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Abstract.  Efficient management of large-scale, distributed data storage and pro- 
cessing systems is a major challenge for many computational applications. Many 
of these systems are characterized by multi resource tasks processed across a het- 
erogeneous network. Conventional approaches, such as load balancing, work well 
for centralized, single resource problems, but breakdown in the more general case. 
In addition, most approaches are ofcen based on heuristics which do not directiy 
attempt to optimize the world utility. In this paper, we propose an agent based 
control system using the theory of collecti-res. We configure the servers of OUT network 
with agents who make local job scheduling decisions. These decisions are based on 
local goals which are constructed to be aligned with the objective of optimizing t k ~  
overall efficiency of the system. We demonstrate that multi-agent systems in which 
all the agents attempt to optimize the same global utility function (team game) 
only marginally outperform conventional load balancing. On the other hand, agents 
configured using collectives outperform both team games and load balancing (by up 
to four times for the latter), despite their distributed nature and their limited access 
to information. 

Keywords: Reinforcement learning, Job Scheduling, Computational Grid, Multi- 
resource optimization, Collectives 

1. Introduction 

In recent years, both the fields of multiagent systems and reinforcement 
learning have shown great promise in application to large optimization 
problems [l, 3, 2, 18, 201. In particular, the intersection of these two 
fields has produced exciting solutions to many problems (e.g., data 
routing across a network [lo, 12, 14, 16, 191. 

Job scheduling, a particular instance of a resource allocation prob- 
lem, is particullarly-well- Cfieil T6f a -  milt3 aznf, -5oliitioF5ZEh5C 
reinforcement learning agents [3, 91. In this problem, we are confronted 
with a grid of interconnected servers, along with incoming stream of 
“jobs” or elements that need to be processed. Potentially, each server 
in the grid has different capabilities, and not all jobs can (or should be) 
processed at the servers in which they enter the system. 

For the single-resource case, this problem has been extensively stud- 
ied [9]. However, multi-resource job scheduling across a network of 
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heterogeneous servers is a difficult problem that has received much less 
attention [7]. In this instance of the problem, each server has multiple, 
and potentially heterogeneous, resource capabilities (e.g., CPU speed, 
available memory, queue length); and each incoming job to be processed 
has different characteristics across those resources as well. 

Load balancing (LB) has been successfully applied to single resource 
scheduling problems. In fact, for single resource optimization problems, 
there are theoretical results showing that load balancing does provides 
optimal solutions [9]. 

Generalizing LB to the multi-resource case, though, is far from 
straightforward. In its simplest form, load balancing aims at ensuring 
that the level of activity on each server stays the same, i.e., the load on 
the system is balanced across all the servers. Load balancing though 
has two major limitatiocs. First, it requires cectralized c o n t d 2  Sec- 
ond, load balancing assumes that the load being distributed across the 
servers is a de-facto desirable solution to Optimizing the world utility 
problem. In the multi-resource cwe, these issues become even more 
problematic as getting maximal efficiency not only of the system, but 
also of the utilization of the available resources must be addressed. 
Different generalizations have tended to emphasize different desirable 
characteristics [7]. 

The agent based approach we propose sidesteps this potential mis -  
match between balancing the load across the network and optimizing 
the world utility function. It directly aims to optimize the world utility 
and as a consequence it is possible that some servers are idle while 
others are operating at full capacity. As long as that system behavior 
is good for the world utility, no consideration is being made to “split” 
the load or make the jobs processing “fair” in any way. 

There are many possible ways to map this problem onto a multi- 
agent system. One possibility would be to let the jobs be agents with 
their actions being the choice of server on which to run. Another pos- 
sibility, and the one we will consider, is to assign many agents to each 
server. These agents are tasked with the problem of deciding which 
jobs in the local wait queue will be run locally and which should be 
shipped to another server for processing. One choice for the action 
space of these agents is to select the particular neighbor (including 

Throughout this paper, we refer to servers with different resource configurations 
as “heterogeneous” servers. We assume that there are no compatibility issues related 
to compilation of the jobs, and that any job can be executed at any server, assuming 
the server has the necessary resources. In some articles [7],  this type of network is 
referred to as a “near-homogeneous” computational grid. 

