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The D~rect-Execution Architecture is a language-directed computer architecture. It can accept a high- 
level-language program and directly executes it without compilation, assembly, linkage editing or 
loading. It offers a means to eliminate compilers, loaders etc. and attacks the problem of mounting 
software cost. In addition, the advent of microprocessors has demonstrated that highly complex digital 
hardware can be built reliably and inexpensively. Using this hardware to implement the Direct-Execu- 
tion Architecture redistributes apportionment of costs between the hardware and software. The paper 
surveys the Direct-Execution Architecture, presents the relationship between language and architecture, 
and explains how a Direct-Execution system works, It also brings up the use of Direct-Execution for a 
highly interactive program writing, debugging, execution system. With this system, program writing 
could proceed like English composition. This paper then discusses the issue of a single high-level 
machine language, and the potential role of the interpreters. Finally, it attempts to fortell what 

could happen to the Direct-Execution Architecture in the next five to i0 years. 

i. INTRODUCTION 

W.M. McKeeman [14] pointed out at a Joint Computer 
Conference that it was an accident that the digital 
computer was organized like a desk calculator. As 
a result, the digital computer of today requires a 
large amount of software. The software consumes 
more memory, needs more time to debug, takes more 
programmers, spends more overhead computer time, and 
becomes less reliable than necessary. The progress 
of computer utilization and application is now 
limited by and tied to the development of software. 
Yet, the progress of software development is handi- 
capped by the desk-calculator-like organization. 

Barry W. Boehm, [3] stated in the Symposium on the 
High Cost of Software that the annual expenditure of 
the U.S. Air Force on software in the fiscal year 
1972 was somewhere between 1 and 1.5 billion dollars, 
which amounts to about 4 to 5 percent of the total 
Air Force budget. In comparison, the cost of the 
hardware was something between 300 and 400 million 
dollars. He also showed that the cost of software 
exceeded the cost of hardware during 1968 and, if 
the present trend persists, the cost of software 
would become 90% of the total military hardware and 

software cost by 1985. 

The advent of microprocessors in 1971 demonstrated 
that semi-conductor device technology has reached 
the point where highly complex hardware can be built 
reliably and inexpensively. It could be rewarding 
if the semiconductor technology could be used to 
solve the problem of software cost. This could be 
feasible if the computer architects would re-examine 
the desk-calculator-like organization and create new 
architecture that would help solve the problem of 

software cost. 

2. DIRECT-EXECUTION ARCHITECTURE 

The Direct-Execution Architecture is a language- 
directed computer architecture. [14] It can 
directly accept a high-level language program and 
directly execute it without any code conversation. 
There is no assembly language, no relocatable code, 
and no absolute code. The high-level programming 

language is the machine language. 

The advent of high-level programming languages 
during the middle 1950's allowed computer program- 
ming to be greatly eased and non-professional 
programmers (or users) could then readily use the 

computer. However, in the process of providing high- 
level languages to the users and simplifying com- 
puter operations to the operator, multiple layers 

of software have been created. 

One of the motivations for using the Direct-Execu- 
tion Architecture is to remove the multiple layers 
of software and thus reduce the mounting software 
cost. With a Direct-Execution Architecture, the 
programmer can follow the program execution directly 
as the computer hardware executes each symbol, each 
clause, and each statement of the high-level-lan- 
guage program. There is no need for compilers, 
assemblers, linkage editors, or loaders. The entire 
operation of the computer could be controlled by an 
adequately designed high-level language which is an 
embodiment of the language-directed-computer 

architecture. 

In contrast to the Direct-Execution Architecture, an 
indirect execution architecture first translates 
this high-level language program into an intermedi- 
ate language and then executes this intermediate 
language code. It is a compiler-directed process 

where the compiler can be hardware or software. 

3. A SURVEY 

The direct-execution architecture has a rather 
limited history. Anderson [i] proposed a computer 
organization that could directly execute an Algol- 
60 program. This proposal probably was the first 
direct-execution architecture ever reported. This 
architecture was basically an extena&on of Burroughs 

B5500 architecture. 

