
High-level Proofs of Mathematical Programs
Using Automatic Differentiation, Simplification,

and some Common Sense

Richard Fateman
EECS Department

University of California, Berkeley

ABSTRACT
One problem in applying elementary methods to prove cor-
rectness of interesting scientific programs is the large dis-
crepancy in level of discourse between low-level proof meth-
ods and the logic of scientific calculation, especially that
used in a complex numerical program. The justification of
an algorithm typically relies on algebra or analysis, but the
correctness of the program requires that the arithmetic ex-
pressions are written correctly and that iterations converge
to correct values in spite of truncation of infinite processes
or series and the commission of numerical roundoff errors.
We hope to help bridge this gap by showing how we can,
in some cases, state a high-level requirement and by us-
ing a computer algebra system (CAS) demonstrate that a
program satisfies that requirement. A CAS can contribute
program manipulation, partial evaluation, simplification or
other algorithmic methods. A novelty here is that we add
to the usual list of techniques algorithm differentiation, a
method already widely used in different contexts (usually
optimization), to those used already for program proofs. We
sketch a proof of a numerical program to compute sine, and
display a related approach to a version of a Bessel function
algorithm for J0(x) based on a recurrence.

Categories and Subject Descriptors
I.1.1 [Expressions and Their Representation]: Simpli-
fication of Expressions; I.2.2 [Automatic Programming]:
Program verificationI.1.1Expressions and Their Representa-
tionSimplification of Expressions

Keywords
Bessel, sine, recurrence, proof, differentiation

General Terms
Theory, Languages, Design, Algorithms

1. INTRODUCTION AND MOTIVATION

If you are given a functional program, how can you deter-
mine if it does what it is supposed to do? This is a com-
plicated question that requires a specification of “what it is
supposed to do.” Presumably this specification is separate
from the program itself to avoid the tautology “It does what
it does.” Answering such a question seems to require a kind
of proof that the specification is equivalent to the program.
Often it is easier to prove subsidiary properties such as “free
of data access errors.”

For scientific programs, sometimes claims for correctness are
not much help in that they make critical assumptions (e.g.
“assuming no overflow happens”) exactly when you would
like to prove that assertion (e.g. overflow cannot happen).

Another problem discussed at length in software engineering
is that specifications are prone to have bugs too: and while
one can test and debug programs, how is one to check the
specification? One solution is to derive the program from a
specification: it may force them to agree, but that does not
necessarily have any bearing on some “user requirements”
which are perhaps only informally stated, and may differ
from the specification when examined closely. There is a
substantial literature on software engineering; almost none
of it has bearing on scientific computing [14].

In our own explorations about proof of numerical or sym-
bolic programs, we have concentrated on constructive meth-
ods, rather than existence proofs. We have looked for tools
that work on programs themselves and prove properties that
can be very simply stated. An early example of such an ap-
proach is recursion induction [8] by which McCarthy demon-
strated a simple proof, based on the text of the Lisp reverse

program, that for any list s it is the case that reverse[

reverse[s]] =s. Of course a correct reverse program
must have additional properties.

To make our job of reasoning about programs more com-
pact, we will occasionally use, without explicit formal justi-
fication, some properties of the ordinary algebra of numbers.
We mention this in our introduction to alert the reader that
there is a danger here: ordinary computer hardware arith-
metic domains do not follow such rules (e.g. “1 + x = x
implies x = 0” is false for floating-point numbers 1.0 and x
when x is small but not zero.) We must be cautious that our
specific proofs work not only with (exact) integers and ratio-
nals, but when necessary with approximate number models

as may be used in the computers running the programs in
question. Using an axiomatization of IEEE floats is possible
but requires substantial careful work [7].

We will write and informally prove software that does not
use hardware floating-point numbers: Arithmetically correct
software for rational numbers is easily available in a CAS or
any of several functional-style languages or ANSI Standard
Common Lisp; other languages can use arbitrary-precision
libraries (GMP, MPFUN) to provide arbitrary-precision in-
teger arithmetic, often extended to “big” floats and rational
numbers.

we will in general settle for informal proofs that –using ex-
act arithmetic– our programs produce the correct answers,
and use general arguments that we might as well use floats.
To be rigorous, a floating-point proof would justify every
arithmetic operation. Why bother with non-rigorous proofs?
Should we even use the word proof? Two reasons: the use
of such methods may identify erroneous programs neverthe-
less, and even an endlessly tedious proofs is always “relative”
to some technology. We can only prove C program correct
relative to the assumption of a C compiler, which assumes
correctness of hardware, and is even then relative to the
absence of cosmic rays affecting run-time behavior.