There are LB algorithms based on local information, though the performance 
of such algorithms necessarily suffers from the loss of information [7]. 
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itself potentially) to whom to ship a given job. In some situations, it 
might be expected that an agent might begin preferentially shipping all 
or most of its jobs to the same neighbor. This could lead to congestion 
difficulties for the system. To avoid this possibility, we instead assign to 
each agent a vector $whose components give the probability of routing 
a job to its various neighbors. In this scenario, the agents are given the 
more abstract job of setting their own probability vector. The design 
question now becomes to determine what rewards each agent shouId 
receive so that they set the probability vectors that optimize the overall 
job processing efficiency of the full system. 

Traditional solutions to that question include the “team game” ap- 
proach, where each agent receives the full world reward, and the “selfish 
reward” where each agent is only concerned about the jobs that it has 
touched. In general, team game solutions suffer from the signal-to-noise 
problem in which an agent has a difficult time discerning the effects on 
its actions on its utility, because that “signal” is getting swamped by 
the “noise” of all the other agents. Clearly this problem gets worse 
as the number of agents in a system increases. Selfish utilities on the 
other hand suffer from coordination issues, where actions that may 
be beneficial to one agent may cause significant damage to the system 
overall. In other words, there are no guarantees that agents using selfish 
utilities will act in the best interests of the overall system. 

Handtailored solutions may in some cases outperform these generic 
utilities, but such solutions though appealing generally: 

- require laborious modeling; 

- provide “brittle” global performance; 

- are not “adaptive” to changes in the environment; and 

- generally do not scale well. 

The theory of collectives is concerned with overcoming the short- 
comings of team games and selfish utilities without resorting to hand- 
tailoring. In particular, it is concerned with providing agents with 

- -  -wi€K rewards that are both “learnable” i.e., they have go-od- signabto- 
noise ratios, and are “factored” i.e., the utilities are aligned with the 
world utility. 

A naturally occurring example of a system that can be viewed as 
a collective is a human economy. Each individual trying to maximize 

- .  - 

A collective is defined as a multi agent system in which there is a well-defined 
world utility function that needs to be optimized, and where each agent takes actions 
based on its own private utility [15]. 
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their own private utilities (e.g., maximize bank account, advance ca- 
reer) constitute the “agents” in the system. The world utility can be 
viewed a s  the gross domestic product of the country in question (“world 
utility” is not a construction internal to a human economy, but rather 
something defined from the outside). The issue in such a case is to 
determine what each agent needs to do so that the joint action of all 
agents optimizes sthe world utility. 

This system needs to be factored to avoid phenomena such as the 
tragedy of the commons, in which individual avarice works to lower 
world utility [6], from occurring. One way to avoid such phenomena is 
by modifying the agents’ utility functions via punitive legislation, in 
essence making sure the agents’ utility functions are aligned with the 
world utility. Securities and Exchange Commission (SEC) regulations 
designed to prevent insider trading can be viewed as a rea! world 
example of an attempt to make such a modification to the agents’ 
utilities . 

In designing a collective we have more freedom than the SEC though, 
in that there is no base-line “organic” private utility function over which 
we must superimpose legislation-like incentives. The entire “psychol- 
ogy” of the individual agents is at our disposal, and that freedom is 
a major strength of the collectives approach. For example, it obviates 
the need for honesty-elicitation mechanisms, like auctions, which form 
a central component of conventional economics. 

The problem of designing collectives is related to work in many fields 
beyond multiagent systems and computational economics, including 
mechanism design, reinforcement learning for adaptive control, com- 
putational ecologies, and game theory. However none of these fields 
directly addresses the inverse problem of how to design the agents’ 
utilities to reach a desirable world utility value in its full generality. This 
is even true for the field of mechanism design, which while addressing 
an inverse problem similar to that of COIN design, does so only for 
certain restricted domains, and does not address the “learnability” 
issue. (Mechanism design is mostly appropriate when there are pre- 
specified goals underlying agents’ utilities over which “incentives” need 
to be provided, and when Pareto-optimality (rather than optimization 

The collectives framework has been successfully applied to multi- 
ple domains including packet routing over a data network [12], the 
congestion game known as Arthur’s El Faro1 Bar problem [17], and 
multi-rover coordination where agents needed to learn sequences of 
actions to optimize the world utility [ll]. Furthermore, in the routing 
domain, the COIN approach achieved performance improvements of a 
factor of three over the conventional Shortest Path Algorithm (SPA) 

-of a-world -utility)- is often the goal [l-51;) 
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routing algorithms currently running on the internet [14], and avoided 
the Braess’ routing paradox which plagues the SPA-based systems [12]. 

