presumably

18

http://crossmark.crossref.org/dialog/?doi=10.1145%2F859412.859415&domain=pdf&date_stamp=1977-12-01

in software, is the desk-top IBM 5100 which allows
the use of either APL or Basic language. It should
be pointed out that an APL statement is just scanned
from the left to the right end and is then inter-
preted from the right to the left end because of
APL's right-to-left operator precedence; this mode
of interpretation differs from that of a direct-
execution architecture which attempts to interpret
when it receives each token for immediate inter-
action.

Since 1970, the author and his students at the
University of Maryland have been actively engaged in
the research of direct-execution architecture. They
have also explored the possibility of direct-execu-
tion on a Burroughs Bi700 system (Chu, Yeh, Cannon
[7]). It should be noted that there are two issues
in the directrexecution architecture: the archi-
tecture itself and the high-level language or lan-
guages. The above work has been largely in the area
of architecture. (Chu [5], Robinet [17], Yeh [18]).

A more lengthy survey on direct-execution architec-
ture is available in a recent survey by Carlson [4]
on high-level language computer architecture.

4. LANGUAGE AND ARCHITECTURE

To each progranmning language, there is associated an
ideal computer architecture which can directly
execute the program written in this language. This
ideal architecture images the constructs and the
primitives of the programming language, it is a
virtual architecture, because ~t may not be possible
to fully implement it by a real architecture. Thus,
when a programming language is being designed, the
designer perhaps unknowingly creates at the same
time a virtual architecture.

To each computer architecture, there is associated a
programming language which one uses to communicate
directly with the computer architecture. The design
of a computer architecture implies the design of a
programming language; as an example, the instruction

set is essentially the programming language of a
conventional computer architecture.

A programming language can be spoken of as high-level
or low-level. It is IQw-level if the details about
the problem solution have to be described in detail.
It is high-level if the problem solution can be
described at a high-level of abstraction. Thus, the
programming language is high-level or low-level
relative to the degree of abstraction in describing

the problem solution.

Likewise, a computer architecture can be said to be
high-level or low-level. It is a high-level archi-
tecture if the architecture implements ~losely the
constructs of a high-level programming language.
Otherwise, it is a low-level architecture. It is of
course possible to execute a high-level programming
language program by a low-level architecture by
using a compiler which bridges over the structural
differences. However, a high-level architecture can
directly execute a high-level programming language
program without the use of a compiler.

5. HOW DOES A DIRECT-EXECUTION SYSTEM WORK?

Let a high-level language program be stored in a
memory together with its data area as shown in fig.
i. The hardware lexical processor scans the program
string, assembles one or more characters into a
~ymbol (or token), and communicates whether it is an
)perand (an identifier or a number) or an operator
(an operator, a delimiter, etc.) to the language
~rocessor. The hardware language processor fetches
~he next symbol from the lexical processor, and
~xecutes it accordingly as shown in fig. 2. The
anguage processor interprets each statement of the

19

program until the last statement is reached. It is
noted that the lexical and language processors can
be two hardware processors. They operate in a
parallel but synchronized manner. Because of this
parallel operation, there can be no slow down in the
interpretation of a loop due to the repeated lexical
processing.

For simplicity, consider the high-level language
where each statement begins with a keyword. There
are the data keywords such as STACK, TABLE, and
QUEUE for the data statements, and the control key-
words such as IF, CASE, LOOP, and CALL for the con-
trol statements.

For interpreting data statements, the language pro-
cessor has the data interpreter and the data assoc-
iative memory as shown in fig. 3. The data inter-
preter has an internal structure which can directly
interpret the data storage constructs of the high-
level language. It recognizes the storage keywords,
interprets the data statement, and then stores in
the data associative memory the data description
which includes the name, the type, the length, the
size and the location pointer. This pointer points
to where in the random access memory the actual data
is stored. As an example, fig. 4(a) shows a stack
data statement with a two level structure. Each
stack element has two fields, NAME of 6 characters
and VALUE of 6 characters. This stack is located in
the random access memory as shown in fig. 4(b). The
stack description is formed as three words and
stored in the data associative memory by the data
interpreter, as shown in fig. 4(c). A more detail-
ed description of interpreting the data statements
is presented elsewhere (Chu and Cannon [7]).

The source program as well as the buffer and the
directory for the external procedures ks stored in a
large random access memory, as shown in fig. 5(b).
The source program information which includes the
program name and the data type is stored in the data

associative memory, as shown in fig. 5(a).