Mullery et al. [16] and Mullery [15] designed a 
problem-oriented symbol processor called ADAM and 
concluded that a high-level language could be 
implemented with a reasonable amount of hardware. A 
high-level language was designed and a machine 
organization was proposed to implement this language 
directly. The most significant feature of the ADAM 
machine was the way in which the variable-length 
data were structured. Special symbols were actually 
placed within the data for describing the data struc- 
ture. This concept was extended and actually imple- 
mented in hardware in the Symbol Computer System.[21] 

A number of APL interpretive processors have been 
proposed or implemented in software or firmware. A 
recent implementation is the MCM/70 (Micro Computer 
Machines). Another recent implementation, presumably 
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in software, is the desk-top IBM 5100 which allows 
the use of either APL or Basic language. It should 
be pointed out that an APL statement is just scanned 
from the left to the right end and is then inter- 
preted from the right to the left end because of 
APL's right-to-left operator precedence; this mode 
of interpretation differs from that of a direct- 
execution architecture which attempts to interpret 
when it receives each token for immediate inter- 
action. 

Since 1970, the author and his students at the 
University of Maryland have been actively engaged in 
the research of direct-execution architecture. They 
have also explored the possibility of direct-execu- 
tion on a Burroughs Bi700 system (Chu, Yeh, Cannon 
[7]). It should be noted that there are two issues 
in the directrexecution architecture: the archi- 
tecture itself and the high-level language or lan- 
guages. The above work has been largely in the area 
of architecture. (Chu [5], Robinet [17], Yeh [18]). 

A more lengthy survey on direct-execution architec- 
ture is available in a recent survey by Carlson [4] 
on high-level language computer architecture. 

4. LANGUAGE AND ARCHITECTURE 

To each progranmning language, there is associated an 
ideal computer architecture which can directly 
execute the program written in this language. This 
ideal architecture images the constructs and the 
primitives of the programming language, it is a 
virtual architecture, because ~t may not be possible 
to fully implement it by a real architecture. Thus, 
when a programming language is being designed, the 
designer perhaps unknowingly creates at the same 
time a virtual architecture. 

To each computer architecture, there is associated a 
programming language which one uses to communicate 
directly with the computer architecture. The design 
of a computer architecture implies the design of a 
programming language; as an example, the instruction 

set is essentially the programming language of a 
conventional computer architecture. 

A programming language can be spoken of as high-level 
or low-level. It is IQw-level if the details about 
the problem solution have to be described in detail. 
It is high-level if the problem solution can be 
described at a high-level of abstraction. Thus, the 
programming language is high-level or low-level 
relative to the degree of abstraction in describing 

the problem solution. 

Likewise, a computer architecture can be said to be 
high-level or low-level. It is a high-level archi- 
tecture if the architecture implements ~losely the 
constructs of a high-level programming language. 
Otherwise, it is a low-level architecture. It is of 
course possible to execute a high-level programming 
language program by a low-level architecture by 
using a compiler which bridges over the structural 
differences. However, a high-level architecture can 
directly execute a high-level programming language 
program without the use of a compiler. 

5. HOW DOES A DIRECT-EXECUTION SYSTEM WORK? 

Let a high-level language program be stored in a 
memory together with its data area as shown in fig. 
i. The hardware lexical processor scans the program 
string, assembles one or more characters into a 
~ymbol (or token), and communicates whether it is an 
)perand (an identifier or a number) or an operator 
(an operator, a delimiter, etc.) to the language 
~rocessor. The hardware language processor fetches 
~he next symbol from the lexical processor, and 
~xecutes it accordingly as shown in fig. 2. The 
anguage processor interprets each statement of the 
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program until the last statement is reached. It is 
noted that the lexical and language processors can 
be two hardware processors. They operate in a 
parallel but synchronized manner. Because of this 
parallel operation, there can be no slow down in the 
interpretation of a loop due to the repeated lexical 
processing. 

For simplicity, consider the high-level language 
where each statement begins with a keyword. There 
are the data keywords such as STACK, TABLE, and 
QUEUE for the data statements, and the control key- 
words such as IF, CASE, LOOP, and CALL for the con- 
trol statements. 

For interpreting data statements, the language pro- 
cessor has the data interpreter and the data assoc- 
iative memory as shown in fig. 3. The data inter- 
preter has an internal structure which can directly 
interpret the data storage constructs of the high- 
level language. It recognizes the storage keywords, 
interprets the data statement, and then stores in 
the data associative memory the data description 
which includes the name, the type, the length, the 
size and the location pointer. This pointer points 
to where in the random access memory the actual data 
is stored. As an example, fig. 4(a) shows a stack 
data statement with a two level structure. Each 
stack element has two fields, NAME of 6 characters 
and VALUE of 6 characters. This stack is located in 
the random access memory as shown in fig. 4(b). The 
stack description is formed as three words and 
stored in the data associative memory by the data 
interpreter, as shown in fig. 4(c). A more detail- 
ed description of interpreting the data statements 
is presented elsewhere (Chu and Cannon [7]). 

