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Abstract 

Unifying programming and command languages 
is a promising idea that has yet to be thoroughly 
exploited. Most attempts at such unification have 
used Lisp or traditional languages, such as Pascal. 
This paper describes the command and programming 
language EZ, which attempts to unify command-and 
programming languages by using high-level string- 
processing concepts, such as those in SNOBOL4 and 
Icon. EZ has particularly simple data abstractions 
that attempt to bridge the gap between the data 
abstractions of command languages and those of 
programming languages. This is accomplished by 
type fusion, which pushes the differences between 
some classes of types, such as strings and text files, 
out of the language and into the implementation. 
The language, its use, and its implementation are 
described. 

1. Introduction 
Traditional programming languages and com- 

mand languages are fundamentally different. Their 
differences are induced by the differences in their 
intended application areas. 

At a more fundamental level, programming and 
command languages differ most radically in the data 
abstractions they must support and in their principal 
binding times. Typical Pascal-like programming 
languages support data types that are close to those 
provided by most computers, such as integers, reals, 
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characters, and arrays. Command languages, on the 
other hand, tend to support 'high-level' data types 
that bear little resemblance to the data types pro- 
vided by most architectures. Examples are strings, 
files, directories, and programs. 

Conventional programming languages tend 
toward early binding times. They insist on compile- 
time definition of many aspects of programs, such as 
the size and type of variables, primarily for efficiency 
reasons. Command languages tend toward late bind- 
ing times, not only because efficiency is less impor- 

• tant, but because the kinds of operations performed 
demand more flexibility. Indeed, compilation is 
delayed until execution in most command languages. 
Varying-length strings and lists, automatic type 
conversion, procedures with a variable number of 
arguments, and dynamic procedure definition are 
examples of command language features that require 
late binding times. 

The control abstractions of programming and 
command languages do have many superficial simi- 
larities, and the structured control constructs of pro- 
gramming languages appear in some command 
languages, such as the UNIX shell [4, 17] and the 
CMS EXEC [1]. Since control abstractions and data 
abstractions interact closely, command languages 
tend to offer more flexible control structures. Exam- 
ples are loops that iterate over lists of items and 'gen- 
erative' or pattern-matching constructs, such as file 
name expansion. 

Unifying programming and command languages 
is a promising idea that has been examined from a 
number of viewpoints [16, 19, 21, 22]. Unifying pro- 
gramming and command languages would make 
learning multiple languages unnecessary for some 
users, remove the distinction between 'real programs' 
and 'command programs', and simplify the use and 
implementation of programming environments. 

When traditional languages, such as Pascal, have 
been used as command languages [3, 5], they have 
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seldom offered more than procedure calls in the trad- 
itional languages. Other aspects of the programming 
language, such as data types, appear in restricted 
forms or are omitted. This shortcoming can be attri- 
buted to the differences mentioned above; traditional 
languages lack the flexibility and data abstractions 
necessary fo r command languages. 

Attempts at using high-level languages as com- 
mand languages have been more encouraging. Lisp 
and programming environments built around Lisp 
are the prime examples [6, 22, 24]. Much of this suc- 
cess is because Lisp is flexible and has many of the 
concepts and facilities needed in a command 
language [ 19]. 

This paper describes the command and program- 
ming language EZ, which attempts to unify command 
and programming languages by using the concepts of 
high-level string-processing languages, such as SNO- 
BOL4 and Icon [12]. Instead of embedding a com- 
mand language in a programming language, or vice 
versa, however, EZ was designed as a unified 
language f rom the onset. For the most part, the con- 
trol abstractions in EZ are traditional; some aspects 
of Icon's goal-directed expression evaluation [11] 
and coroutines [13] will be included in future ver- 
sions. The data abstractions in EZ are particularly 
simple and are an attempt to bridge the gap between 
the data abstractions of command languages and 
those of programming languages. This is accom- 
plished by type fusion, which moves the differences 
between some classes of types out of the language 
and into the implementation. For example, strings 
and text files are identical at the source-language 
level; the use of seconda~y storage is hidden within 
the implementation. The remainder of this paper 
gives an overview of/~z and its use, a description of 
its implementation, and a 'glimpse of its future 
development. 