For interpreting control statements, the language
processor has a control interpreter and a control
associative memory, as shown in fig. 3. The control
interpreter has an internal structure which can
directly interpret the control constructs in the

high-level language such as conditional branch,
procedure call, and looping. It recognizes the
control keyword, interprets the control statement,
and then stores in the control associative memory
the control information which includes the control
statement name, the control statement type, and the
pointers. The location of the first character of a
control statement is used as the internal name of
the control statement. For example, an IF statement
is shown in fig. 5(c). The memory location 5
(character I) is the internal name of this control
statement. Similarly, the memory location 34
(character E) ser~es as the Else Pointer. The END
pointer points to the character location immediately
following the end of the IF statement. The control
information in the associative memory can expedite
the repeated execution of those statements in a loop
without the need for repeated syntactical processing.
A detailed exposition of interpreting control state-
ments is presented elsewhere. [7]

The language processor also evaluates an arithmetic
expression for an assignment by using stacks and
symbol tables whose descriptions can also be stored
in the associative memory. For read and write state-

ments, it turns over the execution to an I/0
processor.

It is apparent that these processors can be micro-
processors. The associative memory can be built on
chips as it is within the state of the semiconductor
art, or it can be implemented by using a high-speed

random-access memory and a conventional micro-

processor.

6. INTERACTIVE DIRECT-EXECUTION SYSTEM

The interactive high-level language system has be-
come increasingly popular, because it gives an
interaction between the user and the system. If one
decides to use an interactive high-level language
system, there are at least two choices, an APL
system or a BASIC system, from currently available

systems.

A highly interactive high-level language system
could be designed and programmed using the idea of
interactive direct-execution. This highly inter-
active mode of operation could be similar to the
manner in which English composition is written. As
we write each word, we may consciously or uncon-
sciously check the syntax and semantics of each
phrase, each sentence, and each paragraph just
written. In other words writing a high-level lan-
guage could he made similar to writing an English
compositio6. In this case, a highly interactive
high-level language system could check the syntax
and semantics (by execution) of the high-level lan-
guage program as each symbol, each expression, each
clause, and each statement are being entered at the
terminal. Errors could be immediately indicated and
correction could be immediately made. When the
source program is completely entered at the terminal
the program could have been debugged and could have
run once. In short, an interactive direct-execution
system could give maximum interaction in entering
and debugging a high-level language program.

The above system requires an interpreter which can
interpret in several ways, depending on the unit of
interpretation. For example, an mentioned before,
an APL interpreter interprets one APL statement at
a time; therefore, the unit of interpretation is one
statement. As another example, a Fortran compile
and go interpreter immediately executes the compiled
program after the entire program is compiled; in
this case, the unit of interpretation is the entire
program. A direct-execution ~nterpreter is one
which executes each symbol (or token); the unit of
interpretation is one symbol. The direct-execution
interpreter can be in software, firmware or hard-
ware and it can be implemented on a high-level or
low-level architecture. A software direct-execu-
tion interpreter has been implemented and reported.

IS].

7. THE ISSUE OF HIGH-LEVEL MACHINE LANGUAGE

Conventional computers have been built mostly for a
single low-level machine language. For example,
there is a single machine language for the IBM
S/360 family of computers. The single machine lan-
guage has not limited the usefulness of the com-
puters, because compilers and translators are pro-
vided to offer high-level programming languages.

A similar situation may prevail in a high-level-
language machine. A direct-execution machine may be
built for a single high-level machine language.
This should similarly not limit the usefulness of
the machines. Nothing prevents one from using
software translators for other high-level or very
high-level languages. However, in a direct-execu-
tion machine, one deals with the hish-level language
software onl X. The high-level language software
should cost less and take shorter time to develop.

Alternatively, it is possible to build a direct-
execution machine for a number of high-level lan-
guages by using either microprogramming with a high-
level architecture or multiple high-level-language
hardware interpreters; in this case, some processors
performing the same functions could be shared.

20

8. COMPILERS OR INTERPRETERS

Since the development of the FOrtran Compiler, this
technique has made a great contribution to the ease
of computer programming and thus to the large in-
crease in computer applications. The use of the
compiler has become so popular that it has been
almost dominating the computer world for the past
20 years.

However, the compiler has created the need for other
software such as linkage editors and loaders.
Furthermore, many languages (high-level language,
assembly language, relocatable code, and core dump)
are involved in a compilation process. A competent
Fortran programmer really needs to know these lan-
guages to some extent which causes additional
difficulty in debugging. Therefore, Fortran pro-
gramming is not as ideal as was first thought when
it was introduced.

