
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008...$5.00.

Checkpointing Alternatives for High Performance, 
Power-Aware Processors

Andreas Moshovos
Electrical and Computer Engineering

University of Toronto

moshovos@eecg.toronto.edu

ABSTRACT
High performance processors use checkpointing to rapidly recover
from branch mispredictions and possibly other exceptions. We
demonstrate that conventional checkpointing becomes unattractive
in terms of resource and power requirements for future generation
processors. We propose out-of-order checkpoint release and
checkpoint prediction, two alternatives that require significantly
less resources and power while maintaining high-performance. We
demonstrate their utility at the register alias table (RAT). Our
methods reduce the number of RAT checkpoints to 1/3 (from 48
down to 16) for an aggressive, 8-way superscalar processor with a
256-entry instruction window. Using a 0.18um process model we
estimate that RAT power is reduced by 24%.

Categories and Subject Descriptors
C.1 Processor Architectures, B.8 Performance and

Reliability.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Checkpointing, renaming, out-of-order execution, power-

aware, power density.

1. INTRODUCTION
Power-aware work for high performance processors to date

has focused on significant, overall on-chip power reduction
methods that maintain competitive performance. Naturally,
existing work was thus targeted on those units that dissipate a
large fraction of the overall on-chip power such as the level-
one caches and the scheduler. Reducing the power of other
units that may not dissipate a large fraction of overall power
dissipation is also becoming necessary. These are units that
exhibit extremely high power density, i.e., units whose overall
power dissipation is disproportionately large compared to their
area. Because silicon is not a good heat conductor these units
create hot spots where the temperature tends to significantly
exceed that of other on-chip areas. A high temperature can lead
to transient or permanent faults.

In modern microprocessors the register rename unit exhibits
both high power density and dissipates a considerable fraction
of on-chip power [5]. For example, the Pentium Pro rename

unit dissipates 4% of the overall on-chip power but its power-
density is the fourth highest on-chip, just short of the power
density of the integer execution, the floating-point execution
and the decode units [5]. The current architectural trends
towards deeper and wider instruction windows will further
increase the power density of the renaming unit. 

In this paper, we focus on reducing the power density at the
rename unit by reducing the overall power dissipated by it
while maintaining high performance. We propose methods that
require fewer control-flow related checkpoints. As we show,
using conventional checkpointing becomes impractical since
the checkpoint store and its power grows very large for wider
and deeper processors. We propose two orthogonal checkpoint
reduction techniques: (1) checkpoint prediction, and (2) out-
of-order checkpoint release. Both methods require virtually no
additional resources as they utilize information that is already
readily available.

We study the checkpoint requirements of integer and
floating-point applications from SPECcpu2000 and of a
multimedia application. We set a goal of reducing power while
maintaining performance within 1% (worst case) of a
conventional rename design. We demonstrate that our methods
can reduce the number of checkpoints from 48 down to 16 (or
to eight for a worst case slowdown of 2.1%). We further
demonstrate that our methods can reduce maximum power by
24% (including regular rename activity in addition to
checkpointing). To the best of our knowledge no previous
work exists on checkpoint prediction and out-of-order
checkpoint release. 

The rest of the paper is organized as follows: In section 2 we
introduce our methods. In section 3 we study their
performance and power impact. We comment on related work
in section 4 and summarize our findings in section 5. 

2. RENAME CHECKPOINTING
 Register renaming (or simply renaming) removes name

dependences (WAR or WAW) with the goal of exposing
additional instruction-level parallelism. This is done by
mapping architectural registers to physical registers during
execution. Figure 1(a) shows an example of renaming a code
sequence assuming a MIPS-like ISA with three architectural
registers (see, for example, [9] for additional information). 

The core of the renaming activity takes place in the register
alias table (RAT) which holds the current mapping of
architectural to physical registers. Conceptually, the RAT is a
table that is indexed by architectural register names and
returns physical register names. Here we assume an SRAM-
based RAT, a multiported register-file like structure (for
example, for an ISA with 32 architectural registers and an
implementation with 256 physical registers the RAT contains
32 8-bit wide entries). For an N-way processor and a MIPS-I
ISA, the RAT has 3xN read ports (2xN for reading the current

318



mappings for the source registers and N for doing the same for
the destination register) and N write ports.