We hope, however, that the techniques in this paper will
add to automating proofs while also suggesting locations of
the remaining shortfalls.

The point of this paper is to show some techniques for rea-
soning about programs: The two examples are a program
that computes sin(x), and a program that computes a Bessel
function J0(x). The first (sin) was inspired by seeing the
marvelously small program in HAKMEM [3] and wondering
in what ways it can be shown correct. The second (Bessel)
was a result of an initially fruitless attempt to use the same
technique on this more complicated computation, and a fall-
back to a simpler approach.

Our hope is that the reader will be inclined toward the use
of similar techniques to produce partial proofs more widely.
Among the techniques here, we use differentiation of an al-
gorithm [2] for purposes of proof, which we think is novel1.
There continue to be substantial efforts in automated rea-
soning described in a growing literature2. We feel the ap-
proach in this paper of incrementally hand-crafting some
knowledge of mathematics through simplification provides
(at a minimum) a significant additional technology to these
other paths in automated reasoning and for some cases a
plausible alternative.

2. PREVIEW OF THE APPROACH
Consider a program p which is alleged to compute a math-
ematical function f with several properties. Manipulate p

1The novelty is not “algorithm differentiation,” or AD, per
se which has quite a large literature, but using AD as a proof
technique. For a reader unfamiliar with AD, we recommend
setting aside this paper and looking at the cited reference.
2Here are three recent citations where an interested reader
can follow references back through further links. B. Shults’
dissertation [13], W-T Wu’s monograph [15], or A. Bundy’s
survey [4].

by partial execution or symbolic simplification to confirm
that those same properties hold over some appropriate do-
main. If the properties are sufficient to define f, as say, p
is the unique solution to f’s defining differential equation,
or solves a defining recurrence, then we have confirmation
that the program computes that mathematical function. We
refined our thoughts along these lines by considering a par-
ticular program described in the next section.

3. A PROGRAM TO PROVE
Here is a surprisingly small program which, for suitable ε
and x, and suitable arithmetic operations, computes an ap-
proximation to sin(x). It is given in Mathematica syntax,
just to be concrete. It could be written in Lisp or C or Java.
It can be written in Fortran only if the version of Fortran
allows recursion.

s[x_] := If [Abs[x] < eps,

x,

Block[{g = s[-x/3]}, 4*g^3 - 3*g]]

Some facts about the program can be deduced by testing
and reasoning. For example, if eps is 0.00000006 (6.0d-8) or
less then the agreement between Sin[x] and s[x] is good
to double-precision (16 decimal places) as long as x is in
[−π/8, π/8]. It is even good to 14 places in [−100, 100].
For single precision, eps can be as large as 0.002 and get
full-accuracy answers in this range.

Your reaction to the one-line program is likely to also be
mild surprise: it looks far too small to compute anything as
complicated as sin(x). It becomes more plausible when we
remind you of this multiple-angle formula:

sin x = 4 sin3(−x/3) − 3 sin(−x/3)

There are similar recursive formulas for other elementary
functions and correspondingly similar programs for them
([3], items 158–160). Justifications for most of them could
follow the same template we have set out here.

A reasonable simplification to this program is to assume
that it will be used when its argument x is in some small
interval around the origin. This allows us to reason bet-
ter about overflow and accuracy. A separate preliminary
range-reduction program can assure this. Proving this cor-
rect would require a separate argument, as for example in
Harrison [7].

Oddly enough, the same kind of program s, and often the
exact same program text, appropriately generalizing the ter-
mination criterion, can be used for interval computations,
complex numbers, rational arithmetic.

Our primary question is: “What computation can we make
to confirm that the program is correct?” To a lesser ex-
tent we may ask “Can we get a computer to reprod uce
the proof?” (We must also be fairly specific about what it
means to be correct.)