In this paper we present a general, distributed reinforcement learn- 
ing solution to such optimization problems. In Section 2 we summarize 
the theory of collectives that is relevant to this application. In Section 3 
we present the details of this domain, and show how the collectives ap- 
proach can be used for job scheduling. In Section 4, we show simulation 
results demonstrating the superiority of the collective-based approach, 
where the multi agent system approach significantly outperforms load 
balancing, even though it has less information at its disposal. 

2. Collectives: A Summary  

In this section, we summarize the portion of the theory of collectives 
required for the experiments described in this article [15]. Let 2 be 
an arbitrary vector space whose elements z give the joint move of all 
agents in the system (i.e., z specifies the full “worldline” consisting of 
the actions/states of all the agents). The provided world utility G(z),  
is a function of the full worldline, and the problem at hand is to find 
the z that maximizes G(z).  

In addition to G, for each agent 7, there is a private utility func- 
t ions {g7]}. The agents act to improve their individual private func- 
tions, even though, we, as system designers are only concerned with 
the value of the world utility G. To specify all agents other than 7, we 
will use the notation?. 

Our uncertainty concerning the behavior of the system is reflected 
in a probability distribution over 2. Our ability to control the system 
consists of setting the value of some characteristic of the collection of 
agents, e.g., setting the private functions of the agents. Indicating that 
value by s,  our analysis revolves around the following central equation 
for P(G I s), which follows from Bayes’ theorem: 

- _. - -  - - 
where Z‘’ i s  the vector of the “intelligences” of the agents with respect 
to their associated private functions, and <G is the vector of the intelli- 
gences of the agents with respect to G. Intuitively, what these vectors 
indicate what percentage of 7’s actions would have resulted in lower 
utility. In this articIe, we use intelligence vectors as decomposition 
variables for Equation 1 (see [15] for details on intelligence). 

Note that, from a game-theoretic perspective, a point z where all 
players are rational, (eg7 = 1 for all agents 7, is a game theory Nash 
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equilibrium [15]. On the other hand, a z at which all components of 
ZG = 1 is a local maximum of G (or more precisely, a critical point of 
the G(z) surface). 

The design of collective problem can be best illustrated by the trade- 
off presented in Equation 1. If we can choose s so that the third 
conditional probability in the integrand, P(Zg I s), is peaked around 
vectors Zg all of whose components are close to 1 (that is agents are 
able to “learn” their tasks), then we have likely induced large private 
utility intelligences. If we can also have the second term, P(& I Zg, s), 
be peaked about ZG equal to Zg (that is the private and world utilities 
are aligned), then Z ,  will also be large. Finally, if the first term in the 
integrand, P(G 1 ZG, s), is peaked about high G when ZG is large, then 
our choice of s will likely result in high G, as desired. Note, this first 
t e rn  requires global information (search for ghbal optina, rather thac 
local optima). In problems where such communication/control is not 
possible, only terms two and three can be optimized. 

2.1. FACTOREDNESS AND LEARNABILITY 

The requirement that private functions have high “signal-to-noise” .(an 
issue not considered in conventional work in mechanism design) arises 
in the third term. It is in the second term that the requirement that 
the private functions be “aligned with G” arises. In this work we con- 
centrate on these two terms, and show how to simultaneously set them 
to have the desired form. 

Details of the stochastic environment in which the collection of 
agents operate, together with details of the learning algorithms of the 
agents, are reflected in the distribution P ( z )  which underlies the dis- 
tributions appearing in Equation 1. Note though that independent of 
these considerations, our desired form for the second term in Equation 1 
is assured if we have chosen private utilities such that Zg equals ZG 
exactly for  all x .  We call such a system factored. In game theory 
language, the Nash equilibria of a factored system are local maxima of 
G. In addition to this desirable equilibrium behavior, factored systems 
also automatically provide appropriate off-equilibrium incentives to the 
agents (an issue rarely considered in the game theory / mechanism 
design literature). 

As a trivial example, any “team game” in which all the private 
functions equal G is factored [4]. However team games often have very 
poor forms for term 3 in Equation 1, forms which get progressively 
worse as the size of the system grows. This is because for large systems 
where G sensitively depends on all components of the system, each 
agent may experience difficulty discerning the effects of its actions on 

. . . . . . . . . . . - -- . - - - . - . . . . - . . . . - - . - . . - . - . . . . . . . . . . . . - . . . . 
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z 

72 0 0 0  

to “null” 0 1 0  

Figure 1. This example shows the impact of the clamping operation on the joint 
state of a four-agent system where each agent has three possible actions, and each 
such action is represented by a three-dimensional unary vector. The f i s t  matrix 
represents the joint state of the system z where agent 1 has selected action 1, agent 
2 has selected action 3, agent 3 has selected action 1 and agent 4 has selected action 
2. The second matrix displays the effect of clamping agent 2’s action to the “null” 
vector (i.e., replacing z,, with 6). 

