
Transition-Independent Decentralized Markov Decision
Processes

Raphen Becke; , Shlomo Zilberstein, Victor Lesser, Claudia V. Goldman
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{ raphen,shlomo,lesser,clag) @ cs.umass.edu

ABSTRACT
There has been substantial progress with formal models for
sequential decision making by individual agents using the
Markov decision process (MDP). However, similar treatment
of multi-agent systems is lacking. A recent complexity re-
sult, showing that solving decentralized MDPs is NEXP-
hard, provides a partial explanation. To overcome this com-
plexity barrier, we identify a general class of transition-
independent decentralized MDPs that is widely applicable.
The class consists of independent collaborating agents that
are tied up by a global reward function that depends on both
of their histories. We present a novel algorithm for solving
this class of problems and examine its properties. The result
is the first effective technique to solve optimally a class of
decentralized MDPs. This lays the foundation for further
work in this area on both exact and approximate solutions.

1. INTRODUCTION
There has been a growing interest in recent years in formal

models to control collaborative multi-agent systems. Some
of these efforts have focused on extensions of the Markov de-
cision process (MDP) to multiple agents, following substan-
tial progress with the application of such models to prob-
lems involving single agents. Examples of these attempts
include the multi-agent Markov decision process (MMDP)
proposed by Boutilier [2], the Communicative Multiagent
Team Decision Problem (COM-MTDP) proposed by Pyna-
dath and Tambe [ll], and the decentralized Markov decision
process (DEC-POMDP and DEC-MDP) proposed by Bern-
stein, Givan, Immerman and Zilberstein [l]. The MMDP
model is based on full observability of the global state by
each agent. Similar assumptions have been made in recent
work on multi-agent reinforcement learning (31. We are in-
terested in situations in which each agent might have a dif-
ferent partial view of the global state. This is captured by

*Student author

Submi t ted to the Second Internat ional joint Confer-
ence on Autonomous Agents and Multi-Agent Sys-
tems.

the DEC-POMDP model, in which a single global Markov
process is controlled by multiple agents, each of which re-
ceives partial information about the global state after each
action is taken. A DEC-MDP is a DEC-POMDP with the
restriction that at each time step the agents’ observations
together uniquely determine the global state.

A recent complexity study of decentralized control shows
that solving such problems is extremely difficult. The com-
plexity of both DEC-POMDP and DEC-MDP is NEXP-
hard, even when only two agents are involved [l]. This is in
contrast to the best known bounds for MDPs (P-hard) and
POMDPs (PSPACEhard) [9, 61. The few recent studies of
decentralized control problems (with or without communi-
cation between the agents) confirm that solving even simple
problem instances is extremely hard [ll, 14).

One way to overcome this complexity barrier is to exploit
the structure of the domain offered by some special classes of
DEC-MDPs. We study one such class of problems, in which
two agents operate independently but are tied together by
some reward structure that depends on both of their exe-
cution histories. The model is motivated by the problem
of controlling the operation of multiple space exploration
rovers, such as the ones used by NASA to explore the sur-
face of Mars [13]. Periodically, such rovers are in communi-
cation with a ground control center. During that time, the
rovers transmit the scientific data they had collected and
receive a new mission for the next period. The mission in-
volves visiting several sites at which the rovers could take
pictures, conduct experiments, and collect data. Each rover
must operate autonomously (including no communication
between them) until communication with the control center
is feasible. Because the rovers have limited resources (com-
puting power, electricity, memory, and time) and because
there is uncertainty about the amount of resources that are
consumed at each site, a rover may not be able to complete
its mission entirely. In previous work, we have shown how to
model and solve the single rover control problem by creating
a corresponding MDP [15].

When two rovers are deployed, each with its own mis-
sion, there is important interaction between the activities
they perform. Two activities may be complementary (e.g.,
taking pictures of the two sides of a rock), or they may
be redundant (e.g., taking two spectrometer readings of the
same rock). Both complementary and redundant activities
present a problem: the global utility function is no longer
additive over the two agents. When experiments provide
redundant information, there is little additional value to

completing both so the global value is subadditive. When
experiments are complementary, completing just one may
have little value so the global value is superadditive. The
problem is to find a pair of policies, one for each rover, that
maximizes the value of the information received by ground
control.

We develop in this paper a general framework to handle
such problems. Pynadath and Tambe [ll] studied the per-
formance of some existing teamwork theories from a decision-
theoretic perspective, similar t o the one we develop here.
However, our technique exploits the structure of the prob-
lem to find the optimal solution more efficiently.