The source program as well as the buffer and the 
directory for the external procedures ks stored in a 
large random access memory, as shown in fig. 5(b). 
The source program information which includes the 
program name and the data type is stored in the data 

associative memory, as shown in fig. 5(a). 

For interpreting control statements, the language 
processor has a control interpreter and a control 
associative memory, as shown in fig. 3. The control 
interpreter has an internal structure which can 
directly interpret the control constructs in the 

high-level language such as conditional branch, 
procedure call, and looping. It recognizes the 
control keyword, interprets the control statement, 
and then stores in the control associative memory 
the control information which includes the control 
statement name, the control statement type, and the 
pointers. The location of the first character of a 
control statement is used as the internal name of 
the control statement. For example, an IF statement 
is shown in fig. 5(c). The memory location 5 
(character I) is the internal name of this control 
statement. Similarly, the memory location 34 
(character E) ser~es as the Else Pointer. The END 
pointer points to the character location immediately 
following the end of the IF statement. The control 
information in the associative memory can expedite 
the repeated execution of those statements in a loop 
without the need for repeated syntactical processing. 
A detailed exposition of interpreting control state- 
ments is presented elsewhere. [7] 

The language processor also evaluates an arithmetic 
expression for an assignment by using stacks and 
symbol tables whose descriptions can also be stored 
in the associative memory. For read and write state- 

ments, it turns over the execution to an I/0 
processor. 

It is apparent that these processors can be micro- 
processors. The associative memory can be built on 
chips as it is within the state of the semiconductor 
art, or it can be implemented by using a high-speed 



random-access memory and a conventional micro- 

processor. 

6. INTERACTIVE DIRECT-EXECUTION SYSTEM 

The interactive high-level language system has be- 
come increasingly popular, because it gives an 
interaction between the user and the system. If one 
decides to use an interactive high-level language 
system, there are at least two choices, an APL 
system or a BASIC system, from currently available 

systems. 

A highly interactive high-level language system 
could be designed and programmed using the idea of 
interactive direct-execution. This highly inter- 
active mode of operation could be similar to the 
manner in which English composition is written. As 
we write each word, we may consciously or uncon- 
sciously check the syntax and semantics of each 
phrase, each sentence, and each paragraph just 
written. In other words writing a high-level lan- 
guage could he made similar to writing an English 
compositio6. In this case, a highly interactive 
high-level language system could check the syntax 
and semantics (by execution) of the high-level lan- 
guage program as each symbol, each expression, each 
clause, and each statement are being entered at the 
terminal. Errors could be immediately indicated and 
correction could be immediately made. When the 
source program is completely entered at the terminal 
the program could have been debugged and could have 
run once. In short, an interactive direct-execution 
system could give maximum interaction in entering 
and debugging a high-level language program. 

The above system requires an interpreter which can 
interpret in several ways, depending on the unit of 
interpretation. For example, an mentioned before, 
an APL interpreter interprets one APL statement at 
a time; therefore, the unit of interpretation is one 
statement. As another example, a Fortran compile 
and go interpreter immediately executes the compiled 
program after the entire program is compiled; in 
this case, the unit of interpretation is the entire 
program. A direct-execution ~nterpreter is one 
which executes each symbol (or token); the unit of 
interpretation is one symbol. The direct-execution 
interpreter can be in software, firmware or hard- 
ware and it can be implemented on a high-level or 
low-level architecture. A software direct-execu- 
tion interpreter has been implemented and reported. 
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7. THE ISSUE OF HIGH-LEVEL MACHINE LANGUAGE 

Conventional computers have been built mostly for a 
single low-level machine language. For example, 
there is a single machine language for the IBM 
S/360 family of computers. The single machine lan- 
guage has not limited the usefulness of the com- 
puters, because compilers and translators are pro- 
vided to offer high-level programming languages. 

A similar situation may prevail in a high-level- 
language machine. A direct-execution machine may be 
built for a single high-level machine language. 
This should similarly not limit the usefulness of 
the machines. Nothing prevents one from using 
software translators for other high-level or very 
high-level languages. However, in a direct-execu- 
tion machine, one deals with the hish-level language 
software onl X. The high-level language software 
should cost less and take shorter time to develop. 