G. As a consequence, each 77 may have difficulty achieving high g, in  a 
team game. We can quantify this signaljnoise effect by comparing the 
ramifications on g7](z) arising from changes to z, with the ramifications 
arising from changes to z i  (Le., changes to all nodes other than 7). 
In particular, the learnability of private utility g, gives the ratio of 
the sensitivity of g7(z) is to changes to agents other than 77, to the 
sensitivity of g,(z) to changes to 7. So at a given state z [15]. the 
higher the learnability, the more gq(z) depends on the move of agent 
7 ,  i.e., the better the associated signal-to-noise ratio for 7. Intuitively 
then, higher learnability means it is easier for 7 to achieve a lkrge value 
of its intelligence. 

2.2. PRIVATE UTILITIES 

As discussed above, designing the private utilities for the agents is one 
of the main challenges in a collective. One private utility function which 
is factored and generally provides good learnability is the Wonderful 
Life Utility (WLU) [15, 17, 121. The WLU for agent 7 is parameterized 
by a pre-fixed clamping parameter  CL, chosen from among 7’s legal 
or illegal moves: 

..-~ .-.. . . ... _ _ ~ _ .  -WLUT.= G(z). -:-G(.z+CL,) ~ . - -. . - -. 

Figure 1 provides an example of clamping. As in that example, in 
many circumstances there is a particular choice of clamping param- 
eter for agent 7 that‘ is a “null” move for that agent, equivalent to 
removing that agent from the system, hence the name of this private 
function. For such a clamping parameter WLU is closely related to 
the economics technique of “endogenizing a player’s (agent’s) external- 
ities” [8]. Indeed, WLU has conceptual similarities to Vickrey tolls [13] 
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in economics, and Groves’ mechanism [5] in mechanism design. How- 
ever, because WLU can be applied to arbitrary, time-extended utility 
functions, and need not be restricted to the “null” clamping operator 
interpretable in terms of “externality payments”, it can be viewed a 
generalization of these concepts. 

It can be proven that in many circumstances, especially in large 
problems, that WLU has higher learnability than does the team game 
choice of private utilities [15]. This is mainly due to the second term 
of WLU which removes a lot of the effect of other agents (i.e., noise) 
from q’s  utility. The result is that convergence to optimal G with WLU 
is much quicker (up to orders of magnitude so [15]) than with a team 
game. 

Intuitively, one can look at WLU from the perspective of a human 
C A T -  .,a,,,: TVT 

fied with the employees of that company, and the associated gs given by 
the employees’ performance-based Compensation packages. For exam- 
ple, for a “factored company”, each employee’s compensation package 
contains incentives designed such that the better the bottom line of the 
corporation, the greater the employee’s compensation. As an example, 
the CEO of a company wishing to have the private utilities of the 
employees be factored with G may give stock options to the employees. 
The net effect of this action is to ensure that what is good for the 
employee is also good for the company. In addition, if the compensation 
packages have “high learnability” , the employees will have a relatively 
easy time discerning the relationship between their behavior and their 
compensation. In such a case the employees will both have the incentive 
to help the company and be able to determine how best to do so. 
Note that in practice, providing stock options is usually more effective 
in small companies than in large ones. This makes perfect sense in 
terms of the COIN formalism, since such options generally have higher 
learnability in small companies than they do in large companies, in 
which each employee has a hard time seeing how his/her moves affect 
the company’s stock price. 

with G the “bottom line” of the cempaEy, the agents q identi- 

. . .  _ _  - 

3. Collectives for Multi-Resource Optimization 

With increasing demand for supercomputing resources (e.g., biological 
applications), the ability of a system to efficiently schedule and process 
jobs is becoming increasingly important. As such, heterogeneous com- 
putational grids where jobs can enter the network from any point and 
be processed at any point are becoming increasingly popular. Below, we 
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discuss such a grid of computational servers, and show how the theory 
of collectives summarized above can be applied to this problem. 

