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1. I N T R O D U C T I O N  

Discussions m [10]-[11], [5]-[7] has demonstrated that zero-operand stack instructions 

are, in general, inferior to one and two-operands' ones. Keedy [8] further proposed a stack-based 

instruction set which includes zero, one and two-operands. However, in the paper no concrete 

implementation was discussed. 

We propose an Implementation of a stack addressing scheme similar to the idea of 

register windowing [4] used in RISC. The underlying instruction set is similar to the Burroughs 

B6700 [12], involving the idea of displays. For the argument of its superiority over the original 

B6700's zero-operand addressing, we will fall back on [8]. Further, we shall argue that it is 

superior to the scheme proposed there, the typically RISC scheme and the memory-to-memory 

addressing scheme. We will also discuss some practical issues involved in the scheme's actual 

implementation. 

2. T H E  P R O P O S E D  A D D R E S S I N G  S C H E M E  

The proposed addressing scheme involves the maintenence and use of two registers 

which we will call the source and target window registers. This will be abbreviated to SWR and 
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TWR respectively. Associated with these registers are the register valid flags, SWR-F and TWR-F 

respectively. Their uses will be explained shortly. There are two new instructions that set these 

registers. The formats of these instructions are as follows : 

SSW ssssdddd dddddddd 

STW ssssdddd dddddddd 

The opcodes ( and all the opcodes discussed here ) are assumed to be 8 bits in length. This is 

followed by a 2 byte operand. The highest 4-bits of these, ssss ,  is a display register number and 

the remaining 12 bits, dddd dddUdddd, is a displacement into the stack section pointed to by 

SSS$. (Note that B6700 addresses are 5 plus 9 bits instead of our 4 plus 12.) Specifically, the 

content of the display SSSS is added to dddd dddddddd and the result is placed in the window 

register. By adhering to the B6700 addressing scheme in setting the window registers, we avoid 

improper access to stack sections invisible at the current lexical level. After establishing the 

window registers, we can now use the data within the window by attaching a 1 byte specifier to 

arithmetic and logical operators. This is done as follows : 

opcode tcdddsss 

where opcode is the original 8-bit dyadic opcode from the zero-operand instruction set. In 

addition, an extra bit is needed to distinguish windowing instructions from the original zero- 

operand ones. This makes the final length of opcode 9 bits. In the original B6700 scheme the two 

operands are taken from the top of the stack and the result replaces them. The specifier itself 

consists of 4 fields, a single bit t flag, a single bit c flag, a 3-bit dud field and a 3-bit ass  field. 

These fields are used as follows : 

ss$ field - if sss  = 7 and c flag is cleared, the first operand required is at the top of  the 

stack. If sss  is less than 7 and C flag is cleared, the first operant is fetched from the 

memory location given by [Content of SWR] + ass. If c is set, the first operand is the 

unsigned integer sss. 

ddd field - if ddd = 7, the second operand is at the top of the stack, otherwise it is 

fetched from [Content of TWR] + ddd. 

t flag - if it is clear, result of operation is placed at the top of the stack; if it is set result is 

moved to the memory location given by [Content of TWR] + dud. 

c flag - if it is set, s s s  if taken as a short unsigned integer literal; if is cleared then the 

first operand is fetched from the memory location given by [Content of SWR] + SSS. 

It can easily be seen that the above scheme covers the functionalities of zero, one and two 

operands. In addition, short literals me provided for. As an example, consider the assignment 

statement A := (B + C) * (D - E).  It will be compiled into the following sequence of pseudo- 
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instructions : 

ADDW 

SUBW 

MUL 

STOW 

00 <Displacement of B> <Displacement of C> 

00 <Displacement of C> <Displacement of D >  

10 <Displacement of A> 111 

Note that the total amount of space required is 60 bits plus the 48 bits needed to set the window 

registers giving a total of 108 bits, whereas that required by Keedy's scheme is 156 bits, assuming 

24-bit addresses, 248 bits for straightforward MIPS code [2], 176 bits for VAX code [1], assuming 

word displacement and 104 bits in a stack addressing scheme similar to the original B6700 

scheme. Another point must also be noted : the 6 bytes overhead in the set up of  the window 

registers can be amorfised over the amount of code that uses data within the windows, i.e. without 

resetting the registers. 

3. A N  A N A L Y S I S  

Using the parameterised analysis found in [8], we can perform a similar analysis on the 

new scheme. In our analysis, we paramterised the opcode size while maintaining constant the 

specifier described in section 2 at 8 bits. First, some definitions : 

t = the size of the opcode in bits. 

s = the size of the operand address in bits. Here, s = 8. 

[ = number of instructions that address their operands within the same window. 

The amortised cost of the window setting instructions per instruction that addresses operand 

within the windows is (20+1) + 32)//bits per instruction. 

Table 1 can be used to compare with that found in [8]. The weights involved were 

proposed in [11]. 

The total weighted length as computed in Table 1 is 

( 1.283 + ( 2 / [)) t + ( 11.547 + ( 34 / [)) 

Keedy's calculation revealed that the weighted lengths of memory-to-memory instruction and his 

proposed instructions are : 

1.310t + 2.620s 

1.283t + 2.566 + 2.283s 

respectively where a is the number of b its in the operand address. Let us now examine the length 

of the operand address necessary to produce the same or shorter equivalent code to the new 

scheme. Assuming a 8 bit opcode, i.e. t = 8, and at least two instructions uses data in the window, 
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i.e. [ = 2, we have : 

s = 13.87 for memory-to-memory instructions 

s = 14.88 for Keedy's instructions 

For today's applications, the above are insufficient. This is evidence of the brevity of the new 

scheme. 