We have programs that can mechanically convert the pro-
gram (at the moment we prefer to begin with an equivalent
Lisp form) to a version that computes its first and second
derivatives too. This is reasonably well understood as evi-
denced by the extensive work on automatic differentiation
of programs. Some 18 programs are mentioned in an on-line
collection [2], not even including the one we developed for
differentiation of a Lisp program.

For reference, here is the Lisp version of the original s. As
a concession to those who are more comfortable with infix
syntax, we will continue with the Mathematica displays.

(defun s(x)(if (< (abs x) eps)

x

(let ((g (s (/ x -3))))

(+ (* 4 g g g) (* -3 g)))))

One kind of algorithm differentiation program is illustrated
below where we convert a function of one argument s(u) into
another function which computes the value of s(u) as well
as its first and second derivative with respect to some (im-
plicit variable) say x.. This new program we call ts takes 3
arguments, u, and the first two derivatives of u with respect
to x which may initially be equal to u. We can differentiate
the Lisp program using an AD tool, the details of this tech-
nology constitutes a distraction at this point. Presumably
it could be done automatically on a Mathematica or Maple
[12] program too. Here is what it would probably look like
in Mathematica:

(* compute s(u), s’(u), s’’(u) given u, u’, u’’ *)

ts[u_,up_,upp_]:=

If [Abs[u]<eps,{u,up,upp},

(* return a triple of s, s’, s’’ *)

Block[{r=ts[-u/3,-up/3, -upp/3],g,gp,gpp},

g=r[[1]];gp=r[[2]]; gpp=r[[3]];

(* return a triple of three items *)

{4*g^3-3*g, (*the formula *)

12*g^2*gp-3*gp, (* s’ *)

24*g*gp^2+12g^2*gpp -3*gpp} (* s’’ *)]]

or in Lisp

(defun ts(u up upp)

(if (< (abs u) eps) (values u up upp)

(multiple-value-bind (g gp gpp)

(ts (/ u -3) (/ up -3) (/ upp -3))

(values (+ (* 4 g g g) (* -3 g))

(+ (* 12 g g gp)(* -3 gp))

(+ (* 24 g gp gp)

(* 12 g g gpp)

(* -3 gpp))))))

Program note: multiple-value-bind in Common Lisp takes
the three values returned by the values construction in the
recursive call to ts, and binds them to g, gp and gpp, with-
out the use of the temporary r and the extraction of parts
needed in the Mathematica program.

Observe that the operations in this function are rational
operations and can be done exactly on rational inputs. We
claim the formula for ts[x,1,0] computes a triple: {sin x, cos x, −
sin x}. We can show that this recursive function call returns
a triple a(x), b(x), c(x) where a(x) = −c(x), and c(x) is the
second derivative of a(x). It therefore solves the differen-
tial equation a′′ + a = 0. Combined with knowledge that
a(0) = 0, we have convincing evidence we are computing
sin(x).

This demonstration requires some work. We differ from re-
searchers who are using purely logical transformations (us-
ing any of the numerous logical frameworks dating back to
at least 1968 with Automath [5] continuing to the present
COQ [6]) in that we emphasize building a system in which
proofs are based on simplification of functions. This does
not preclude an approach using multiple tools (including
lessons learned from various logical frameworks) in a total
environment.

The actual proof of this result has four parts indicated below
and fleshed out in a subsequent section:

1. ts is a valid function of its arguments: never overflows
or underflows.

2. ts[0,1,0]={0,1,0} confirming that sin 0 = 0, cos 0 =
1 and − sin 0 = 0.

3. The first and last results from ts have the same abso-
lute value but differ by a sign. It is a solution of the
harmonic equation with appropriate initial conditions
for sin x.

4. Proof of termination (easy if we can determine the
conditions: Given non-zero ε, as n increases, eventu-
ally |x/3n| < ε.). If we use this termination condition
we must also present an argument that |x| < ε means
sin x = x, good enough for us. That is, (if we are using
an inductive argument) the base case is not just that
for small x we return x but that this is also sin x.

4. SELECTED DETAILS OF THE PROOF
4.1 Valid, bounded
It is possible to discuss programs to evaluate polynomials at
great length [11].