3.1. SYSTEM MODEL 

We modeled such a computational system as a network of N servers 
each with K resources (q, ... Q). Each server had a specified capacity 
for each resource assigned to be an integer ranging from [I, MI. Thus, 
M was a measure of the heterogeneity of the resources. The first re- 
source TI corresponded to the processing speed of the server. The other 
resources corresponded to other, and perhaps limited, quantities, such 
as memory. In general, each server had 2-4 neighbors with which it had 
a direct connection. 

Jobs were also specified by K resource requirements ranging from 
[ l , M ] .  The first job resource TI  was an indication of the number of 
cycles the job required to be processed. The other resources, again, 
corresponded to other quantities, such as memory. An important point 
is that for resources T ~ ,  i > 1, the server resource capacity must equal 
or be greater than the job’s requirement in order for a job to run on 
a particular server. This could correspond to the requirement that a 
server must have enough memory to accommodate a given job. 

Each server had its own wait queue for jobs. For simplicity, we al- 
lowed only one job to run on a server at a time; the other jobs remained 
in the queue until the processor became available. Jobs entered the 
local queues either externally (to the system) or were shipped from 
other servers. Jobs entering externally were sent to the back of the 
queue while jobs received from other queues go to the front. Shipped 
jobs go to the Gont for two reasons. First, they have already had to 
wait in the queue they were originally placed. Secondly, shipped jobs 
are often “difficult” jobs in the sense of finding an appropriate server 
to run them. Putting them in the front of the queue forces the system 
to deal with these jobs now rather than postponing action by having 
them wait in another queue. Otherwise, it would be easy to imagine 
difficult jobs being endlessly shuffled. 

If the processor was available, and the resource requirements met, 
the server wod3 activated tl ie-fiTst- job--iZ-tXFquiiiG.-If -t7iGproi?eXoT- 
was available, but the server did not have the resource capacity to 
run the job, the server would remain idle until the problem job was 
sent to another server. This is expected to be one the main causes of 
bottlenecks in the system and will be an issue that an intelligent job 
management system will need to address. 

The dynamics of our simulations thus proceeded as follows. At each 
time step 7, new jobs were added to the system and placed in the wait 

. .  - - -_ - - - __ - - .  

jobsc.tax; 15/91/2003; 15:28; 2.0  



10 K. Turner and J. Lawson 

queue of randomly selected servers. In particular, each server had a 
probability T of receiving a new job at each time. If a given processor 
was idle, and the first job in the queue met the resource requirements, 
that job would be activated. If not, the server would remain idle. In 
addition, for each 7 ,  the server would make a decision about the first 
job in the queue, deciding whether to keep the job or sent it to a 
neighboring server. These decisions were made based on the agents’ 
probability vectors which in turn are set using reinforcement learning 
algorithms. This will be discussed in more detail below. 

Thus, there were two main sources of inefficiency in the system. The 
first were the bottlenecks created by jobs whose requirements exceeded 
the capacity of their server. When such a job got to the front of the 
queue, the server remained idle until the job was shipped to a neigh- 
bor. The second source of inefficiency arose from mismatches between 
a processor’s speed and a job’s cycle requirement. Clearly, jobs that 
require more cycles should run on faster machines. 

3.2. MULTI-AGENT ARCHITECTURE 

These inefficiencies were the main issues that agents as shipping deci- 
sion makers needed to manage. The heterogeneity of both the servers 
and the jobs resulted in many possible combinations of assignments of 
jobs to servers. This was especially true as M ,  the resource range, grew, 
and could potentially create a very noise environment in which the 
agents had to learn. To reduce this noise, we instead assigned multiple 
agents to each server where each agent dealt with a subset of jobs. In 
particular, for jobs with K resources we assigned 2K agents per server 
where agent 1 deals with jobs such that q e [ l ,  M/2] ,  ..., r k c [ l ,  M/2] ,  
agent 2 deals with jobs rlc[M/2 + I, MI, rze[l, M/2] ..., r k c [ l ,  M / 2 ] ,  etc. 
Thus the resource specifications of a job determined which agent would 
make its shipping decision. 

We will distinguish between two time scales that will be used through- 
out this article: 7 gives the time steps at which the jobs enter the 
system, move between queues, and are processed, whereas t gives the 
time steps at-whicXthe agents- observe -their utilitreq change their 
actions, etc. This distinction is important because it is the only way an 
agent can get a “signal” from the system that will reflect the impact 
of its decision, i.e, the system has to settle down before a reward can 
be matched to an action. Therefore, an agent 7 changes its probability 
vector at each time t. Withing a single time step t though, many jobs 
enter the system, are executed, routed etc. each of which occurs at time 
interval 7 (t >> 7). 