The Need for Checkpointing: Since renaming occurs prior
to  execution a renamed instruction may later be squashed. In
which case we need to restore the RAT to the values it had
immediately before the specific instruction was renamed. For
example, in figure 1, load C may cause a page-fault in which
case the RAT has to be restored to (p4, p2, p3). This is the
functionality provided by checkpointing.

Checkpointing is implemented via the re-order buffer (ROB),
a circular queue which works as follows. Each renamed
instruction allocates a ROB entry where it records the previous
mappings for all its destination registers. For example, in
figure 1, instruction C records that prior to renaming register
r1 to p5, r1 was mapped to p4. That is, the ROB is a complete,
ordered record of all mapping changes done by active
instructions. Starting from the most recent ROB entry, we can
reverse all register renames up to the oldest squashed
instruction one-by-one. For example, in figure 1 if C causes a
page-fault, we would start from the entry for G going
backward reversing all RAT changes for G down to C. 

While the ROB can restore the RAT to any instruction (it is a
fine-grain checkpointing mechanism) it may require several
cycles to do so if multiple instructions are squashed. Typically,
the ROB is capable of restoring the renames of as many
instructions as the processor can rename per cycle (e.g., eight
instructions per cycle for an 8-way processor). Consequently,
the penalty for restoring the RAT is proportional to the number
of instructions that are squashed.

2.1 RAT Checkpointing 
Virtually all modern high-performance processors use

control-flow speculation (also known as branch speculation)
to improve performance. When speculation is incorrect a
mispeculation occurs and all instructions down the
mispeculated path are squashed. Because such mispeculations
are relatively frequent processors incorporate a second,
coarse-grain checkpointing mechanism where the RAT is
capable of checkpointing and restoring all register mappings
instantaneously. This facility is implemented as a set of
circular buffers that are physically embedded into the RAT
next to each cell (figure 1(b)). When a branch is renamed, a
complete copy of all RAT bits is made into the next available
entry of this buffer. The depth of the buffer limits the number
of checkpoints and hence it sets an artificial limit on the
number of branches that can be simultaneously unresolved. For
example, MIPS R10K had four such checkpoints [1]. As we
show in section 3.1, many more are required in the future.

2.2 Intelligent Checkpointing
RAT checkpointing is a performance optimization. The ROB

provides a fail-safe yet potentially slow recovery mechanism.
A lower power alternative would be to avoid RAT-
checkpointing altogether but, as we show in section 3.1, the
performance penalty is high. We propose several alternatives
that offer most of the performance advantages of RAT
checkpointing with much lower resources and power.

For simplicity, conventional checkpointing mechanisms
allocate checkpoints for all predicted branches. Moreover, they
use in-order checkpoint release where a checkpoint is held
until the corresponding and all preceding branches are resolved
(i.e., their direction is calculated). This way the checkpoint
store can be implemented and managed as a circular queue and
the control logic is very simple (e.g., just a pointer). There are
two considerations: First, when the number of checkpoints
becomes large (as it would be the case for larger window
processors) it may take a prohibitively large number of cycles
to restore the RAT from the circular queue. This is because we
have to shift in the appropriate checkpoint (it may be faster to
restore from the ROB). Second, sufficient checkpoints must be
provided to maintain high performance. As we move towards
deeper and wider instruction windows this number of
checkpoints increases. As we show in section 3.1, for a 256-
entry window, we may need even up to 48 checkpoints to
sustain acceptable performance for all the programs we
studied. Creating RAT bit cells containing each a 48-entry1

circular buffer is questionable in power and performance
terms. To reduce the checkpoints we propose using checkpoint
prediction and out-of-order checkpoint release.  

Out-of-Order Checkpoint Release: In this scheme, a
checkpoint is released as soon as the corresponding branch is
resolved, hence checkpoints may be released out-of-order.
This scheme uses the checkpoint store more efficiently. To
understand why this scheme is correct let us consider the two
possible scenarios in figure 1(a) where branch E is allowed to
resolve and discard its checkpoint before branch B. In the first,
branch B resolves correctly. In the second, branch B causes a
mispeculation and squashes all subsequent instructions using
its own checkpoint to restore the RAT. In both cases E’s
checkpoint was not needed. This argument generalizes for any
number of branches. There are some implementation
implications however. Specifically, the checkpointing store
can no longer be managed as a circular queue. Instead, a

1 This figure is in par with current designs. For example, the Alpha
21264 uses a 20-entry checkpoint store while it has a window of about
100 instructions. 