Evaluated exactly at rational numbers in a CAS, no over- or
underflow is possible. A version of continuity in the “epsilon-
delta” sense, but using rational numbers is supported. For
floating-point computation, discrete steps prevent us from
finding an appropriate δ > 0 for every ε > 0. We could
however argue that the existence of a derivative at every
point (at least at every denumerable floating-point number
we can test) suggests an alternative notion of continuity “for
all practical purposes”.

We have to look at the particular polynomials being evalu-
ated to see if they are bounded or continuous “enough” in
the appropriate range.

Floating-point truncation in dividing by 3, cannot overflow.
(And for exact rational arguments we do not even need to

make this excuse.) A worst-case interval analysis for each
of the polynomials such as 4 ∗ g3 − 3 ∗ g with |g| < 1 shows
they don’t overflow in ordinary float arithmetic.

4.2 Initial conditions
By simplification or execution, we can see that the function
at x = 0 has the required derivatives since we are calling
ts[x,1,0].

4.3 Confirmation of derivative
Here we are really looking for a proof that s[x] is a so-
lution to y′′ − y = 0 by examining the second derivative of
y=s[x] as computed by ts. Make the recursion induction
assumption: if x is small enough the ts program returns
the triple of {g = sin(−x/3), g′ = cos(−x/3)/(−3), g′′ =
− sin(−x/3)/9}, namely the value of sin(u), and two deriva-
tives with respect to x of sin(u) where u = −x/3.

Then we need to know that the three expressions in the body
of ts

{4∗g3−3∗g, 12∗g2 ∗g′−3∗g′, 24∗g∗g′2 +12g2 ∗g′′−3∗g′′}

are mathematically valid and within our notion of “compu-
tationally close enough,” {sin(x), cos(x), − sin(x)}.

In Mathematica (similar results can be derived in other com-
puter algebra systems), a simplification to the triple pligged
into the 3 forms does this:

m[g_, gp_, gpp_] := {4*g^3 - 3*g,

12*g^2*gp - 3*gp,

24*g*gp^2 + 12g^2*gpp - 3*gpp}

FullSimplify[m[Sin[-x/3], Cos[-x/3]/(-3),

-Sin[-x/3]/9]]

This last command returns ans={Sin[x], Cos[x], -Sin[x]},
or more particularly if y =ans[[1]] and y′′=ans[[3]] then
ans[[1]]+ans[[3] is the computation of the LHS of the
differential equation which will simplify to zero, confirming
that our program computes a solution to y′′ − y = 0.

How much of this proof can be done by a computer?3

Proving item 3 by computer: all we need is a simplifier
to multiply out various forms and deftly apply identities
such sin2 u+cos2 u = 1. Fortunately FullSimplify is adept
at this. In this case we relied on the existing collection of
transformations; in other cases we must anticipate having to
carefully add to the collection. In so doing we are providing
knowledge (dare we call them “theorems”?) in the form of
rules or algorithmic reductions. This knowledge, properly
encoded, would be re-usable in future proofs or simplifica-
tions.

• Since the argument x is representable, then so is x/3:
exactly if rational arithmetic is done, approximately
for floats where it is subject to truncation and to (grad-
ual) underflow. (We considered other formulas using

3Assuming a computer has no hands to wave.

floats and x/2 where we could make a stronger state-
ment that x/2 is exactly representable subject only to
(gradual) underflow in IEEE binary arithmetic. This
complicates the program since we need sin and cos for
half-angle formulas.)

• If ts returns 3 numbers that correspond to {sin, cos,
-sin}(x), then each is a representable numbers in [-1.0,
1.0].

Any of the number systems we are considering can com-
pute any of the formulas without overflow since the largest
possible sub-expression is by hypothesis an accurate approx-
imation to a function of −x/3, sin or cos; the correct val-
ues are bounded within [−1, 1]. If we use the s program
only for small real x (We need compute only for x values
in [−π/8, π/8], by argument reduction and reflection since
sin(x) is odd and periodic; in that interval it is bounded in
absolute value by about [−0.3827, 0.3827]).

Argument reduction does not work for complex numbers.
For a pure imaginary input, s[z*I] this program computes
i sinh(z) which is not periodic. For large z this grows
as exp(z)/2 and can certainly overflow. Any proof must
account for this prospect, and an automated proof of the
bound must make use of the fact that the argument x is
small.