. 
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The learning was organized as follows. For each t ,  the probability 
vectors were fixed, and the simulation run for fixed number of time 
steps (typically, 400). At the end of this run, the utility functions 
were calculated and the rewards recorded in the agents’ training sets. 
In order to be able to compare the performance individual probability 
vectors, we cleared the system (Le. the queues) after each t. During 
the initial phase, 0 5 t 5 100, the proability vectors were set at 
random, and the utilities recorded. After this “data collection” phase, 
t 1 100, the agents utilized reinforcement learning algorithms to set 
their probability vectors. 

The learning algorithm proceeds by first generating a set of candi- 
date probability vectors with a Gaussian distribution about the cur- 
rent probability vector. Reward estimates were made by performing 
a weighted zverzge over reward values from the age&’ traidng set. 
These values were weighted by both how long ago the value was recorded 
(data aging) and the distance between the candidate and the previous 
probability vector 

R = x,g,e-dTz e - d P ~ / ~ , e - f l ~  e-@%. (3) 

Here, dTa = QT(T - ta)  where T is the current learning period, t, is 
the period for data 92, and c t ! ~  is a parameter. Also, dP, = cypll$ -pill 
where P‘ is the current probability vector, pi is the vector for data gz, 
and a p  is a parameter. The new probability vector was then chosen 
by sampling a Boltzmann probability distribution over these reward 
estimates. 

3.3. STATE SPACE AND WORLD UTILITY 

Let us define the state of each agent at time t as by 

where jk identifies job k, Wk is the wei ht of that job which gives the 
importance of that job in the system, 12’ is the “job indicator” function 
and is equal to 1 if job k was “touched” by agent q at time step t ,  and 

- 0 otherwise, and ept determines whether job k was executed at agent 
77 at time step t. 

- - 

Now, the state of the full system, zt at time t ,  is given by: 

Zt = {( jo, wo, 1, e:>, . * , (jk, Wk, 1, e:), ’ .} (5) 

where e: determines whether job k was executed at time step t. Note 
that the job indicator function 1; is always set at 1 for the full sys- 
tem, since by definition, if the job is in the system, it must have been 
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“touched” by at least one agent. Nevertheless, we keep the notation, 
both for ensuring consistency between the state vector of an agent and 
that of the full system, and because its presence in the world utility 
will facilitate the derivation of the private utilities of the agents. 

Based on this, the world utility at time t is given by: 

Intuitively, G gives the weighted ratio of the all the jobs that were 
processed at time step t to all jobs that entered the system at that 
time step (recall that “time step t is a window of time, not a single 
time step from the point of view of the jobs”.) 

For all the reasons highlighted in Section 2, using G as the reward 
for all the agents introduces significant signal to noise issues. In order to 
overcome such difficulties, we explored the use the of collective based 
private utilities discussed in 2. In particular, we investigate the case 
where the clamping parameter set to the null vector. This corresponds 
to I:’t being set to 0 for all jobs k for which it was set to 1 at time step 
t. With this choice for clamping, the WLU is given by: 

(8) 

where Tlyt is the complement of I:9t and equals 1 when equals 0 
and 0 when c’t equals 1. Intuitively, WLU(z,) represents the weighted 
fraction of jobs that were touched by agent q to the jobs that entered 
the system. Note, this is different than what a “selfish utility” (SU) only 
concerned with its own jobs would do. More precisely, let us define such 
a-utility : 

Intuitively, SU gives the ratio of the jobs processed by the system at 
time step t ,  to the total jobs that passed through that agent, hence 
the indicator function in the denominator. In the language of collec- 
tives, this utility has higher learnability than does the WLU, but it is 
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not factored with G. The impact of this tradeoff is explored below in 
Section 4. 

3.4. LOAD BALANCING ALGORITHM 

We compared our agent-based approach against a fixed, deterministic 
algorithm. In particular, we considered a distributed version of multi- 
resource load balancing. For each server, we calculated a load for each of 
the k resources, lk = Cz( jF /sk)  where j z  is the resource k of job n and 
s k  is the the capacity of resource k of the server. Thus, the resource 
load has been normalized to the resource capacity of the server. We 
assign a load to a particular server i as the average of its individual 
resource loads Li = Avg(Zk). We, then, calculate the system load as the 
average over the servers Lavg = Avg(Li1. 