Figure 1: (a) Renaming example showing how the RAT and the ROB are used. Starting from the initial RAT state shown, we illustrate how a
MIPS-like code sequence (all branches predicted not taken) is renamed. Shown are the final ROB and RAT state and the renamed code
sequence. Names “r” and “p” refer to architectural and physical registers respectively.We assume an ISA with just three architectural
registers. (b) RAT Checkpointing.

rat row

checkpointsRAT bit
access ports 

A add r1, r2, 100
B breq r1, E
C ld r1, (r3)
D add r3, r1, 200
E breq r3, G
F add r1, r3, 100
G ld r2, (r3)

original sequence
A add p4, p2, 100
B breq p4, E
C ld p5, (p3)
D add p6, p5, 200
E breq r6, G
F add p7, p6, 100
G ld p8, (p6)

renamed sequence RATROB
A r1 --> p1
B --
C r1 --> p4
D r3 --> p3
E --
F r1 --> p5
G r2 --> p2

p1
p2
p3

p7
p8
p6

in
iti

al
fin

al

r1
r2
r3

r1
r2
r3

oldest

(a) (b)

319



register-file like scheme is needed. Still it is possible to embed
the checkpointing store near each RAT bit using vertical read
and write control lines per checkpoint cell along with
appropriate control logic. 

Checkpoint-Prediction: We also propose allocating
checkpoints selectively via checkpoint prediction. When a
mispeculation occurs, recovery proceeds as follows: if the
mispeculated branch has a checkpoint, recovery is immediate.
Otherwise, we use a two-step process. First, we use the nearest,
subsequent in program order checkpoint to restore the RAT.
Then using the ROB we reverse all intervening renames (this
may require multiple cycles). For example, in figure 1(a), if we
allocated a checkpoint for branch E and a mispeculation occurs
at branch B, we would use the checkpoint for E and then the
ROB to restore the RAT. 

We propose two checkpoint prediction methods:
Anyweak: We propose allocating checkpoints only for weak

(hard to predict) branches since mispeculations are more likely
on them. The anyweak method uses information that is readily
available in a combined predictor to identify weak branches.
Specifically, it allocates a checkpoint if any of the two sub-
predictors reports a weakly-biased value. Anyweak is
compatible with both in-order and out-of-order checkpoint
release. For simplicity, we allocate checkpoints for all indirect
branches. Since we use readily available information, anyweak
has virtually no power or resource overheads.

Lazy Anyweak: As we show in section 3.1, performance
with anyweak alone levels off after a few checkpoints are
provided. To take advantage of additional checkpoints we
propose the lazy anyweak method which works as follows.
Checkpoints are allocated for all branches with conventional
checkpointing, however, a weak branch is allowed to steal
(i.e., overwrite) the checkpoint of a preceding non-weak (or
strong) branch. The front-end pipeline stalls only on weak
branch if all checkpoints are currently held by preceding weak
branches. Since the physical order of checkpoints does not
match that of the program, this method requires out-of-order
checkpoint release.

The performance tradeoffs with checkpoint prediction are
complex. With conventional checkpointing, recovering the
RAT takes a single cycle while with ROB-only checkpointing
a number of cycles that is proportional to the number of
instructions squashed is required. With checkpoint prediction,
when a mispeculation occurs on a branch with a checkpoint
recovery is as fast as with conventional checkpointing.
Recovering from a branch with no checkpoint. however, may
be faster compared to ROB-only checkpointing. This is
because we may first restore the most recent, subsequent
checkpoint if any exists, and then use the ROB to restore only
the remaining instructions.