4.4 Termination
There are several ways of terminating this recursion. We
can pre-compute some ε(p) for which further computation
(in precision p) is pointless. In this specific example, we
could cease when x − x3/6 is indistinguishable from x [3].
Since each recursion level reduces the input by a factor of 3,
the number of recursions is n = − log3(ε/x) which is clearly
finite as long as ε > 0. Here’s a Lisp program to compute ε.

(defun eps(p)

;; Return a value eps such that 1-x^2/6 = 1

;; in the same precision as p

(assert (floatp p))

(setf p (if (= p 0) (1+ p) (/ p p))) ; 1.0 or 1.0d0

(do ((x p (/ x 2)))

((= 1 (- 1 (/ (* x x) 6))) x)))

This works for any finite-precision arithmetic, but returns
an error for an attempt to use rational arithmetic.

5. OTHER APPLICATIONS
Similar recursive remarkably short formulas for sinh, tan,
tanh, etc. as well as exponential and log (neatly making use
of square-root) are described in HAKMEM. [3]. We will not,
therefore, examine in detail these elementary functions.

Additional grist for this mill includes any functions with
argument-reduction relations. These do not seem so likely
among the special functions, so if this kind of technique is to
work, other approximate recursive convergent program gen-
eration ideas may be needed. In the past we have explored
“bad” numerical techniques that are nevertheless surpris-
ingly useful symbolically, including Picard iteration or alge-
braic Newton iteration (p-adic) [9].

Before proceeding down this path, let us first observe that
CAS are quite good at generating Taylor series, which can
be converted to programs and related rather directly to the
defining differential equations.

5.1 Bessel Functions from Taylor Series
For example a CAS can automatically write a program from
the 14-term truncated Taylor series around zero for the Bessel
function of the first kind J0(x):

b[x_]:=1-x^2/4+x^4/64-x^6/2304+x^8/147456

-x^10/14745600+x^12/2123366400-x^14/416179814400

We can also automatically produce the first and second
derivatives of this expression (or trivially, here just the body
of the program). If we substitute into the usual definition:

x2b′′ + xb′ + x2b = 0 (1)

we get a result of −x16/416179814400 which suggests that
if −2.4−12 ∗ x16, is negligible compared to b(x) then the
calculation (modulo roundoff) is valid. Our demonstration
is not adequate to show that a better expression for b(x) is
the Horner’s rule version:

b[x_]:=(x^2*(x^2*(x^2*(x^2*(x^2*(x^2*(196-x^2)

-28224) +2822400) -180633600) +6502809600)

-104044953600) +416179814400) /416179814400}

5.2 Bessel Functions from Recurrence
A more realistic approach to Bessel (or other special func-
tions) is to use a variety of numerical schemes. For example,
this often includes matching asymptotic forms over different
sections of the domain, using approximating polynomials, or
some version of a traditional reduction recurrence (see for
example Abramowitz/Stegun [1]). For J [n](x) one scheme
is to use a downward recurrence that runs not on the argu-
ment, but the index of the Bessel function.

Jn(x) = 2 ∗ (n + 1)/xJn+1(x) − Jn+2(x) (2)

For n >> x we can approximate Jn(x) by zero, and some-
what perversely, J [n − 1](x) by 1 or perhaps 1/k for some
k. The arbitrariness of this (what is k?) disappears after a
“normalization” in which k is computed.

1 = J0(x) + 2 ∗ (J2(x) + J4(x) + · · ·). (3)

The definition of the Bessel program for J0 for x > 0 can be
written in Lisp as some variant of the following brief text.
(variants are mostly in computing the termination condition
or in making the arithmetic “generic”.)

(defun besj0(x)

;; J[n](x) = 2*(n+1)/x *J[n+1](x) -J[n+2](x).

;; normalize by R= 1= J[0](x)+2*J[2](x)+.....

(let ((1/x (/ 1 x)) (x10 (+ (* 3/2 (abs x)) 15)))

;; x10 is one stopping limit when J[v](x)=0

(labels

((m (n)

(if (> n x10) ;; makeshift termination..