The load balancing algorithm proceeds as follows. At each time step 
T, each server calculates its own load and compares it with the global 
load Lavg. If the server's load is greater than the global, modulo some 
tolerance, the servers looks to get rid of its highest load job. Each 
server has access to global information about the loads on the all the 
other servers. Using this information, the server determines which of 
the other servers has the lowest load. It then ships its high load job to 
the low load server via the one of its neighbors that lies on the shortest 
path between the sending and the receiving servers. 

Table I. System Processing Efficiency 
(r=0.2,M=2) 

1 Algorithm I Net Efficiency I Perc Gain 1 
~~ ~ 

I Opt Estimate 1 1.0 I - I 
I RAND 1 0.9318 I - I 

I 0.9317 1 -0.20% 1 
1 0.9470 I 22.33% I 

1 WLU 1 0.9788 I 68.83% I 

. . . .  I su ~ - ~. - _  . . .  - . . ~ . . ~-~ . 

I TG 

I 0.9971 I 95.70% I I LB 
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Figure 2. Simulations results for 50 servers with 4 agents each with parameter values 
(r=0.2,M=2). Each t represents a “run” of 400 T time steps with each agent having 
a fixed probability vector p’ during the run. At the end of each run, utilities are 
calculated, the queues cleared, and the agents reset/modify their p’based on their 
learning algorithms. Results are averages over 50 different systems configurations. 

Table 11. System Processing Efficiency 
(r=0.2,M=8) 

I Algorithm I Net Efficiency I Perc Gain I 
I Opt Estimate I 1.0 1 - , I 
I RAND I 0.6435 I - I 

~ 

1 0.6345 1 -2.53% 1 
I 0.6703 I 7.51% 1 

I WLU I 0.7932 1 41.97% 1 

I su 
I TG 

1 0.2254 I -117.28% 1 I LB 
. . . .  

4. Results 

We ran extensive simulations on networks of N = 50 servers having 
K = 2 resources. The 50 servers had 4 agents each, making for 200 
total agents in the system. The servers were connected into a network 
having a ring configuration with random connections added in the spirit 
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Figure 3. Simulations results for 50 servers with 4 agents each with parameter values 
(r=0.2,M=8). Load balancing does especially poorly in cases of large heterogeneity 
M = 8 due to its inability to deal effectively with bottlenecks. In learning based 
methods TG, SU, WLU, agents set probability vectors randomly for t _< 100 as part 
of their training. Even the training period RAND performance is better than load 
balancing. 

of "small world's'' networks. In general, each server had 2-4 neighbors 
with which it had a direct connection. 

We examined the performance for different job arrival probabilities 
T and different resource ranges M .  We tabulated the performance for 

Table 111. System Processing Efficiency 
(r=0.8,M=2) 

1 Algorithm 1 Net Efficiency 1 Perc Gain 1 
r. 

I Opt Estimate I 0.781 I - I 

1 0.6140 I -7.78% 1 I su 
I 0.6376 1 7.48% I I TG 

I WL,U 1 0.6911 I 41.98% 1 
1 0.6446 I 11.97% I I LB 
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Figure 4 .  Simulations results for 50 servers with 4 agents each with parameter values 
(r=0.8,M=2). 

Table IV. System Processing Efficiency 
(r=0.8,M=8) 

1 Algorithm 1 Net Efficiency I Perc Gain 1 
I Opt Estimate I 0.395 I - I 
1 RAND I 0.1944 I - I 
I su 1 0.2024 1 4.01% I 

1 0.1984 I 1.98% 1 I TG 
1 WLU 1 0.2490 1 27.25% I 

I 0.0974 1 -48.32% I I LB 

the multi-agent approach with learning agents, a load balancing algo- 
rithm generalized for the multi-resource case, and a random shipping 
algorithm RAND. In the RAND algorithm, the proportion vectors for 
shipping/holding the first job in the queue was set randomly. This is 
is basically the situation when the agents are in the training phase of 
their learning algorithm. For scenarios involving learning agents, we did 
runs using personal utilities based on team games (TG), selfish agents 
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Figure 5. Simulations results for 50 servers with 4 agents each with parameter values 
(r=0.8,M=8). 

(SU), and theory of collectives (WLU). The results were averaged over 
50 different randomly generated network configurations. 