2. Language Overview 

As a programming language, EZ fits somewhere 
between high-level string processing languages like 
SNOBOL4 and low-level Algol-like languages like C 
[18]. It shares many of the basic attributes of 
languages like SNOBOL4 and Icon, such as concise, 
expressive constructs, run-time flexibility, untyped 
variables, heterogeneous structures, and automatic 
type conversion. It also treats strings as scalar types 
and has numerous 'mid-lever string operations simi- 
lar to those in Icon. It does not, however, have pat- 
tern matching or any form of backtracking. 

Syntactically, EZ is similar to C with a few addi- 
tional control constructs. EZ programs are sequences 

of statements and procedure declarations. State- 
ments outside procedures are executed immediately, 
and procedure declarations assign procedures to 
identifiers. Identifiers are either global or local. 
Statements include the usual structured control flow 
constructs and expressions. •z programs exist in a 
'workspace' environment much like APL. Values, 
global variables, and procedures exist until changed. 

ez  supports fewer data types than SNOBOL4 and 
Icon because it treats several classes of types as a sin- 
gle type. Types of variables vary during execution 
and are the types of the values assigned to them. 
Values are converted to the appropriate types 
automatically as necessary for most operations, e.g. 
operands of arithmetic operations are converted to 
numeric types if possible. The following table lists 
the EZ types and their traditional counterparts. 

Ez type traditional types 
numeric integer, real 
string string, text file 
procedure procedure, program 
table array, record, 

associative table, directory 

Integers and real numbers serve their conven- 
tional purposes. In arithmetic operations, integer 
arithmetic is performed if both operands are integers, 
otherwise, the operands are converted to reals and 
real arithmetic is performed. 

Strings are sequences Of characters. In string 
operations, operands are converted to strings, if pos- 
sible. Text files and strings are linguistically 
equivalent. Files are manipulated as strings and may 
be as large as desired. The implementation handles 
the allocation and use of secondary storage, as in 
Poplar [21]. Substrings, and hence subfiles, can be 
manipulated and arbitrarily changed. 

Tables are heterogeneous one-dimensional arrays 
that can be indexed by, and can reference, arbitrary 
values much like SNOBOL4 tables and awk arrays 
[2]. Tables are as large is necessary to accommodate 
their contents. Since tables can contain arbitrary 
types, such as files, they are a generalization of direc- 
tories in traditional systems. 

EZ procedures serve their conventional purpose 
and are declared as follows. 

procedure n a m e  ( . . .  ) 

local identifiers 
statement... 

end 

local identifiers are known only within the procedure 
in which they are declared. Undeclared identifiers 
are global. Procedures are also data values; 'execut- 
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ing' a procedure declaration assigns the procedure to 
n a m e ,  as if the assignment 

n a m e  = procedure ( ... ) 
local ident i f iers  
s ta tement . . .  

end 

were made. Programs are also treated as procedures; 
invoking a program is linguistically equivalent to cal- 
ling a procedure. 

Most expressions compute values as usual, but 
some do not yield a value. The relational operators, 
for example, return their right operand if the relation 
is true, and do not return a value if their relation is 
false. Other operators, such as assignment, ignore 
the absence of values. For  example, 

m a x  = m a x  < a 

changes max only if a is greater than max. Likewise, 
variables do not have a value initially, and the lack of 
a value in a context that requires one, such as for 
addition, yields a run-time error. This facility is a 
simplification of the sequence of values returned by 
generators in Icon [11]. 

Control structures are driven by the presence or 
absence of values. For  example, in 

if (a  > m a x )  m a x  = a 

m a x  is changed only if the comparison yields a value. 
Ez includes the conventional while and repeat loops 
and the C for loop. 

2.1  P r i m i t i v e  O p e r a t i o n s  

EZ includes the conventional arithmetic, com- 
parison, and logical operations, although some have 
unconventional semantics. For  example, the type of 
a comparison operation depends on the types of the 
operands. If both operands are strings, lexical com- 
parison is performed; if either operand is numeric, 
arithmetic comparison is performed, automatically 
converting the other operand as necessary. This stra- 
tegy permits strings to be compared with numerics 
without requiring explicit conversions. Explicit 
conversions can be used to force numeric comparison 
between strings. 