Since their arrival, compilers have become very
complex, partly because more complex language
constructs (which may or may not be genuinely useful
to the users) are created. The computer manufactur-
ers are becoming weary of implementing any new and
powerful high-level languages because of the cost
and time to develop and maintain the compilers and
because of the investment in old programs! Yet,
programming language is a central issue; more pro-
gramming languages are bound to come. It appears
that the development of compilers and high-level
language are at present on a "collision course".

Historically, interpreters came before the arrival
of compilers. Interpreters have not become popular
because tile computer systems of 20 years ago were
too slow, and the main memory capacity too small.
Since then, there has been a great advance in com-
puter technology. One of the most significant con-
tributions in hardware is the enormous increase in
computer speed. The justification for ignoring the
interpreter does not exist any more. It is time to
look again at the idea of interpreters. After all,
computation cannot be achieved by a compiler but
must be accomplished by an interpreter (whether the
interpreter is software or hardware).

For the last 20 years, more time and effort have
been spent on the research and development of com-
Pilers than on interpreters. Thus, it is fair to
say that more knowledge exists about compilers than
interpreters. However, it is known that interpre-
ters are easier to write, partly because they need
no code generation, and generation of efficient code
is a most difficult task in compiler writing.
Furthermore, most of today's high-level languages
are compiler-oriented languages; they are not the
most suitable for writing interpreters for. Since
the users of an interpreter need know no language
other than the high-level language itself, the inter-
preter is much easier to use and is more amenable
to an interactive system. The direct-execution
interpreter whether software or hardware can make
the system highly interactive with the users.

9. WHAT COULD HAPPEN IN THE NEXT 5 TO i0 YEARS?

We now have two computer industries. The first com-
puter industry is ~id. It is centered around major
computer centers and major computer manufacturers.
The center of gravity of this first computer indus-
try is the "200 billion dollars" of software. Be-
cause of this enormous investment, the first com-
puter industry has an enormous resistance to changes
and innovations, unless hardware is built to fit the
existing software as it is developed now.

The second computer industry is new. It is repre-
sented by microprocessor manufacturers. It is
called the second computer industry, because the

hardware manufacturers are different from the first
computer industry. The markets are different. The
applications are different. The system producers
are different. The second computer industry is
receptive to new ideas•

Although the second computer industry is different
in almost every respect as mentioned above, their
approach to the software follows that of the first
computer industry, particularly the use of com-
pilers and assemblers. It has been widely recogniz-
ed that software cost is becoming the bottleneck to
the large-scale usage of the microcomputer systems.
Something new in software should be conceived and
developed to overcome this difficulty. Why not use
interpreters instead of compilers? Why net build
the microprocessors with an architecture for inter-
preters instead of for compilers? Why not develop
simple high-level languages for particular applica-
tions instead of "general-purpose languages?" Why
not abandon the approach of "one-system-and-one-
language" for many applications that has prevailed
in the first computer industry? Why not re-examine
the balance and the trade-offs among the hardware,
software, and language instead of traditionally
considering software alone?

There is little doubt that microprocessor systems
will have the fastest growth ever experienced in the
computer industry in the next 5 to i0 years, part-
icularly if this software bottleneck could be re-
moved. The use of the direct-execution idea com-
bined with microprocessor technology could offer a
solution to the problem of software cost, and the
second computer industry could become even larger
than the first one.

ACKNOWLEDGMENT

This research is supported by Grant NSF DCR75-O5505
from the National Science Foundation of U.S.A. to
the Department of Computer Science of University of

Maryland.

REFERENCES

[i] P.P. Anderson, A computer f~or direct execution
of algorithmic languages, Prec. of EJCC, 1961,
184-193.

[2] H.M. Bloom, Conceptual design of a direct high-
level-language processor, Technical Report
TR-239, Department of Computer Science, Univer-
sity of Maryland, April 1973. (NITS PS-224098/AS)

[3] B.W. Boehm, The high cost of software, Proceed-
i ns~faSymposium on the HishCost of Software,
Monterey, California, September 17-19, 1973.
Standord Research Institute.

[4] C.R. Carlson, A survey of high-level language
computer architecture, High Level Language Com-
p_gter Architecture, Academic Press, Inc., 1975.

[5] Yaohan Chu, Introducing the high-level-language
computer architecture, Technical Report TR-227,
Department of Computer Science, University of
Maryland, January 1973. (NITS PS-224398/AS).