Certain parameter values, especially for large heterogeneity (large 
M), introduced a large amount of frustration into the system. In these 
cases, it would be impossible for the system to achieve 100% processing 
efficiency. For these cases, we made an estimate of what we might expect 
the theoretical optimal possible performance to be. These estimates are 
included in the tables. To further compare the results, we calculated 
the performance gain of the different methods. This gain is measured 
relative to the gap between random shipping and a theoretical upper 
bound on the performance of the system. 

We obtained this bound by first analyzing what percentage of in- 
coming jobs can be processed at their point of entry into the system, 
if the incoming rate were set to one (i.e., T = l), meaning each server 
receives a job at each time step. In such cases, no job shifting can take 
place, since each Server SimTly- procesies t h F  jobs it-receives-.-T~n,-€~r~ 
other values of T ,  we assumed instantaneous shipping across the servers, 
allowing the job that cannot be processed at their point of entry to 
reach servers in which they can be processed. This is not a particularly 
tight bound since it ignores how the “slack” in the system picks up 
the unprocessed jobs (i.e., ignores how a server with high capacity will 
receive and schedule these jobs), and simply assumes that if there is 
room at some server, the jobs will appear there and be processed. 

- - - - - -. - . -. 
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Tables I-IV show the absolute and relative performance numbers 
for the different algorithms at t = 400. Notice that in all cases the 
learning based approaches are competitive or significantly outperform 
load balancing. Load balancing does well for low arrival rates T- and 
low heterogeneity M .  But its performance degrades markedly for high 
T-,  and especially for high M. In fact, even setting the probability 
vectors at random (RAND) outperforms load balancing for M = 8 
independent of T .  This can be understood by the fact that the agent 
based approaches make decisions about only the first job in the queue. 
But it is this first job that can create serious bottlenecks in the system; 
if the first job needs more resources than the server can provide, the 
job cannot run and remains in queue, blocking other jobs from being 
processed as well. Load balancing, on the other hand, is attempting 
d y  to eqdalize the lzad 2crcss CI? the entire queue acd dnes nothing 
to deal with such potential bottlenecks. For large M, the potential for 
bottlenecks increases markedly. Random probability vectors have the 
advantage over load balancing that they operate directly on the place 
where a bottleneck can occur. 

It is also in these large M regimes that approaches based on adap- 
tive learning algorithms would be expected to do well. Simulations 
results show large increases in performance by having the probability 
vectors set using reinforcement learning. These results also show the 
importance of setting the agents’ personal utilities to be functions that 
are both “factored” and “learnable”. The team game (TG) utility is 
factored trivially, but has poor learning properties for the individual 
agents since it includes information from the full system. The selfish 
(SU) utility is expected to be more learnable since it only includes ef- 
fects of individual agents, but it is not factored (aligned with the global 
goal), and therefore could be doing a good job of learning the wrong 
thing. The Wonderful Life (WLU) utility derived using the theory of 
collectives is both factored and learnable. It consistently outperforms 
TG and SU for all parameter pairs (.,Ad). Figures 2-5 provide the 
results for two r and two m combinations. In addition, WLU outper- 
forms load balancing in all but the simplest case. The performance gap 
is especially large for the M = 8 simulations, where WLU outperforms 
-load balancing-by a factor of 2.4. . _ _  

5. Conclusions 

In this work we investigated how a collective of reinforcement learn- 
ing agents can learn to effectively solve a multi-resource optimization 
problem. In particular we focus on the multi-resource job scheduling 
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problem across a heterogeneous network. Conventional approaches to 
such problems (e.g., as load balancing) work well when there is in- 
stantaneous, centralized control. For all but very few applications, this 
is an unreasonable assumption on the system’s capabilities. Practical, 
heuristics based approaches on the other hand provide good solutions 
for the resource problems, but often break down in the more general, 
multi-resource optimization case. 

The collective based solution we propose is based on assigning agents 
to each server whose actions are to determine whether a job should be 
processed at that server or shipped to another agent, and if so, to which 
server. These decisions are based on private utility functions (i.e., local 
goals) which are constructed to be aligned with the world utility (i.e., 
optimizing the overall efficiency of the system). 

Our results democstrate that in a collective in which all the agents 
attempt to optimize the same global utility function (team game) only 
provide marginal improvements over conventional load balancing. How- 
ever, those marginal improvements are obtained without requiring a 
centralized controller (only requirement is of world utility being broad- 
cast at regular intervals). Furthermore, agents using private utility 
functions based on the theory of collectives outperform both team 
games and load balancing (up to four times), despite requiring less 
information. 
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