A simplified version of our problem has been studied by
Ooi and Wornell [7], under the assumption that all agents
share state information every K time steps. A dynamic pro-
gramming algorithm has been developed to derive optimal
policies for this case. A downside of this approach is that the
state space for the dynamic programming algorithm grows
doubly exponentially with K . The only known tractable al-
gorithms for these types of problems rely on even more as-
sumptions. One such algorithm was developed by Hsu and
Marcus [SI and works under the assumption that the agents
share state information every time step (although it can take
one time step for the information to propagate). Approxi-
mation algorithms have also been developed for these prob-
lems, although they can at best give guarantees of local o p
timality. For instance, Peshkin et al. [IO] studied algorithms
that perform gradient descent in a space of parameterized
policies.

The rest of the paper is organized as follows. Section 2
provides a formal description of the class of problems we
consider. Section 3 presents the coverage set algorithm,
which optimally solves this class of problems, and proves
that the algorithm is both complete and optimal. Section
4 illustrates how the algorithm performs on a simple sce-
nario modeled after the planetary rover. We conclude with
a summary of the contributions of this work.

2. FORMAL PROBLEM DESCRIPTION
In this section we formalize the rovers control problem

as a transition-independent, cooperative, decentralized de-
cision problem. The domain involves two agents operating
in a decentralized manner, choosing actions based upon their
own local and incomplete view of the world. The agents are
cooperative in the sense that there is one value function for
the system as a whole that is being maximized'.

DEFINITION 1. A factored, 2-agent, DEC-MDP i s defined

0 S = SI xSz is afinite set of states, with a distinguished
initial state (sh,sa). Si indicates the set of states of
agent i .

0 A = A1 x A2 i s a f in i te set of actions. A , indicates the
action taken by agent i .
P is a transition function. P ((s i , si)/(sI, SZ), (a l , a z))
i s the probability of the outcome state (si, si) when the
action pair (a l , az) i s tuken in state (SI, sz).

'In this paper, we assume that the agents cannot commu-
nicate between execution episodes, so they need to derive
an optimal joint policy that involves no exchange of infor-
mation. We are also studying decentralized MDPs in which
the agents can communicate at some cost[4].

by a tuple < S, A , P, R >, where

0 R is a reward function. R((s1, SZ), (a ' , a ~) , (si, si)) i s
the reward obtained from t&ng actions (a1 ,az) from
state (SI, S Z) and transitioning to state (si, si).

We assume that agent i observes si, hence the two agents
have joint observability. We call components of the factored
DEC-MDP that apply t o just one agent local, for example
si and a, are local states and local actions for agent i. A
policy for each agent, denoted by ni, is a mapping from local
states to local actions. ai(si) denotes the action taken by
agent i in state s i . A joint policy is a pair of policies, one
for each agent.

DEFINITION 2. A factored, 2-agent DEC-MDP is said to
be transition independent i f there exist PI and Pz such
that

P((s~,s;)l(sl,s2),(ar,az)) = Pl(s;lsl,al). PZ(s;lsz,az)

That is, the new local state of each agent depends only on
the previous local state and the action taken by that agent.

DEFINITION 3. A factored, 2-agent DEC-MDP is said to
be reward independent af there exist R1 and Rz such that

R ((s i , s z) , (a i , a z) , (s ~ , ~ ~)) = R i (s i , a i , s ;) + Rz(s z ,az , s ;)

That is, the overall reward is composed of the sum of two
local reward functions, each of which depends only on the
local state and action of one of the agents.

Obviously, if a DEC-MDP is both transition independent
and reward independent, then it can be formulated and
solved as two separate MDPs. However, if it satisfies just
one of the independence properties it remains a non-trivial
class of DEC-MDPs. We are interested in the general class
that exhibits transition independence without reward inde-
pendence. The Mars rovers application is an example of
such a domain. The local states capture the positions of
the rovers and the available resources. The actions involve
various data collecting actions at the current site or the de-
cision to skip to the next site. The overall reward, however,
depends on the value of the data collected by the two rovers
in a non-additive way.

2.1 Joint Reward Structures
We now introduce further structure into the global reward

function. To define it, we need t o introduce t h e notion of a n
occurrence of an event during the execution of a local policy.

DEFINITION 4. A history, @ = [so, ao, SI, a l , ...I i s a se-
quence that records all the local states and actions for one of
the agents, starting wiuI the local initial state of that agent.

DEFINITION 5. A primit ive event , e = (s , a , s ') 2s a
tnplet that zncludes a state, a n actzon, and an outcome state.
A n event E = { e l , e z , ..., e,,,} i s a set of pnmztzve events.

