
f
BOOK REVIEW

Advances in Computer Architecture

by

Glenford J. Myers
IBM Systems Research Institute

Published by Wiley-Interscience Division
of John Wiley and Sons, New York, 1978, $21.00.

Myers defines computer architecture to be
the process of defining the interface between
software and firmware/hardware and distribut-
ing computing system functions on both sides
of this interface. He goes on to propose and
discuss ten "levels of architecture" within a
computing system. "The computer architect,
then, makes three broad classes of decisions:
the form in which programs are presented to
the underlying machine, the methods with which
these programs name or address their data, and
the representation of data."

A major premise of this book, as stated
in Chapter i, is that most computer architects
have not viewed their roles this way. If the
architect views the job of architecture
properly, he or she should be concerned with
efficiency of problem solution, rather than
the average raw speed of the machine
instructions; that is, the architect must
consider efficiency from the point of view of
the programming-language~compiler~machine
triplet. The author suggests that it would be
a step in the right direction if architects
for new machines were required to personally
design, code, and debug a compiler and
operating system for a previous machine. (An
input to curriculum makers.)

In Chapter 2, in conjunction with a duly
respectful critique of the von Neumann archi-
tecture, the author states that "except for a
few machines (e.g. some made by Burroughs
Corporation), there have been no advances in
the computer architecture (as defined above)
of current systems since the 1950's. This
premise coupled with positive developments in
high-level languages has given riseto a
semantic gap between the concepts in high-
level languages and the concepts in computer
architecture. The authors arguments are
convincingly made and well illustrated by
examples.

In Chapter 3, before the chapters which
present a detailed analysis of how the
semantic gap might be narrowed, the author
surveys previous attempts, and places them
into five basic categories of strategies used.
These categories are language-directed archi
tectures, three variants of high-level-
language machines, and application-directed
architectures. The classifications are not
mutually exclusive but are nevertheless a
useful conceptualization.

After establishing the need for advances
in computer architecture in Part I (Chapters
1-4), the book moves on to case studies and
examples of implementations of the ideas which
have been proposed. In Part II (Chapters 5-7)

the architecture of the Student-PL Machine
(SPLM), originally proposed in Wortman's Ph.D.
thesis, is examined. SPLM is a language
directed toward a subset dialect of PL/i. It
contains tagged storage, descriptors of data
objects, pushdown stacks for expression
evaluation, subroutine management, PL/I-
controlled storage, and lexical-level
addressing.

Chapter 5 consists of a description of
the Student-PL Language and a block-diagram
machine level description of the storage
structure. In Chapter 6 the reader is walked
through the compilation and execution of two
Student-PL programs and then offered a brief
comparison to an equivalent PL/I program
compiled to the S/370. Chapter 7 is a
specification of the SPLM instruction set.

Part III (Chapters 8-10) is the second
case study and unlike the paper machine, SPLM,
it is an operational system, SYMBOL. This
system, developed by Fairchild is in use at
Iowa State University. The design goals for
SYMBOL included achieving substantial
performance increase by directly implementing
a high-level language and a virtual-storage,
time-sharing operating system in hardware. It
provides facilities to assist the programmer
in working with non numeric data and elaborate
data structures~ Myers classifies SYMBOL as a
"type-B" variant of a high-level language ar-
chitecture. SYMBOL is also interesting in that
it is an ensemble of functionally-dedicated
processors: one for compiling, one for
dispatching and paging, etc. Myers has
collected together in a concise and readable
form the contents of numerous internal reports
concerning SYMBOL. Due to incomplete
documentation he has had to infer the
structure in some cases. This section covers
the system architecture, instruction set and
data structure facilities of SYMBOL. It
concludes with a well balanced discussion of
the architectural and implementation
significance of the machine.

The Burroughs B1700 System, is presented
as an example of multiple-language-directed
architecture in Part IV (Chapters 11-13).
Although much of the material is from papers
in the open literature, the author did get
Burroughs' permission to include material from
their Bi700 COBOL/RPG S-Language Manual. There
is less detail for this machine than the
others. This reviewer would have valued a
brief description of the machine language
level (highly vertical "microcode") and
processor structure of the B-1700.

In Part V (Chapters 13-15) the author
offers his own contribution to an advanced

25

http://crossmark.crossref.org/dialog/?doi=10.1145%2F859463.859467&domain=pdf&date_stamp=1979-04-15

computer architecture: the SWARD (software-
reliability-directed) machine, developed in
his 1977 PhoD. dissertation at Polytechnic
Institute of New York. We enjoyed reading his
proposal and commend it as an example of the
type of thinking which should be going on in
collaborative efforts between experts in
computer architecture, software engineering,
and reliable/fault-tolerant computing. The
novelty and level of detail slow-down one's
reading at this point.

Part VI (Chapters 16-18) is a collection
of related topics in computer architecture,
namely: input/output architecture, architec-
ture optimization and tuning, and the "art of
computer architecture." Chapter 16 briefly
surveys front-and back-end processors and
associative-storage processors both a la
STARAN and the smart-disk approach such as
proposed in the Toronto Relational Associative
Processor (RAP). The optimizations mentioned
in Chapter 17 relate to frequency dependent
coding and the creation of new instructions
which subsume a frequently occuring sequence
of instructions. The book concludes with a
short discussion of goals and tools that
should be considered by the computer architec-
ture.

This book includes references and a set
of realistic and generally interesting
exercises for each chapter. Answers to the
exercises (many of them "thought questions")
are provided.

We commend this book to professionals
such as the readers of CAN. It should be on
the required reading list for senior/graduate
level courses in computer architecture, i.e. a
course which presumes that the student is
familiar with principles of operating systems,
compilers, microcode and traditional computer
organization.

D. E. Atkins
Department of Electrical and

Computer Engineering
The University of Michigan

Ann Arbor 48109

26