3. EVALUATION
3.1 Performance

We used Simplescalar v3.0 [6] to simulate the aggressive,
deeply pipelined superscalar processor detailed in table 1. We

use gzip (gzp), mcf, twolf (twf), swim (swm), equake (eqk)
(mpe), gcc, parser (prs), mesa (mes), bzip2 (bzp) which are
integer and floating-point programs from SPECcpu2000 and
mpeg2encode from mediabench. We simulated up to 1 billion
instructions per benchmark after skipping the initialization.
The binaries were compiled for the MIPS-like PISA
architecture using GNU’s gcc v2.9. 
3.1.1 Conventional Checkpointing

Figure 2 compares the performance of ROB-only
checkpointing with that of conventional in-order checkpointing
(i.e., allocating checkpoints for all branches). In all
performance graphs we report slowdowns compared to a
processor with an infinite number of RAT checkpoints. For the
conventional checkpointing we vary the number of
checkpoints from 48 down to 4 in the steps shown. The ROB
can restore eight instructions per cycle. ROB-only
checkpointing offers competitive performance only for swim
which exhibits a low branch frequency and high prediction
accuracy. For the other applications, slowdowns with ROB-
only checkpointing vary from approximately 10% (bzip2) to as
much as 35% (gzip). Conventional checkpointing is worse than
ROB-only checkpointing when there are few checkpoints.
Most programs require 32 or more checkpoints to achieve
performance that is within 1% of the base. Even with 48
checkpoints, mcf exhibits a slowdown of 1.7%. 

3.1.2 Checkpointing Alternatives
Figure 3(a) reports performance slowdowns for the following

combinations: conventional with in-order release, anyweak
with in-order release, conventional with out-of-order release,
anyweak with out-of-order release. Out-of-order release (third
bar from left) offers significantly better performance compared
to in-order release (first bar). Anyweak offers superior
performance with both in-order (second bar) and out-of-order
(fourth bar) checkpoint release when there are very few
checkpoints (i.e., four or eight). It fails to offer additional
improvements when more checkpoints are introduced. In some
cases, anyweak with out-of-order release performs worse than
with in-order release. This is possible when a checkpoint for a
resolved branch is used to reduce the number of ROB entries

Table 1: Base processor configuration. 

 Branch Predictor 16k GShare+16K bi-
modal 
16K selector
2 branches per cycle

Stage Latencies 8 cycles from branch predict to decode 
6 cycles for decode and renaming 
6 cycles from writeback to commit
10 cycles branch misprediction penalty 
+ overhead to restore from ROB if 
applicable.

Fetch Unit Up to 8 instr. per cycle 
64-entry Fetch Buffer
2 branches per cycle
Non-blocking I-Cache

DL1/IL1 Geometry 64Kbyte/32byte 
blocks/4-way SA

Load/Store Queue 64 entries, 4 inst/cycle
Perfect disambiguation

Issue/Decode/Commit any 8 instructions / cycle FU Latencies same as MIPS R10000 Main Memory Infinite, 100 cycles
Instr. Window 256 entries UL2 Geometry 1Mbyte/64byte blocks/8-way SA L1/UL2 Latencies 3/16 cycles

Figure 2: ROB-only checkpointing vs. conventional RAT in-order
release checkpointing for various numbers of checkpoints.

0%

10%

20%

30%

40%

50%

60%

gzp swm gcc mes mcf eqk prs bzp twf mpe AVG

48 32 24 16 8 4

ROB-Only

Conventional In-Order

320



that are restored on a mispeculation of a preceding branch. In
figure 3(b) we compare anyweak (left bar) and lazy anyweak
(right bar) prediction under out-of-order release. Anyweak lazy
is superior in all cases and can also take advantage of
additional checkpoints. It achieves slowdowns of 2.1% or less
for all programs with just eight checkpoints. The slowdowns
drop below 1% with just 16 checkpoints. 

3.2 Power Reduction
We adopted the widely-used WATTCH [4] power models to

estimate the maximum power dissipated by the RAT. We
started from the simple cache model since modern register
files use partial bitline discharging to reduce power. We
modified this model to account for embedded checkpointing.
We used WATTCH’s 0.18um process model with a 1.8v power
supply and a 1Ghz clock. We did not attempt to scale this
process model to smaller feature sizes since its scalability has
not been demonstrated. We assumed a single checkpoint read
or write per cycle and that all 24 and 16 read and write ports of
the RAT are used per cycle. These are pessimistic assumptions
that may downplay the savings from our technique primarily
because programs rarely need all the read and write RAT ports.
A 24 read port and eight write port RAT for 32 architectural
registers, 256 physical registers and 48 checkpoints (this is our
base configuration based on table 1 and the results of section
3.1.1) dissipates approximately 996mW. With 16 checkpoints
the same RAT dissipates 754mW or a 24% reduction in power
(compared to a 32 checkpoint RAT the reduction is 15%). 