DEFINITION 6 A pnmztzve event e = (s , Q, s') occurs an
hzstory @, denoted @ b e t f the tnplet (s , a , s') appears as a
subsequence of @. A n event E = { e l , e z , ,e,,,} occurs an
history @, denoted @ + E z f l

3 e E E : @ + e

Events are used to capture the fact that an agent accom-
plished some task. In some cases a single local state may be

.

sufficient to signify the completion of a task. But because of
the uncertainty in the domain and because tasks could be
accomplished in many different ways, we generally need a
set of primitive events to capture the completion of a task.
To illustrate this in the rover example, we will define the
state to be < t , l > where t is the time left in the day and
1 is the location of the current data collection site. The ac-
tions are skip and collect. The event took picture of site 4
would be described by the following set of primitive events:

{(< t , 1 > , a , < t ' , t >)I < t , l >=< * , 4 >,
.

a-= collect, < t', I' >=< *, 5 >}..

DEFINITION 7. A primitive event is said to be proper if
i t can occur at most once in any possible history of a given
MDP. That is:

V@ = @lea2 : -(@I e) A k e)

DEFINITION 8. An event E = { e l , e2, ..., e,} is said to be
proper if it consists of mutually exclusive proper primitive
events with respect to some given MDP. That i s :

V@ -3i # j : (e , E E A e j E E A @ e , A @ k e,)

We limit the discussion in this paper to proper events.
They are sufficiently expressive for the rover domain and
for the other applications we consider, while simplifying the
discussion. Later we show how some non-proper events can
be modeled in this framework.

DEFINITION 9. Let @ 1 andQ.1 be histories of two tmnsition-
independent MDPs. A jo in t reward s t r u c t u r e

P = [(E: , E?, ci), .-., (EA, E:, &) I ,
specifies the reward (or penalty) ck that is added to the global
value function if @ I E: and Cpz E;.

We limit the discussion in this paper to factored DEC-
MDPs that are transition-independent, and whose global
reward function R is composed of two local reward func-
tions R1 and Rz for each agent plus a joint reward struc-
ture p. This allows us to refer to the underlying MDP,
< Si, Ai, P,, R, > even though the problem is not reward
independent.

Given a local policy, n, the probability that a primitive
event e = (s ,a,s ') will occur during any execution of I F ,
denoted P (e J n) can be expressed as follows.

-.- -
P(el.rr) = C P ~ (S I I F) P (U I S , I F) P (S ' I S , a) (1)

t =O

where Pt(sl7r) is the probability of being in state s at time
step t . Pf(sln) can be easily computed for a given MDP
from its transition model; P(als ,x) is simply 1 if x (s) =
a and 0 otherwise; and P(s ' l s ,a) is simply the transition
probability. Similarly, the probability that a proper event
E = { e l , ez, ..., e,} will occur is:

We can sum the probabilities over the primitive events in E
because they are mutually exclusive.

DEFINITION 10. Given a joint policy (n1, 7r2) and a joznt
reward structure p, the jo in t value is:

n

JV(PIR1,Az) = P(Ei'Ini)P(E?lR?)G
i = l

DEFINITION 11. A global value funct ion of a transition-
independent decentmlized M D P with respect to a joint policy
(I F ~ , I F Z) , local reward functions R1, R2 and a joint reward
structure p is:

where V,,fsb) is the standard value of the underlying MDP
for agent i at SA given polzcy IF , .

While Vn(s) is generally interpreted to be the value of
state s given policy n, we will sometimes refer to it as the
value of IF because we are only interested in the value of the
initial state given n.

The goal is to find a joint policy that maximizes the global
value function.

DEFINITION 12. An opt imal joint policy, denoted
(al, nz)*, is a pair of policies that muximize the global value
function, that is:

(m, IFZ)' = argmax,;.,;GV(n;, 4)
2.2 Expressiveness of the Model

Tkansition-independent DEC-MDPs with a joint reward
structure may seem to represent a small set of domains, but
it turns out that the class of problems we address is quite
general. Many problems that do not seem to be in this class
can actually be represented by adding extra information to
the global state. In particular, some problems that do not
naturally adhere to the mutual exclusion among primitive
events can be handled in this manner. The mutual exclusion
property guarantees that exactly one primitive event within
an event set can occur. We discuss below some cases violat-
ing this assumption and how they can be treated within the
framework we developed.

At least one primitive event - Suppose that multiple
primitive events within the set can occur and that an addi-
tional reward is added when at least one of them does occur.
In this case the state can be augmented with one bit per
event that is initially 0. When a primitive event in the set
occurs, the bit is set to 1. If we redefine each primitive event
so that the corresponding bit switches from 0 to 1 when it
occurs, we make the event set proper because the bit can
switch from 0 t o 1 only once in every possible history.

ALL primitive events - Suppose that an event is com-
posed of n primitive events, all of which must occur to trig-
ger the extra reward. In this case, each local state must
be augmented with n bits, one bit for each primitive event
(ordering constraints among the primitive events could be
exploited to reduce the number of bits necessary). The new
set of events that describe the activity are those that flip
the last bit from 0 to 1.