(values 1 0 0)

;; return j[n](x), j[n+1](x), normalized,

;; and partial R sum

(multiple-value-bind (jnp1 jnp2 sum)

(m (1+ n)) ;; get jn+1, jn+2, sum so far

(let ((jn (- (* 2 (1+ n) jnp1 1/x) jnp2)))

;; J[n](x) = 2*(n+1)/x* J[n+1](x) -J[n+2](x)

(values jn

jnp1

(if (evenp n) ;;add J_n if n is even

(+ sum jn jn)

sum)))))))

(multiple-value-bind (a b c) (m 0) (/ a (- c a))))))

Some observations: This program, without change, will use
exact rational arithmetic if the input is an integer or ratio-
nal number, in which case its accuracy is determined by the
termination test and also the proximity of the argument to
a zero of J0. In such an environment, overflow which could
otherwise be a problem in accumulation of the normaliza-
tion sum for large argument, is impossible. (Arithmetic on
rational numbers with large numbers of digits in numerator
and denominator can be slow, of course.) The program can
also be used, without change, for complex arguments. With
appropriate definition of the arithmetic, it can be used with
“bigfloat” packages, interval arithmetic, etc.

The numerical accuracy of this program depends on the
terminating condition being set right, as well as the pre-
cision of the arithmetic. This cannot be done infallibly a
priori for fixed relative precision (e.g. one unit in the last
place) based on loose estimates. Arguments near a zero of
J0 will need far more iterations for the same relative ac-
curacy, as well as more careful arithmetic. For example,
if we choose 93170664/38743211 = 2.404825557695773...,
as a good approximation to a zero of J0 we can evaluate
this function by running 19 iterations to give a rational-
number approximation with a huge numerator (145 dig-
its) and huge denominator (161 digits). Converting this to
double-precision gives -2.4350447538776332d-17 which is ac-
curate to all places. Starting with the float version, 12 itera-
tions gives 0.0; continuing to more iterations gives numbers
like 14: -4.8951805787910495d-17.

That is, in this case roundoff error in the arithmetic even-
tually dominates the computation, but disaster is avoidable
by using higher precision or exact rational arithmetic.

A technique sometimes used for estimating the number of
terms needed is based on reversing the recurrence and run-
ning the (unstable) forward recurrence. If this returns to
the two inputs, then the arithmetic is not problematical.

This termination condition does not enter into our proof: it
would be an additional computation to see if our choice of
number of iterations is high enough and our working preci-
sion is high enough (or using infinite precision rationals). In
our proof we use as an inductive basis that we know some
value of Jn(x) “well enough” to say that it is zero relative
to Jn−1(x). It is also much more convenient to analyze the
rational arithmetic version.

Proving the correctness of this program under the circum-

stances above can be based on some set of Bessel function
identities equivalent to the definition, including twice differ-
entiating this algorithm and substituting into the defining
equation. Bessel himself seemed to view the definition of
J0 as an integral, but given the large collection of Bessel
“facts” alternative mathematical definition abound. For ex-
ample, if one is willing to just allow that Bessel functions
are equivalently defined by this recurrence, plus satisfy the
normalization, we are quite close to a proof already, modulo
the (significant) numerical approximation arguments.

Another proof approach which we pursued was to demon-
strate that the result of the recursion on a symbolic result
(k+1 times iterated) is identical up to O(k) with the Taylor
series. See Appendix I.

Unfortunately the Bessel function needs to be approximated
over a wide domain (not just one period), so a more prin-
cipled numeric approach may need to be subject to proof.
In this case we suggest that the computation take an extra
argument or two: the nature (absolute or relative) and the
size of the allowable error in the answer, and optionally a
guess on how many iterations to take. With a little more
analysis we could take a better guess based on the argu-
ment and relative error. The number of additional terms is
proportional to

√
z for z bits of accuracy. Computing the

proper working precision would depend on proximity to a
zero of J0.

Programs along these lines (but clearly based on the one
above):

(defun besj0(x count) ;use ‘‘count’’ terms

(let ((1/x (/ 1 x)))

(labels

((m (n)

(if (> n count)(values 1 0 0);; simple term.