4. RELATED WORK
 There are two primary methods for implementing renaming

based on an SRAM array (e.g. [1]) or based on a CAM array
(e.g., [3]). Our methods are also applicable with modification
to the CAM implementation. Parlacharla et al. developed delay
models for the RAT SRAM array [2] and Brooks et al.,
extended these models to include maximum power dissipation
[4]. Our checkpoint predictors rely on what can be thought of
as branch confidence methods. Several such methods have
been proposed for other purposes where different tradeoffs
apply. Grunwald et al. proposed, among others, the both strong
confidence estimator for pipeline gating purposes [8]. Our
anyweak predictor can be thought as its reverse. An alternative
would be to use explicit confidence predictors (e.g., [7]). 

5. CONCLUSION
As a step towards power-density optimizations we focused

on the register renaming unit and proposed checkpoint

reduction via selective checkpoint allocation and via out-of-
order checkpoint release. We proposed two checkpoint
prediction methods and demonstrated that it is possible to
drastically reduce the checkpoints necessary. We considered
the obvious alternative of not using checkpointing at all. We
modeled the power and performance of our methods and found
that it is possible to achieve performance that is on the average
within 0.4% of conventional RAT checkpointing by reducing
the number of checkpoints from 48 to just 16 (or to eight for a
worst case slowdown of 2.1%). Our methods can reduce
overall rename power by 24%.

ACKNOWLEDGEMENTS: I’d like to thank the anonymous referees
for their insightful comments. This work was supported by the
National Sciences and Engineering Research Council of Canada, the
Semiconductor Research Corporation and by the University of
Toronto. This research was performed while the author was serving a
full, mandatory term of service with the Hellenic Armed Forces which
are in no way affiliated with this work. I wish to thank Doug Carmean,
Herbert Hum, Stephan Jourdan, Avi Medleson, Farid Najm and Ronny
Ronen for discussions about power density.

6. REFERENCES
[1] K. C. Yeager, The MIPS R10000 Superscalar Microprocessor, IEEE

MICRO, April, 1996.

[2] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective
superscalar processors. In Proc. of the 24th Int’l Symposium on
Computer Architecture, June 1997.

[3] R. P. Colwell and R. L. Steck, A 0.6um BiCMOS Processor with
Dynamic Execution, In Proc. International Solid State Circuits
Conference, Feb. 1995.

[4] D. Brooks, V. Tiwari M. Martonosi Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations, Proc of the
27th Int’l Symposium on Computer Architecture, 2000.

[5] P6 Power Data, Intel Corp.

[6] D. Burger and T. Austin, The Simplescalar Simulation Environment,
Univ. of Wisconsin-Madison, Computer Sciences Dept. Technical
Report.

[7] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning Confidence to
Conditional Branch Predictions. In Proc. Int’l Symposium on
Microarchitecture, December 1996.

[8] D. Grunwald, A. Klusser, S. Manne and A. Plezkun, Confidence
Estimation for Speculation Control, In Proc. of the 25th Int’l
Symposium on Computer Architecture, June, 1998.

[9] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 2nd Edition, Morgan Kaufman Publishers.

Figure 3: (a) Slowdowns with in-order (left) and out-of-order control-flow resolution policies as a function of the number of available
checkpoints. (b) Slowdowns with anyweak (left bar) vs. anyweak lazy (right bar) under out-of-order checkpoint release. Lower is better.

0%

5%

10%

15%

20%

25%

30%

35%

40%

gzp swm gcc mes mcf eqk prs bzp twf mpe AVG

48 32 24 16 8 4

in-order

out-of-order

conventional (all)anyweak

0%

1%

2%

3%

4%

5%

6%

gz
p

sw
m 

gc
c

mes mcf eq
k prs bz

p tw
f

mpe AVG

48 32 24 16 8 4

(a) (b)

321


	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index