Counting occurrences - Suppose that an event is based
on a primitive event (or another event set) repeating at least
n times. Here, the local state can be augmented with logn
bits to be used as a counter. The extra reward is triggered
when the desired number of occurrences is reached, at which
point the counting stops.

Temporal constraints - So far we have focused on global
reward structures that do not impose any temporal con-
straints on the agents. Some temporal constraints can also
be represented in this framework if time is enumerated as
part of the local states. For example, suppose that event
E1 in agent 1 facilitates event E2 in agent 2, that is, the
occurrence of E1 before E2 leads to some extra reward when
E2 occurs. If we include time in local states, then we could
include in the joint reward structure a triplet for every possi-
ble combination of primitive events that satisfy the temporal
constraint. Obviously, this leads to creating large numbers
of event sets. A more compact representation of temporal
constraints remains the subject of future research.

To summarize, there is a wide range of practical prob-
lems that can be represented within our framework. Non-
temporal constraints tend to have a more natural, compact
representation, but some temporal constraints can also be
captured.

3. COVERAGE SET ALGORITHM
In this section, we develop a general algorithm for solving

transition-independent, factored, 2-agent DEC-MDPs with
a global value function shown in DEFINITION 11. The algo-
rithm returns the optimal joint policy.

So far, no optimal algorithm has been presented for solv-
ing the general class of DEC-MDPs, short of complete enu-
meration and evaluation of policies. Some search algorithms
in policy space and gradient decent techniques have been
used to find approximate solutions, with no guarantee of
convergence in the limit on the optimal joint policy (e.g.,
[IO]). Here we present a novel algorithm that utilizes the
structure of the problem to find the optimal joint policy.
(Throughout the discussion we use i to refer to one agent
and j to refer to the other agent.)

The algorithm is divided up into three major parts:

1. Create augmented MDPs. An augmented MDP repre-
sents one agent’s underlying MDP with an augmented
reward function.

2. Find the optimal coverage set for the augmented MDPs,
which is the set of all optimal policies for one agent
that correspond to any possible policy of the other
agent. As we show below, this set can be represented
compactly.

3. Find for each policy in the optimal coverage set the
corresponding best policy for the other agent. Return
the best among this set of joint policies, which is the
optimal joint policy.

Pseudo-code for the coverage set algorithm is shown in
Figure 1 . The main function, CSA, takes a factored DEC-
MDP and a joint reward structure as described in Section
2, and returns a n optimal joint policy.

3.1 Creating Augmented MDPs
The first step in the algorithm is to create the augmented

MDPs, which are derived from the underlying MDPs for
each agent with an augmented reward function. The new re-
ward is calculated from the original reward, the joint reward
structure and the policy of the other agent. The influence
of the other agent’s policy on the augmented MDP can be
captured by a vector of probabilities, which is a point in the
following parameter space.

function CSA(MDP1, MDPz, p)
returns the optimal joint policy
inputs: MDPI, underlying MDP for agent 1

MDP2, underlying MDP for agent 2
p, joint reward structure

optset +- COVERAGESET(MDPl, p)
value + -cu
jointpolicy +- {}
/* find best joint optimal policy */
for each policy1 i n optset

policy2 +- SOLVE(AUGMENT(MDPz, policyl, p))
v + GV({policyl , policyz}, MDP1, MDPz, P)
if (v > value)

then value +- v
else jointpolicy +- {policyl, policyz}

r e t u r n jointpolicy

function COVERAGESET(MDP, p)
re turns set of all optimal policies with respect to p
inputs: MDP, arbitrary MDP

p, joint reward structure

planes +- { /* planes are equivalent to policies */
points +-

/* initialize boundaries of parameter space */
fori +- 1 to IpI

/* loop until no new optimal policies found */
do

boundaries +- boundaries u {xi = 0, I, = I}

newplanes + { }
poants + INTERSECT(planes u boundaries)
/* get optimal plane at each point */
for each poznt in points

plane + SOLVE(AUGMENT(MDP, point, p)
if plane not i n planes

then newplanes +- newplanes u {plane}
planes +- planes u newplanes

while lnewplanesl > 0
r e t u r n planes

Figure 1: Coverage Set Algori thm

DEFINITION 13. The parameter space is an n dzmen-
szonal space where each dimension has a range of[O, 11 Each
pokcy x, has a corresponding point in the parameter space,
Z m I , which measures the probabilities that each one of the n
events wall occur when agent follows policy T, :

Given a point in the parameter space, Zn, , agent i can de-
fine a decision problem that accurately represents the global
value instead of its local value. I t can do this because both
the joint reward structure and agent j ’ s policy are fixed. The
new decision problem is defined by an augmented hlDP.