[6] Yaohan Chu, (editor), High-Level Language Com-
puter Architecture, Academic Press, Inc., New
York, 1975.

[7] Yaohan Chu, Bloom and Cannon, High-level lan-
guage hardware control structure, Technical
Report TR-412, Department of Computer Science,
Univ. of Maryland, October 1975.

[8] Yaohan Chu, and E.R. Cannon, Design of an interr-
active direct-execution system, Technical Report
TR-385, Department of Computer Science, Univ. of
Maryland, June, 1973.

[9] Yaohan Chu, and E.R. Cannon, High-level language
memory structure, Technical Report TR-409,
Department of Computer Science, University of
Maryland, September 1975.

21

[10] Yaohan Chu, and E.R. Cannon, Interactive high-
level language direct-execution microprocessor
system, IEEE Transactions on Software E/lgineer-
~/iK, June 1976.

[ii] Yaohan Chu, J.C. Yeh and E.R. Cannon, Direct-
Execution on tile Burroughs Bi700 system,
Technical Report TR-335, Department of Computer
Science, University of Maryland, October, 1974.
(NITS PB-238052/AS)

[12] L.H. Cooke, Programming time vs running time,
Datamation, December, 1974, 56-58.

[13] A. Hassit, J.W. Lageschulte, and L.E. Lyon,
Implementation of a high-level language machine,
Commun. of the ACM, 1973, 199-212.

[14] W.M. McKeeman, Language directed-computer
design, Proceedings of AFIPS FJCC, 1967,
413-417.

[15] A.P. Mullery, A procedure-oriented machine lan-
guage, IEEE Transactions on Electronic Comp_~iter
C-13, 1964, 449-455.

[16] A.P. Mullery, R.F. Schauer, and R. Rice., ADAM-
-A proglem-oriented symbol processor, AFIPS
SJCC, 1963, 367-380.

[17] B.J. Robinet, Architectural design of a direct-
ly-executed APL processor, Technical Report,
TR-320, Department of Computer Science, Univ-
ersity of Maryland, August, 1974. (NTS PB-
235775/AS).

[18] John T.C. Yeh, Architectural design of a L6/M
language processor, Technical Report TR-279,
Department of Computer Science, University of
Maryland, December 1973. (NITS PB-226548/AS).

[19] R. Zaks, Microprogrammed APL, Prec. of IEEE
Co~q!er Societ~ Conference, 1971, 193-o94.

[20] R. Zaks, D. Steingart, J. Moore, A firmware
APL time-sharing system, Prec. of AFIPS SJCC,
1971, 179-190.

[21] R. Rice and W.R. Smith, SYMBOL--A major depart-
ure from classic software dominated yon Neumann
computing systems, Prec. of S~/i/~.Ioint Com E-
uter Conference, AFIPS Press, 1971, 575-587.

I Laxieal
Processor

~token

Source
program
area

Data area

Fig. i. Program storage and lexJeal and
language processors

$
I

fetch next token I
from Lexlcal. I

i

Processor J

I Execute the token
by Language
Processor

Fig. 2. Interpretation cycle

Fig. 3.

Language Processor

Data and control l
interpreter 1

Data and control
assoc memory

iiil Ill
[I

I I I l l I -

Source
program
area

data
area

The data and control interpreter and the data and control
associative memory in the la~guage processor

Stack Ol S, CHAR=i0, MAXSIZE=8,

02 NAME, CHAR=6,

02 VALUE,CRAR=4;

(a) A stack data statement

stack structure date data
name type type length

S stack

S.NAME stack

S. VALUE s tack

char I0

char 6

char 4

max cur. location
size size pointer

\

JOE ~i01

A 1456

JOHN 4123

C 7612

(c) Data associatlve memory showing the
information about the stack statement

(b) Data memory

Fig. 4. Interpretation of the stack statement by the data interpreter

22

program data
name type

X code I I i

(a) Data associative memory showing the
information about program X

)

External
procedure
directory

External
procedure~

Source
Program i

area

(b) Program memory

if

(s)

BE

else pointer

then X1 else

(23) [(34)

X2

(45)
!

end pointer

(c) An IF control statement

Fig. 5.

control
stmt
name

5

control
stmt end else-clause else
type pointer indicator pointer

C 45 yes 34

(d) C o n t r o l a s s o c i a t i v e memory s h o w i n g t h e c o n t r o l
information for the IF statement

Interpretation of the IF statement by the control interpreter

23