(multiple-value-bind

(jnp1 jnp2 sum)

(m (1+ n))

;; if sum is getting too big,

;; make everything smaller

(when (and (floatp x)(> (abs sum) 1.0d10))

(setf sum (* sum 1.0d-10)

jnp1 (* jnp1 1.0d-10)

jnp2 (* jnp2 1.0d-10)))

(let ((jn (- (* 2 (1+ n) jnp1 1/x) jnp2)))

(values jn jnp1

(if (evenp n) (+ sum jn jn) sum)))))))

(multiple-value-bind (a b c)(m 0)

(/ a (- c a))))))

;; possible usage for relative error

(defun superbesrel(x relerror

&optional

(guess (round (+ (* 3/2 (abs x)) 10))))

(let* ((first (besj0 x guess))

(second (besj0 x (+ 2 guess)))

(diff (* 2 (abs (- first second)))))

(if (< relerror (abs(/ diff second)))

(superbesrel x relerror (* guess 2))

second)))

;; alternative for absolute error

(defun superbesabs(x abserror

&optional

(guess (round (+ (* 3/2 (abs x)) 10))))

(let* ((first (besj0 x guess))

(second (besj0 x (+ 2 guess)))

(diff (* 2 (abs (- first second)))))

(if (< abserror (abs diff))

(superbesabs x abserror (* guess 2))

second)))

In either case we can consider any input as though it were an
exact rational input and view the result as acceptable only
if it passes a test for an absolute or relative error bound.
Testing that two successively more refined answers differ by
less than half that bound is suggestive but not proved in
the face of floating-point roundoff. (Even in the rational
arithmetic case it also requires some demonstration, omitted
here, that carrying out an additional 2 terms in the iteration
provides essentially two terms more in an alternating Taylor
series.)

By providing the accuracy requirement as an additional in-
put to the routine, we can produce a more general routine
than is possible with the traditional view (in which the
types of the input govern the accuracy: double-precision
input leads to an answer that is almost correct to double-
precision). After all, we might wish to have single-precision
accuracy for a double-precision argument, or a rational ar-
gument, etc.

We have not demonstrated the absence of overflow: in-
deed, trying to find too high a precision result while us-
ing low-precision arithmetic can lead to overflow in the sum

computed for normalization. Counteracting this may be
achieved by the modification inserted above with superbes.
Another possible trick would be (for example) to specialize
a version of besj0 for double-float that returns a base case
for Jn−1 of a very small number (conventionally given the
name least-positive-double-float in Common Lisp) in-
stead of 1, and similarly for single-float. That way the
whole exponent range is used before renormalization.

The possible extension of this technique: of provable (possi-
bly recursive) high-precision evaluation (possibly using un-
conventional rational arithmetic) may provide a needed re-
lief from a situation in which carefully crafted programs have
to be devised to get around the limitations of conventional
floating-point hardware.

Although not made of the same kind of recursive argument-
reduction as the sin program, we hope it may still be worth-
while to consider automating validation of some compu-
tations; the programs from symbolically generated Taylor
series are possible but current CAS tools do not provide
information on convergence. We discuss some automatic
generation techniques that may assist in generating correct
software using memoized sequences or software “pipes” in
another paper [10].

6. CONCLUSION

As computers have become faster, the cost of special less-
efficient arithmetic (including for example interval or ratio-
nal arithmetic) may fade in significance when the trade-off
is to have an assurance of validity, combined with relatively
quick generation of specially-built procedures on different ar-
gument types. Note, for example, the complex-valued ver-
sion of the sine program is identical to that given above.
sin(ix) computes i sinh x. Even the interval-valued version
is essentially the same program statement, although the ter-
mination test then must be restated for intervals. We don’t
expect that such programs will be used indefinitely in public
libraries: in the marketplace of programs correct programs
may be driven out by faster hand-coded programs. (Some-
times they are driven out by free, less-robust code as for ex-
ample published in some “recipe” books). For one-time gen-
eration or occasional use, the correctness arguments might
prevail.

Although we have only sketched the nature of proofs of these
examples, we hope that we have provided some suggestive
material on the relatively high level of computation and the
general form of proof we are looking for. We see a need to
supply a modicum of rigor suitable for program validation
for these tests. There is clearly more work to be done, even
on these examples in characterization of algorithms using
floating point numbers, as well as nailing down the nature
of precision.

7. ACKNOWLEDGMENTS
This research was supported in part by NSF grant CCR-
9901933 administered through the Electronics Research Lab-
oratory, University of California, Berkeley. Thanks also to
the ISSAC referees for providing the leeway for extensive
revision of an initially hasty draft.