DEFINITION 14. An augmented MDP, denoted M D P : “ I ,

is defined as < Si, A,, Pi, R: , s ~ , Z * , , p >, where Fr, is a
point in parameter space computed fmm the policy for agent
j , p i s the joint reward structure and R: is:

IPI

%(e) = %(e) + 6kP(Eilrj)ck,
k = l

1 e E E ;
0 otherwise where 6k =

Note that for e = (s , a , s'), R (e) is the same as R(s, a , s') .

THEOREM 1. The value of a p o k y xi over MDP:*' is:

VX?' (sh) = VT,(s6) + JV(pln,, T J) .

PROOF. The value of an MDP given a policy can be cal-
culated by summing over all time steps t and all events e,
the probability of seeing e after exactly t steps, times the
reward gained from e:

30

t=o e

t=O e

30 IPI

t = O e k = l

(P I bc

IPI

= Vz.(s6) + P(E;IxJ)P(E;lni)ck

= V~,(S:) + JV(plxi,Tj).
k = l

0

The function AUGMENT in Figure 1 takes an MDP, a
policy and a joint reward structure and returns an aug-
mented MDP according to DEFINITION 14.

The global value is equal t o the local value of a policy for
one agent plus the value of the corresponding augmented
MDP for the other agent. This allows an augmented MDP
to be used in an iterative, hill-climbing algorithm. In such
an algorithm, the policy for agent j , x j , is held fixed and the
optimal corresponding policy for agent i is found by finding
the optimal policy for MOP:"' . Then the roles are reversed,
and agent i's new policy is held fixed while the optimal cor-
responding policy for agent j is found. This process repeats
until neither policy changes, i.e., until a Nash equilibrium is
reached.

PROPOSITION 1. An optimal joint policy (n1,sz)' is a
Nash equilibrium over the augmented MDPs:

PROOF.
Assume 3 6 # xi : V,f;n2 (SA) > VzT2 (SA). From DEFINITION
11 and THEOREM 1:

GV(xl ,sz) = v z 7 w + Vz,(Si)

GV(xi, 82) = V z p (SA) + Vz,(s;)
Therefore,

G V (d , n z) > GV(x1,nz)

This contradicts (x ~ , x z) * . By symmetry, we can show the
same for ~ 2 . Therefore, the optimal joint policy is a Nash
equilibrium over augmented hlDPs. 0

While the hill-climbing algorithm reaches a Nash equilib-
rium, and the optimal joint policy is a Nash equilibrium,
there is no guarantee that they are the same equilibrium.
In many problems there are many local optima, with the
optimal joint policy being the best of them. However, the
hill-climbing algorithm, even with random restarts, does not
guarantee finding the global maxima.

3.2 Finding the Optimal Coverage Set
An augmented MDP is defined over the parameter space,

which is a continuous space. This means that for both
agents, there is an infinite number of augmented MDPs,
however, only a finite number of them are potentially use-
ful: the ones where the point in parameter space corresponds
to a policy of the other agent. This set is still quite large
since the number of policies is exponential in the number
of states. It turns out that in practice, only a very small
number of these augmented MDPs are really interesting.

Given any particular augmented MDP, the only policy
that is useful is the policy that maximizes the expected
value of that MDP. Fortunately, most of the augmented
MDPs have the same optimal policy, and the set of inter-
esting augmented MDPs can be reduced to one per optimal
policy. This set of optimal policies, the optimal coverage
set, is what we are really after and the augmented MDPs
provide a way to find them.

DEFINITION 15. The optimal coverage set, O;, is the
set of optimal policies for MDP: given any point in param-
eter space, f:

oi = {xi I 32,xi = argmax,,V:;(s6)).

Another way to look at the optimal coverage set is to
examine the geometric representation of a policy over the
parameter space. The value of a policy x, , given in THE-
OREM 1, is a linear equation. If (f,,I = 1, then the value
function is a line in two dimensions. When If,, 1 = 2, the
value function is a plane in three dimensions. In general,
I&,[= n and the value function is a hyperplane in n + 1
dimensions.

The optimal coverage set, then, is the set of hyperplanes
that are highest in the n + 1 dimension for all points in
the parameter space (first n dimensions). Figure 2 gives an
example of planes over a 2-dimensional parameter space.

THEOREhl 2 . If two points f and in n-dimensional pa-
rameter space have the same corresponding optimal policy n,
then all points on f (a) = f + a(Q - f), 0 5 o 5 1, the line
segment between f and 8, have optimal policy x .

Let x = argmax, V," (so) = argmax, V: (so),
PROOF.

Z = f (ao) , 0 < a0 < 1, and
x' = argmax,,, V$ (so).