String concatenation and substring selection are 
included in addition to the string comparison opera- 
tions. Concatenation, denoted by the binary opera- 
tor I I, creates a new string by appending the second 
operand to a copy of the first operand. The operands 
are automatically converted to strings as necessary. 
Substrings, and hence subfiles, can be manipulated 
and arbitrarily changed. Substrings are specified by 
s[i'l 1, where i and j are character positions in s start- 

ing at 1 from the left. s is automatically converted to 
a string, if necessary. This facility subsumes random 
access mechanisms in traditional systems. This 
results from the fusion of strings and text files into a 
single type. 

As in Icon, substring numbering refers to posi- 
tions between characters, so that ,  for example, the 
positions in the string " H A T "  are 

H A T  

I 2 3 4 

Note that the position after the last character may be 
specified. Positions may also be specified relative to 
the right end of a string starting at 0 and continuing 
with negative values toward the left: 

H A T  
1 l l 1 

-3 -2 -1 0 

For this string, the positions 4 and 0 are equivalent, 
positions 3 and -1  are equivalent, etc. The substring 
operation does not return a value if the substring 
specification refers to a non-existent portion of the 
string. Assignment to a substring changes the sub- 
string to the new value and assigns the new string to 
the subscripted variable. The value assigned to the 
substring is automatically converted to a string as 
necessary. For  example, 

s = "The file contains 72 characters" 
s[19:21] = 6 4 * 6 4  

assigns 

" T h e  f i l e  c o n t a i n s  4 0 9 6  c h a r a c t e r s "  

to s, and is equivalent to 

s = s[1:19] II 64"64 II s [ 2 1 : 0 ]  

Th e  positions in a substring specification can be 
given in either order; s[21:19] specifies the same sub- 
string as s[19:21]. In addition, substrings can be 
specified by starting position and length; for exam- 
ple, s[19!2] and s[21!-2] are equivalent to the specifi- 
cation above. 

Tables are created automatically when a variable 
is subscripted, e.g. 

count["procedure"] = 1 

assigns 1 to the table element at index "procedure". 
I f  the value of count is not a table, one is created and 
assigned to count. Tables and table entries are 
created only on assignment; referencing a non- 
existent entry does not create the entry. 

The control structure 
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fo r  (/d in expr) s tatement  

sequences through the table returned by expr. It 
repeatedly assigns the index value of a table element 
to id and executes statement  until all of the elements 
have been processed. For  example, 

s o m =  0 
for  (i in t) 

sum = sum + t[ i] 

sums the e lements o f  tab le  t. 

2.2 Built-in Values 

Numerous built-in procedures and values are pro- 
vided as the initial values of global variables. The 
built-in procedures include string analysis functions 
similar to those in Icon, type conversion and interro- 
gation functions, and debugging functions. Exam- 
ples include upto,  many,  and size. u p t o ( s l ,  s2, i, j) 
returns the leftmost position in s2[i:j] where a charac- 
ter in sl occurs. If none of the characters in sl occur, 
no value is returned, i and j areoptional  and, if omit- 
ted, default to l and 0, respectively, many(s1, s2, i, j) 
operates similarly, but returns the position of the first 
character in s2[i:j] that does not appear in sl.  size(x) 
returns the number of elements in a table or the 
number of characters in a string. For  other types, x is 
converted to a string, and if  the conversion fails, no 
value is returned. 

Although explicit type conversion is rarely 
needed, built-in functions are provided so that run- 
time errors that occur when implicit conversions fail 
can be avoided. For  example, numeric(x) returns the 
result of converting x to a real or an integer. If the 
conversion is not possible, no value is returned. The 
functions string, integer, and real are similar, and 
type(x) returns the type of x as a string (e.g. "string"), 
or "void" ifx has no value. 

External input and output are performed by the 
built-in procedures read and write, read(f) reads the 
next line from the external file f or from the standard 
input if f is omitted, write(f .... ) writes its arguments 
to the external file f or to the standard output if f is 
omitted. 

The initial values of global variables ascii, Icase, 
and ucase are the ASCII character set, lower-case 
letters, and upper-case letters, respectively. The ini- 
tial values of input, output, and errout are the stan- 
dard input, the standard output, and the error out- 
put, respectively. 