8. REFERENCES
[1] M. Abramowitz, Stegun, I. (eds.)Handbook of

Mathematical Functions, Dover Publications, 9th
edition, 1972.

[2] A Collection of Automatic Differentiation Tools.
http://www-unix.mcs.anl.gov/autodiff/AD_Tools/

[3] M. Beeler, Gosper, R.W., and Schroeppel, R.
HAKMEM. MIT AI Memo 239, Feb. 29, 1972.
Retyped and converted to html by Henry Baker,
April, 1995.

http://www.inwap.com/pdp10/hbaker/

hakmem/hacks.html#item158

[4] A. Bundy. “A Survey of Automated Deduction”.
Lecture Notes in Computer Science volume 1600,
Springer-Verlag, 1999.

[5] N. de Bruijn. A survey of the project AUTOMATH,
in J. Seldin and J. Hindley, eds, ‘To H.B. Curry:
Essays in Combinatory Logic, Lambda Calculus and
Formalism’, Academic Press, 1980,pp. 579—606.

[6] G. Dowek, Felty A., Herbelin H., Huet G., Murthy C.,
Parent C., Paulin-Mohring C. and Werner B. [1993],
“The Coq proof assistant user’s guide,” Rapport
Techniques 154, INRIA, Rocquencourt, France.
Version 5.8.

[7] J. Harrison. “Formal verification of floating point
trigonometric functions.” Proc. 3rd Int’l Conf. on
Formal Methods in Computer-Aided Design, FMCAD
2000. Springer LNCS 1954, pp. 217-233, 2000.

[8] J. McCarthy. “Recursive Functions of Symbolic
Expressions and Their Computation by Machine, Part
I,” Comm. ACM 3 no 4 (1960) p 184–195
http://www-formal.stanford.edu/jmc/recursive/

recursive.html

[9] Richard Fateman.“Series Solution of Algebraic and
Differential Equations: a Comparison of Linear and
Quadratic Algebraic Convergence,” Proc ISSAC-89,
ACM Press.

[10] R. Fateman.“Compiling functional pipe/stream
abstractions into conventional programs: Software
Pipelines,” on-line notes.

[11] R. Fateman.“Programs for evaluating polynomials,”
on-line notes.

[12] M. B. Monagan and W. M. Neuenschwander,
“GRADIENT: algorithmic differentiation in Maple,”
Proc. ISSAC-93, ACM Press. p. 68–76.

[13] B. Shults. “Discoveries and Experiments in the
Automation of Mathematical Reasoning” PhD
dissertation, Univ. Texas (Austin) Dec. 2002
http://www.cs.wcu.edu/ shults/IPR/diss-new.pdf

[14] I. Sommerville. Software Engineering (6th edition),
Addison Wesley, 2000.

[15] Wu Wen-tsun. Mechanical Geometry Theorem-Proving, Me-
chanical Geometry Problem-Solving and Polynomial Equations-
Solving (Kluwer, 2001).

9. APPENDIX I
A demonstration that the recursive program for J[0](x) run
to 14 terms is an approximation to 13 terms of the same
function as the series for the Bessel function (in Mathemat-
ica).

{Clear[J,m,x];

m[n_]:= Simplify[2*(n+1)/x*m[n+1] -m[n+2]] ;

m[14]:=0; m[13]:=1; (*arbitrary *)

R=m[0]+2*(m[2]+m[4]+m[6]+m[8]+m[10]+m[12]);

(*J[0](x) should be m[0]/R *);

Print["J[0](x) as computed with 14 levels of recursion: ",

Simplify[m[0]/R]];

Print["Subtract this answer from Bessel Series: ",

BesselJ[0,x]-Series[m[0]/R,{x,0,14}]]}

J[0](x) as computed with 14 levels of recursion:
3643696742400 − 840853094400 x2 + 40144896000 x4 − 663552000 x6

+ 4354560 x8 − 10752 x10 + 7 x12 / 3643696742400 + 70071091200 x2 + 729907200 x4 + 5529600 x6

+ 34560 x8 + 192 x10 + x12

Subtract this answer from Bessel Series:

−x14

714164561510400
+ O(x)15