Assume V:(so) < V;:(SO). We know V,'(SO) 2 V:(SO), and
because V(,) and f(.) are linear functions, we can compute
their value at f (1) = Q by computing the unit slope.

J

P

Figure 2: Intersect ing Planes. (a) The first i terat ion checks the corners of the parameter space: (O ,O) , (0, l) ,
(1,0), (1, l), which yields three planes. In the second i terat ion four new interest ing points are found. The top
three all have the same opt imal plane, which is added i n (b). The four th point yields the plane added i n (c).
The next i terat ion produces eight new interesting points, two of which resul t in the s ix th plane, added in
(d). The next i terat ion finds no new opt imal planes and terminates , re turn ing the set of six policies.

v! (s o) < v; (s o)

This contradicts that A is optimal at g, therefore

V,f(SO) = v:t(so).

0

A bounded polyhedron in n dimensions is composed of a
set of faces, which are bounded polyhedra in n - 1 dimen-
sions. The corners of a bounded polyhedron are the points
(polyhedra in 0 dimensions) that the polyhedron recursively
reduces to.

THEOREM 3. Given a bounded polyhedron in n dimen-
sions whose comers all have the same corresponding optimal
policy K, any point on the surface or in the interior of that
polyhedron also has optimal policy A.

Base case: n=l . A polyhedron in 1 dimension is a line
segment with corners being the endpoints. From THEOREM
2, all points on the line have optimal policy A.

Induct ive case: Assume true for n - 1, show true for n.
From the inductive assumption, all points in the faces of the
polyhedron have optimal policy K. For any point within the
polyhedron, any line passing through that point intersects
two faces, with the interior point between the intersection
points. From THEOREM 2, this point has optimal policy
K. 0

The part of the algorithm discussed in this section is han-
dled by the function COVERAGESET in Figure 1. I t takes
an hlDP and a joint reward structure and returns the opti-
mal coverage set, based on THEOREM 3. To illustrate how
this works, we will step through a small example.

Consider an instance of the Mars rover problem, with just
two elements in the joint reward structure: (E:, E;, c1) and
(E; , E:, CZ). The function CSA starts by calling COVERAGE
SET on MDPl and p. The first thing that COVERAGE
SET does is to create the boundaries of the parameter space.

PROOF. By induction on the number of dimensions

These are the hyperplanes that enclose the parameter space.
Since each dimension is a probability, it can range from 0
to 1, so in this case there are 4 boundary lines: 2 1 = 0,
11 = 1, 1 2 = 0, 1 2 = 1. The algorithm then loops until no
new planes are found.

In each loop, INTERSECT is called on the set of known
policy hyperplanes and boundary hyperplanes. INTERSECT
takes a set of hyperplanes and returns a set of points that
represent the intersections of those hyperplanes. Linear p r e
gramming would be an efficient way to compute these inter-
sections because the majority of them are not interesttng:
they lie outside the parameter space or lie below another
plane. For example, Figure 2(d) h a s six policy planes and
the four boundaries of the parameter space. The total num-
ber of points is approximately 120, but only 14 points are
visible in the top view, and they are the only interesting
points because they form the corners of the polyhedra (or
polygons in this example) over the parameter space whose
interior all have the same optimal policy (THEOREM 3).

After computing the set of points, the augmented MDP
for each of those points is created and the optimal policy
for each of those augmented MDPs is computed by SOLVE,
which can use standard dynamic programming algorithms.
The value of a policy and a point in parameter space is

For a given R I , the value function is a plane over the param-
eter space. The plane for the new optimal policies will either
be equivalent (different policy but same value) or equal to
a plane already in the coverage set, or it will be better than
every other plane in the coverage set a t this point in param-
eter space. If it is the latter case. this new plane is added
to the coverage set. If a complete iteration does not find
any new planes, then the loop terminates and the current
coverage set is returned.

3.3 Selecting the Optimal Joint Policy
Given the optimal coverage set for agent i: finding the o p

timal joint policy is easy. From PROPOSITION 1, an optimal
joint policy includes an optimal policy for agent i given some
augmented MDP. Since the optimal coverage set includes all
of the optimal policies i t includes one that is a part of an
optimal joint policy. To find the optimal joint policy the al-
gorithm finds the corresponding optimal policy for agent j
for every policy in the optimal coverage set. It does this by
creating an augmented MDP for agent j for each policy in
the optimal coverage set and then finding the optimal policy
of that MDP. The optimal joint policy is the resulting joint
policy with the highest global value.

The function GV returns the global value as defined in
DEFINITION 11.

THEOREM 4. The coverage set algorithm is complete and
optimal.