4. I M P L E M E N T A T I O N  C O N S I D E R A T I O N S  

One might object to the new scheme for several reasons. This include the fact the 

compactness of the new scheme involves complications in decoding and the new overhead 

introduced because of the need to save up the window registers during procedure calls and context 

switching. 

The objection about the complexity involved in the decoding logic is a valid one. 

However, the original addressing logic of the B6700 is rather simple because most of the 

instructions are zero-operand ones. Further, there is already provisions for more complicated 

addressing involving direct and indirect stuff words. The addition of the new scheme in effect 

only needs new logic to handle the first two bits in the specifier. 

Next, we turn to the objection of extra saves during context switching and procedure 

calls. Because the window registers are presumably set only once during procedure entry, a 

method can be worked out to save a little of the work involved in saving these registers. For this 

method to work we need the SWR-F and TWR-F flags. Upon procedure entry, a procedure will 

execute the two set window registers instructions. Note that the SWR-F and TWR-F flags would 

have been made invalid when the caller executes the call. To eliminate the saves at procedure calls 

and context switching, the instructions, besides setting the registers will also save the register 

values into predetermined locations in the current stack section. The SWR-F and TWR-F will be 

set as valid. At a procedure return, the flags are made invalid. The calling procedure will continue 

to execute as per normal. However, when an instruction uses the window addressing specifier, an 

interrupt will occur because the flags are invalid. The bottom of the current stack section is passed 

to this interrupt's handler so as to made the locations in which the window registers were saved 

addressable. We realise that this is a slight modification of the usual B6700 interrupt handling 

sequence [12]. However, this method avoids resetting the window registers if they were left 

untouched by the called procedure and reduces the number of saves necessary during procedure 

calls and context switches. 

Another possible objection is to the rigidity of the scheme, since TWR can contain only 

results and cannot be read from: One possible to solution is to set SWR and TWR to be equal. But 

this would mean losing 7 locations. A better solution to the problem would be the addition of a 
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window register management instruction. Quite simply, this instruction, XWR, is a zero-operand 

instruction that swaps the contents of the two window registers. Thus we can have all 14 locations 

to work with. 

We now turn to the issue of exploiting the new scheme to its maxinmm. To do so, we 

must make sure that the number of times the window registers are reset is kept to a minimum. 

This would imply that most of the data references should occur within the windows. However, this 

problem is no different from that of register allocations in register machines : the language 

compiler should employ clever allocation algorithms for local data [13]. An added advantage of 

the scheme over registers is that all locations in the windows have physical addresses. Problems 

associated with registers and the address-of  operator [9] in many high level programming 

languages are absent. 

The reader may have noted that our scheme improves on the original zero-operand 

B6700 instructions by reducing the number of instruction necessary to bring operands to the top of 

the stack for operations. In doing so it incurs an overhead of setting the window registers. 

However, this overhead is amortised over the number of instructions that reference operands 

within the window. Also an additional bit is necessary to distinguish the original zero-operand 

instructions from the new windowing ones. In actual implementation, it may be possible to 

squeeze these into currently reserved opcodes, keeping to the 8 bit opcode. 

We now turn to the issue of cache utilisation and efficiency. Because of the structure of 

the stack machine, the amount of caching necessary to guarantee good performance is quite small, 

namely a portion of the top of the stack. In our scheme, it makes good sense to perform predictive 

caching. At the execution of the set window instruction, the portion of memory corresponding to 

the windows should be brought into the cache in anticipation of its usage. This avoids the cache 

miss processing at the first windowing instruction. Since the windows are quite small, only 7 

words each, the amount of additional cache required is small. In fact, in a VLSI implementation 

[3] where the cache is on,chip, we See no advantage of registers over our scheme. In fact, one can 

say that the objective of our scheme is similar to copying a portion of the stack into registers. 

However, one might argue that with proper optimization, the B6700 too would locate most of its 

frequently referenced operands within close proximity of one another. But if this is the case, the 

differences in the addresses of most of the B6700 instructions would be quite small and it would 

not be economical to specify the full addresses. Our scheme takes advantage of this fact. Another 

point worth noting is that techniques of peephole optimization [13] can be applied to shorten 

codes written in the original B6700 instruction set. 
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5, C O N C L U S I O N  

We have presented a practical implementation of zero, one and two-operand stack 

addressing. Utilising ideas from RISC and original B6700 ideas, this scheme is demonstrated to be 

superior to many other addressing schemes in term of compactness. We have also discussed some 

of the implementation issues involved. The new addressing scheme has been incorporated into the 

design of SARC (Structured Array and Register Computer) [14]. 

The author would like to express his thanks to Professor C.K. Yuen of DISCS for his 

constructive criticisms and his carethl reading of the draft. 

Assignment Statement 

A:--B 

A:--A+B 

A:=B+C 

A := (B +C) * (D - E) 

A : - - - B + C + D - E  

Weight 

72.1% 

14.4% 

6.1% 

2.7% 

4.7% 

Encoding 

t' +8+(2t' +32)/f 

t' +8+(2t' + 32)/f 

2t'+16+(2t'+ 32 )/f 

4t' +32+(2t' +32)/f 

4t'+32+(2t' +32)lf 

Weighted Length 

(0.721 + (1A42/f))t' + (5.768 + (23.072/~) 

(0.144 + (0.288/f))t' + (1.152 + (4.608/~) 

(0.122 + (0.122/fi)t' + (0.976 + (1.952/f)) 

(0.108 + (0.054/~)t' + (0.864 + (0.864If)) 

(0.I88 + (0.094/f))t' + (1.504 + (1.504/f)) 

Note : t' = t + 1. 

TABLE 1 
PARAMETERIZED LENGTHS OF ASSIGNMENT STATEMENTS 
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