Alternatively, it is possible to build a direct- 
execution machine for a number of high-level lan- 
guages by using either microprogramming with a high- 
level architecture or multiple high-level-language 
hardware interpreters; in this case, some processors 
performing the same functions could be shared. 
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8. COMPILERS OR INTERPRETERS 

Since the development of the FOrtran Compiler, this 
technique has made a great contribution to the ease 
of computer programming and thus to the large in- 
crease in computer applications. The use of the 
compiler has become so popular that it has been 
almost dominating the computer world for the past 
20 years. 

However, the compiler has created the need for other 
software such as linkage editors and loaders. 
Furthermore, many languages (high-level language, 
assembly language, relocatable code, and core dump) 
are involved in a compilation process. A competent 
Fortran programmer really needs to know these lan- 
guages to some extent which causes additional 
difficulty in debugging. Therefore, Fortran pro- 
gramming is not as ideal as was first thought when 
it was introduced. 

Since their arrival, compilers have become very 
complex, partly because more complex language 
constructs (which may or may not be genuinely useful 
to the users) are created. The computer manufactur- 
ers are becoming weary of implementing any new and 
powerful high-level languages because of the cost 
and time to develop and maintain the compilers and 
because of the investment in old programs! Yet, 
programming language is a central issue; more pro- 
gramming languages are bound to come. It appears 
that the development of compilers and high-level 
language are at present on a "collision course". 

Historically, interpreters came before the arrival 
of compilers. Interpreters have not become popular 
because tile computer systems of 20 years ago were 
too slow, and the main memory capacity too small. 
Since then, there has been a great advance in com- 
puter technology. One of the most significant con- 
tributions in hardware is the enormous increase in 
computer speed. The justification for ignoring the 
interpreter does not exist any more. It is time to 
look again at the idea of interpreters. After all, 
computation cannot be achieved by a compiler but 
must be accomplished by an interpreter (whether the 
interpreter is software or hardware). 

For the last 20 years, more time and effort have 
been spent on the research and development of com- 
Pilers than on interpreters. Thus, it is fair to 
say that more knowledge exists about compilers than 
interpreters. However, it is known that interpre- 
ters are easier to write, partly because they need 
no code generation, and generation of efficient code 
is a most difficult task in compiler writing. 
Furthermore, most of today's high-level languages 
are compiler-oriented languages; they are not the 
most suitable for writing interpreters for. Since 
the users of an interpreter need know no language 
other than the high-level language itself, the inter- 
preter is much easier to use and is more amenable 
to an interactive system. The direct-execution 
interpreter whether software or hardware can make 
the system highly interactive with the users. 

9. WHAT COULD HAPPEN IN THE NEXT 5 TO i0 YEARS? 

We now have two computer industries. The first com- 
puter industry is ~id. It is centered around major 
computer centers and major computer manufacturers. 
The center of gravity of this first computer indus- 
try is the "200 billion dollars" of software. Be- 
cause of this enormous investment, the first com- 
puter industry has an enormous resistance to changes 
and innovations, unless hardware is built to fit the 
existing software as it is developed now. 

The second computer industry is new. It is repre- 
sented by microprocessor manufacturers. It is 
called the second computer industry, because the 



hardware manufacturers are different from the first 
computer industry. The markets are different. The 
applications are different. The system producers 
are different. The second computer industry is 
receptive to new ideas• 

Although the second computer industry is different 
in almost every respect as mentioned above, their 
approach to the software follows that of the first 
computer industry, particularly the use of com- 
pilers and assemblers. It has been widely recogniz- 
ed that software cost is becoming the bottleneck to 
the large-scale usage of the microcomputer systems. 
Something new in software should be conceived and 
developed to overcome this difficulty. Why not use 
interpreters instead of compilers? Why net build 
the microprocessors with an architecture for inter- 
preters instead of for compilers? Why not develop 
simple high-level languages for particular applica- 
tions instead of "general-purpose languages?" Why 
not abandon the approach of "one-system-and-one- 
language" for many applications that has prevailed 
in the first computer industry? Why not re-examine 
the balance and the trade-offs among the hardware, 
software, and language instead of traditionally 
considering software alone? 

There is little doubt that microprocessor systems 
will have the fastest growth ever experienced in the 
computer industry in the next 5 to i0 years, part- 
icularly if this software bottleneck could be re- 
moved. The use of the direct-execution idea com- 
bined with microprocessor technology could offer a 
solution to the problem of software cost, and the 
second computer industry could become even larger 
than the first one. 
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