The value of the built-in variable root is an Ez 
table that is the global symbol table, which contains 
the built-in procedures and values described above. 
The compiler determines the meaning of free identif- 

iers by searching this table, making insertions as 
necessary. For  example, the assignment 

section = "Introduction" 

is equivalent to 

r o o t [ " s e c t i o n " ]  = " I n t r o d u c t i o n "  

Changing roo t  changes meanings of identifiers for 
subsequent compilation. Assuming t is a table con- 
taining a restricted set of built-in values, 

roo t  = t 

would restrict subsequent programs to those values. 
Actually, the compiler searches a chain of  tables 
beginning with root and continuing with root[".."] 
and so on until the identifier is found or a table with 
no ".." entry or whose ".." entry is not a table is 
encountered. If  the identifier is not found by this 
search, it is inserted in root. As illustrated below, the 
user and applications programs may construct and 
modify these chains as desired. 

3. Applications 

Many operations performed in traditional sys- 
tems by command interpreters and utility programs 
are trivial in EZ. For example, 

s ize(o ld)  

prints the length of a file, and 

if (new - =  old) 
wr i te("f i les are d i f f e ren t \n" )  

determines if two files hold the same text. Tradi- 
tional string-processing utilities are easily written in 
EZ. For example, 

p rocedu re  wc(s)  
Ioca l .n l ,  nw, i, wchrs  

wchrs  = asci i [upto(  . . . .  , asci i )+1:-1]  
nl = nw = 0 
wh i le  (i = up to (wch rs  II " \ n " ,  s)) 

if (s[ i [ l ]  - - " . \ n " )  { 
nl = nl + 1 
s = s[ i+ l :0]  
} 

else { 
nw = nw + 1 
s = s [many(wchrs ,  s, i):O] 
} 

return (nl  II . . . .  II nw)  
end 

counts  the n u m b e r  o f  words  and  l ines in a s t r ing (o r  
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file). For  example, 

write(size(old), " ", wc(old), " \ n " )  

prints the number of characters, words, and lines in 
old. wchrs is a string containing the printable char- 
acters. 

Tables provide a general directory structure. The 
indices are the 'names' and the values are the 'files', 
but both indices and values may be of arbitrary 
types. So, for example, 'help' documents for a set of 
procedures might be organized as a table indexed by 
the procedures themselves instead of their names, 
which might be ambiguous. Thus 

procedure mail(...) 
. . .  

end 
doc[mai l ]  = "mail  - -  receive mai l"  

defines and documents mail.  

Many operations on directories that require util- 
ity programs in other environments are simple in EZ. 
For example, 

size(paper )  

prints the number of entries in the directory paper, 
and 

for (i in paper) 
write( i ,  " \ n " )  

lists the 'names' of the 'files' in it. Deleting a file is 
accomplished by the built-in function remove, which 
removes an element and its index from a table: 

remove(paper, "oldabstract") 

Since table entries can refer to values of arbitrary 
types, entries referring to other tables permit the con- 
struction of hierarchical directory structures. Actu- 
ally, arbitrary graphs are permitted. Maintaining a 
focus of attention or 'current directory' amounts to \ 

maintaining a global variable whose value is the 
focus. For  example, 

cd = paper 

moves the focus to 'directory'  paper, and 

cd["t i t le"]  = " E Z  Programming" 

creates a title 'f i le' in it. Addi t ional  entries can be 
made to facilitate moving about a directory structure 
much as in UNIX. For example, 

cd["sect ions"] [" . . " ]  = cd 

causes ".." in directory sections to refer to its ances- 
tor paper, and creates sect ions i f  necessary. Hen- 
ceforth, 

cd = cd[".."] 

moves the focus up one level. 

The generality of EZ types permits flexibility in 
directory manipulation. Consider the procedure 
chdir, which changes root to a different directory 
after establishing a path back to root. 

procedure chdir(dir) 
root[dir][" last"] = root 
root = root[dir] 

end 

chdir maintains a graph of tables whose interconnec- 
tions through the "last" entries represent the recent 
history of the focus. This mechanism represents 
dynamic relationships where the UNIX directory 
mechanism represents static ones. The latter rela- 
tionships, other relationships, or combinations 
thereof could be represented using similar conven- 
tions and procedures. For  example, if the table 
structure is a tree and if ". ."  is used in place of "last", 
the compiler resolves free identifiers by searching the 
'path'  from root to the root of the tree. This usage 
offers a facility similar to Smalltalk's nested classes 
[9]. Completely different schemes, such as maintain- 
ing the static structure, dynamic history, and con- 
tents in separate tables, are also possible. 