PROOF. (sketch) To prove that the coverage set algorithm
is complete and optimal, we must prove three claims: the
algorithm terminates, it finds the optimal coverage set, and
it returns the optimal joint policy. We avoid discussion of
multiple equivalent policies for clarity.
Terminat ion - There are four loops in this algorithm. The
first is over a set of policies, which is finite. The second
is over the number of dimensions in the parameter space,
which is finite. The third is looping until no new policies
are found. The new policies are added to the coverage set
each iteration, so a particular policy could never be a new
policy twice. Since the set of policies is finite, this loop will
terminate. The fourth loop is over a set of points, which are
a subset of intersection points of a finite set of planes, which
is finite. All of the loops in this algorithm halt, therefore
the algorithm halts.
Optimal coverage set is found - All the planes/policies
in the returned set are derived by solving the corresponding
MDP using dynamic programming and are therefore opti-
mal. All the relevant point intersections between the hyper-
planes are found. This set of points divides the parameter
space into a set of polyhedra. From THEOREM 3 if no new
optimal policies are found from those points, then the set of
optimal policies is the optimal coverage set.
The opt imal joint policy is r e t u r n e d - The set of joint
policies created by taking an optimal coverage set and find-
ing the corresponding optimal policy for the other agent
includes all Nash equilibria. Fkom PROPOSITION 1, the best
of those equilibria is the joint optimal policy. 0

4. EXPERIMENTAL RESULTS
We have implemented a version of this algorithm that

works on problems with a 2-dimensional parameter space,
and we have tested it on a number of randomly generated
problems. The test instances were modeled after the Mars
rover example used throughout this paper. There are two
rovers, each with an ordered set of sites to visit and collect
data. The state for each rover is composed of their current
task, and the current time left in the day. The action for
each state is to skip the current site or to collect data a t the
current site. If the rover chooses skip, then it moves on to the
next site without wasting any time. There is a distribution
over time to collect data, but it always succeeds unless the
time in the day runs out.

The problem instances generated had a total time of 15
hours and 6 sites for a total of 90 states for each rover. The

12 1 (I
10 I

I 6 11 16 21 26 31 36 41 46 51 56 61 66 71 7
Sire of Optimal Coverage Set

Figure 3: Distr ibut ion over the size of the opt imal
coverage set. The r ightmost bar is 2 76.

m

E 40000

2 30000

60000

.- 6 50000

- - -
B 20000 *

10000

0
0 10 20 30 40 50 60 70 81

Size of Optimal Coverage Set

Figure 4: N u m b e r of value i terat ions b y the size of
the opt imal coverage set.

reward for skipping a task was 0, and for collecting at a site
was randomly chosen from a uniform distribution between
0.1 and 1.0. The time to collect was a Gaussian distribution
with a mean between 4.0 and 6.0 and a variance 40% of the
mean. Two of the sites (3 and 4) had a reward that was
superadditive in the global value. CI and c2 were randomly
chosen from a uniform distribution between 0.05 and 0.5.

Data was collected from 4208 random problems. About
11% of the underlying MDPs were trivial, that is, the op-
timal coverage set only included one policy. At the other
extreme, about 7% of the underlying MDPs were hard, and
had a large number of policies in the optimal coverage set.
A problem is composed of two underlying MDPs, and the
complexity of a problem is really only as hard as the easiest
of the two, which means that about 21% of the problems
were trivial and less than 1% were hard. In our tests, we
considered an optimal coverage set of size 2 76 to be hard.
The average size (not including the hard problems) was 13.3.
The full distribution can been seen in Figure 3.

Figure 4 demonstrates how this algorithm scales with the
size of the optimal coverage set. The average number of
value iterations was 1963. The number of reachable states
in this problem ranged from 70 to 75. To solve this using
brute force policy search would result in a t least 2’’ policy
evaluations. While policy evaluation is usually cheaper than

value iteration, it is still clearly infeasible for these problems.
To collect this data, we used a brute force intersection al-

gorithm that found all of the intersection points and weeded
out only those that were out of bounds. It did not check to
see whether the points were below another already known
plane. We also cached the results of each run of value it-
eration and never ran it twice on the same point. We are
working on a more efficient implementation of the function
INTERSECT that will not need to intersect all planes to
find the interesting points. This will lead to both a faster
INTERSECT function, and fewer runs of value iteration.

5. CONCLUSION
The framework of decentralized MDPs has been proposed

to model cooperative multi-agent systems in which agents
receive only partial information about the world. Comput-
ing the optimal solution to the general class is NEXP-hard,
and the only known algorithm is brute force policy search.
We have identified an interesting subset of problems called
transition-independent DEC-MDPs, and designed and im-
plemented an algorithm that returns the optimal joint policy
for these problems.