Type fusion allows procedures to apply in multi- 
ple contexts. Consider the emerging EZ line editor. 
It initially scans a string (text file) and converts it to a 
table (directory) with one entry per 'line' of the file 
because it is cheaper to insert and delete entries in a 
table than it is to insert and delete characters in a 
string. Immediately, all procedures and utilities writ- 
ten to operate on files are available to edit individual 
lines in a file. For example, a character translitera- 
tion procedure can be applied selectively to specified 
lines of a file instead of  to all lines indiscriminately. 

Conversely, line editor procedures are available 
to edit structures other than text files [7]. Consider 
the editor's procedure to delete line n from a global 
table tbl, which slides up the remaining lines to fill 
the gap: 

procedure Delete(n) 
if ( in teger (n) )  

for (; n < size(tbl); n = n + 1) 
tbl[n] = tbl[n+l]  

remove(tbl, n) 
end 

Delete was written to remove a line from a file, but it 
can also be used remove a subdirectory from a direc- 
tory. For  example, as suggested above, a document 
might be structured as a tree, with the root contain- 
ing a directory of several sections, with each section 
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containing several paragraphs and figures, etc. The 
editor's procedure to delete lines of text from a file 
can also delete sections from a paper, paragraphs 
from a section, etc. If they were numbered, it also 
slides up their successors, which is as useful when 
deleting sections or paragraphs as when deleting 
lines.~" Delete subsumes a text editor's line deletion 
command and a directory system's file deletion com- 
mand. 

The editor's insertion procedure is also useful in 
multiple contexts. It inserts a value v just before 
position n, sliding down the remaining entries if n 
specifies a spot in a numbered sequence: 

procedure  Insert(n,  v) 
if ( integer(n) )  

fo r  (i = s ize( tb l ) ;  i >=  n; i = i - 1) 
tbl [ i+l ]  = tbl[i] 

tb l [n ]  = v 
end 

Insert and Delete combine to offer many common 
text- and directory-editing functions. 

Insert(3, read())  

inserts new text ,  and 

Insert(3, tb l [1])  

makes a copy of line 1 before line 3. The sequence 

Insert("new", tbl["old"]) 
Delete("old") 

renames a file in a directory, and the analogous 
operation on lines in a file 

Insert(3, tb l [1])  
De le te ( I )  

' renames '  l ine 1 to  l ine 2, tha t  is, moves l ine 1 to  l ine 
. 

These procedures implement the editor and are 
called by a general command interpreter. Different 
structures can be edited by binding different editing 
procedures to the same command interpreter. This is 
accomplished by compiling the command interpreter 
with different symbol tables. This generality and 
type fusion combine to allow otherwise separate 
functions to share a common implementation. Text 
editors have been extended to offer directory editing 
before [7, 23], but the new functions require new 
code. EZ represents both files and directories as 

~'Besides allowing structured documents, this representa- 
tion also allows a clean separation of text from formatter 
parameters. For example, the text could be represented as 
a numbered table of strings with unnumbered table entries 
recording the number of lines of text, the indentation, etc. 

tables and thus subsumes both editors with a single 
table editor. With fewer types, commands have 
wider applicability. 

4. Implementation 

The current implementation of EZ is written in C 
and runs under UNIX. Many of the implementation 
techniques used are similar to those used in SNO- 
BOL4 and Icon. The 'compilation' part of EZ is 
implemented using YACC [15] and associated tradi- 
tional techniques. EZ programs are compiled into an 
interpretive code and executed accordingly. 

Type fusion, the longevity of values, the applica- 
tive nature of strings (and files), and the potential for 
large values (e.g. tables and files), complicate the 
implementation of the execution-time environment. 
At the lowest level, storage is divided into fixed-size 
pages that reside on secondary storage. All values 
are represented by small, fixed-size descr ip tors  that 
include the necessary data or point to pages organ- 
ized according to type. All types of data can be 
paged to secondary storage. A large software cache 
is used to reduce paging activity. Non-resident 
strings, tables, and procedures correspond to the 
traditional concepts of text files, directories, and 
object or executable files. 

Strings and text files are implemented as linked 
lists of substrings bounded by the page size. The dis- 
tribution of strings is used to determine the page size; 
the intent is for most strings to fit on one page. In the 
current implementation, the page size is 128 bytes. 

The exact representation of tables is adapted to 
their contents during execution [14]. Tables with 
small integer indices are organized much like UNIX 
files: the descriptor points to a page that points to 
other pages containing table elements or further 
pointers [25]. When a table with small integer indices 
is assigned an non-integer index or a large integer 
index, it is reorganized as a hash table. Both of these 
organizations efficiently accommodate tables with 
non-contiguous indices. 

Other values are implemented in similar fashion. 
For example, compiled code is stored in linked lists 
of pages, and, like all other values, is paged in on 
demand during execution. Since all pages, including 
those containing root, ultimately reside on secondary 
storage, this approach facilitates saving the state of 
the system. 

Secondary storage is allocated in units of pages 
and is accomplished by simply extending the external 
file by the requested amount. Secondary storage is 
reclaimed by an off-line process using a traditional 
garbage collection algorithm. 
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The straightforward implementation used in the 
initial version of EZ suffers from a few efficiency 
problems. The applicative nature of strings (and 
hence files), which has well established benefits, 
causes the worst of these problems. In the current 
implementation, after'executing 

a = "... a long string ..," 
b = a  

a and b logically refer to two different strings. Inter- 
nally, however, they refer to the same string. Thus, 
executing 

b[i:j] = "... another string ..." 

which refers to the substring between positions i and 
j, causes a copy of the original string to be made in 
order to preserve the value of a. An alternative stra- 
tegy, currently under investigation, is to use lazy 
evaluation to reduce the amount  of copying neces- 
sary. 

5. Conclusion 

The unification of a high-level programming 
language and a command language is accomplished 
in EZ by fusing normally distinct linguistic mechan- 
isms. Type fusion and the implementation of root as 
an EZ table exemplify this general principle. It is dif- 
ficult to place examples of use into either the pro- 
gramming or command language category. Typical 
use, in which users maintain tables of procedures, 
blurs the distinction beyond the point of recognition. 
Such usage appears particularly promising for 
stand-alone systems on small computers. The 
current version of EZ has been implemented with this 
application in mind. 

Initial experience with EZ has suggested addi- 
t i o n a l  fusion. Treating strings and files as a single 
type has proven very convenient. It is useful, in some 
circumstances, to include tables in this fusion. For  
example, the editor described above converts a file to 
a table .  When editing is finished, the editor converts 
the table back to a file. In the EZ environment, these 
conversions appear artificial. Fusing tables with 
strings and files would simplify this kind of process- 
ing as well as directory processing. For  example, 
scanning a directory could be accomplished by scan- 
ning all of the files in the directory, and many opera- 
tions defined on files would generalize to tables. 
Similarly, automatic conversion from strings to pro- 
cedures via compilation would blur the somewhat 
artificial distinction between source and object code. 
This facility would permit 

while (read()()) 

to serve as a simple command interpreter much as in 
Lisp. Current research is focused on these kinds of 
fusion. 

There are other control abstractions that might 
be useful in EZ. Three under active consideration are 
coroutines, history mechanisms, and goal-directed 
evaluation. Coroutines are the main control abstrac- 
tion in a companion research effort in command 
languages [8], which seeks to decompose system utili- 
ties into their fundamental components, and have 
proven useful in other programming languages 
[13, 26]. Adding coroutines to EZ would make it an 
ideal language in which to write command language 
interpreters. History mechanisms and Icon's goal- 
directed expression evaluation offer retentive control 
facilities that add another dimension of programma- 
bility to EZ, especially in program development and 
maintenance applications. 

The generality of Ez complicates its evaluation. 
For  example, the use of root and its associated search 
strategy yield unusual 'scope rules' whose benefits 
and implications are yet to be completely under- 
stood. More use and experimentation with EZ is 
needed to determine its range of applications and 
future development. 

Despite the embryonic state of the EZ environ- 
ment, it is clear that using a high-level language as 
both a programming and command language shows 
great potential [20]: EZ also represents an approach 
to providing the flexibility and dynamic mechanisms 
so often advocated as essential to programming 
environments [ 10]. 

Acknowledgements. D. S. Chimenti implemented major 
components of the initial version of EZ, and R. L. Camp- 
bell and C. J. Lerner made improvements. 
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