Besides being the first optimal algorithm to solve any non-
trivial class of DEC-MDPs, the new algorithm can help es-
tablish a baseline for evaluating fast approximate solutions.
Using the exact algorithm, other experiments have shown
that a simple hill-climbing algorithm with random restarts
performs quite well. In many cases, it finds the optimal joint
policy very quickly, which we would not have known with-
out identifying the optimal solution using the coverage set
algorithm.

The new algorithm performed well on randomly gener-
ated problems within a simple experimental testbed. A
more comprehensive evaluation is the focus of future work.
This will include a formal analysis of the algorithm’s running
time. and testing the algorithm with more complex problem
instances. This algorithm is also naturally an anytime algo-
rithm, because the COVERAGESET function could termi-
nate a t any time and return a subset of the optimal coverage
set. We will explore this more in future work. We also plan
to explore the range of problems that can be modeled within
this framework. For example, one problem that seems to fit
the framework involves a pair of agents acting with some
shared resources. If together they use more than the to-
tal available amount of one of the resources, they incur a
penalty representing the cost of acquiring additional units
of that resource.

Finally, the optimal coverage set is an efficient represen-
tation of the changes in the environment that would cause
a n agent to adopt a different policy. This information could
be extremely useful in deciding when and what to commu-
nicate or negotiate with the other agents. In future work,
we will explore ways to use this representation in order to
develop communication protocols that are sensitive to the
cost of communication.

6. ACKNOWLEDGMENTS
We thank Daniel Bernstein for useful feedback on earlier

versions of this paper. This work was supported in part by
NASA under grants NAG-2-1394 and NAG-2-1463 and by
the National Science Foundation under grant IIS-9907331.
Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do
not reflect the views of NASA or NSF.

7. REFERENCES
[I] D.S. Bernstein, R. Givan, N. Immerman, and S.

Zilberstein. The Complexity of Decentralized Control
of Markov Decision Processes. To appear in
Mathematics of Operations Research.

in multiagent systems. Proceedings of the Sizteenth
International Joint Conference on Artificial
Intelligence, 478-485, Stockholm, Sweden, 1999.

[3] M. Ghavamzadeh and S. Mahadevan. A multiagent
reinforcement learning algorithm by dynamically
merging Markov decision processes. Proceedings of the
First International Conference on Autonomous Agents
and Multiagent Systems, Bologna, Italy, 2002.

[4] C. V. Goldman and S. Zilberstein. Optimizing
Information Exchange in Cooperative Multi-agent
Systems. Submitted for publication, 2002.

[5] K. Hsu and S.I. Marcus. Decentralized control of finite
state Markov processes. I E E E Transactions on
Automatic Control, 27(2):426431, 1982.

161 M. Mundhenk, J . Goldsmith, C. Lusena, and E.
Allender. Complexity of finite-horizon Markov
decision process problems. Journal of the ACM,

(21 C. Boutilier. Sequential optimality and coordination

47(4):681-720, 2000.
[7] J.M. Ooi and G.W. Wornell. Decentralized control of

a multiple access broadcast channel: performance
bounds. Proceedings of the 35th Conference on
Decision and Control, 293-298, 1996.

[8] C.H. Papadimitriou and J. Tsitsiklis. On the
complexity of designing distributed protocols.
Information and Control, 53:211-218, 1982.

of Markov decision processes. Mathematics of
Operatzons Research, 12(3):441-450. 1987.

[lo] L. Peshkin, K.-E. Kim, N. Meuleau, and L.P.
Kaelbling. Learning to cooperate via policy search.
Sizteenth International Conference on Uncertaznty zn
Artificial Intelligence, 484-496, 2000.

Multiagent Team Decision Problem: Analyzing
Teamwork Theories and hlodels. Journal of Artzficial
Intelligence Research, 389-423, 2002.

coordinate without sharing information. Twelfth
National Conference on Artijicial Intellzgence,
426-431, 1994.

[13] R. Washington, K. Golden, J. Bresina, D.E. Smith, C.
Anderson, and T. Smith. Autonomous rovers for Mars
exploration. Proceedings of the IEEE Aerospace
Conference, 1999.

centralized ones to decentralized ones. Proceedzngs of
the First International Joint Conference o n
Autonomous Agents and Multi-Agent Systems,
Bologna, Italy, 2002.

[15] S. Zilberstein, R. Washington, D.S. Bernstein. and
A.I. Mouaddib. Decision-theoretic control of planetary
rovers. To appear in Springer Lecture Notes in AI.
December 2002.

[9] C.H. Papadimitriou and J. Tsitsiklis. The complexity

(111 D. Pynadath and M. Tambe. The Communicative

[12] S. Sen, M. Sekaran, and J. Hale. Learning to

(141 P. Xuan and V. Lesser. Multi-agent polices: From

