
A High-Level Programming and Command Language'[

Christopher W. Fraser
David R. Hanson

Department o f Computer Science
The University o f Arizona

Tucson, Arizona 85721

Abstract

Unifying programming and command languages
is a promising idea that has yet to be thoroughly
exploited. Most attempts at such unification have
used Lisp or traditional languages, such as Pascal.
This paper describes the command and programming
language EZ, which attempts to unify command-and
programming languages by using high-level string-
processing concepts, such as those in SNOBOL4 and
Icon. EZ has particularly simple data abstractions
that attempt to bridge the gap between the data
abstractions of command languages and those of
programming languages. This is accomplished by
type fusion, which pushes the differences between
some classes of types, such as strings and text files,
out of the language and into the implementation.
The language, its use, and its implementation are
described.

1. Introduction
Traditional programming languages and com-

mand languages are fundamentally different. Their
differences are induced by the differences in their
intended application areas.

At a more fundamental level, programming and
command languages differ most radically in the data
abstractions they must support and in their principal
binding times. Typical Pascal-like programming
languages support data types that are close to those
provided by most computers, such as integers, reals,

~'This work was supported by the National Science Foundation
under Grants MCS-7802545 and MCS-8102298.

Permission to copy without fee all or part of this material is grant-
ed provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and /o r specific per-
mission.

© 1983 ACM 0-89791-108-3/83/006/0212 $00.75

characters, and arrays. Command languages, on the
other hand, tend to support 'high-level' data types
that bear little resemblance to the data types pro-
vided by most architectures. Examples are strings,
files, directories, and programs.

Conventional programming languages tend
toward early binding times. They insist on compile-
time definition of many aspects of programs, such as
the size and type of variables, primarily for efficiency
reasons. Command languages tend toward late bind-
ing times, not only because efficiency is less impor-

• tant, but because the kinds of operations performed
demand more flexibility. Indeed, compilation is
delayed until execution in most command languages.
Varying-length strings and lists, automatic type
conversion, procedures with a variable number of
arguments, and dynamic procedure definition are
examples of command language features that require
late binding times.

The control abstractions of programming and
command languages do have many superficial simi-
larities, and the structured control constructs of pro-
gramming languages appear in some command
languages, such as the UNIX shell [4, 17] and the
CMS EXEC [1]. Since control abstractions and data
abstractions interact closely, command languages
tend to offer more flexible control structures. Exam-
ples are loops that iterate over lists of items and 'gen-
erative' or pattern-matching constructs, such as file
name expansion.

Unifying programming and command languages
is a promising idea that has been examined from a
number of viewpoints [16, 19, 21, 22]. Unifying pro-
gramming and command languages would make
learning multiple languages unnecessary for some
users, remove the distinction between 'real programs'
and 'command programs', and simplify the use and
implementation of programming environments.

When traditional languages, such as Pascal, have
been used as command languages [3, 5], they have

212

http://crossmark.crossref.org/dialog/?doi=10.1145%2F872728.806868&domain=pdf&date_stamp=1983-06-01

seldom offered more than procedure calls in the trad-
itional languages. Other aspects of the programming
language, such as data types, appear in restricted
forms or are omitted. This shortcoming can be attri-
buted to the differences mentioned above; traditional
languages lack the flexibility and data abstractions
necessary fo r command languages.

Attempts at using high-level languages as com-
mand languages have been more encouraging. Lisp
and programming environments built around Lisp
are the prime examples [6, 22, 24]. Much of this suc-
cess is because Lisp is flexible and has many of the
concepts and facilities needed in a command
language [19].

This paper describes the command and program-
ming language EZ, which attempts to unify command
and programming languages by using the concepts of
high-level string-processing languages, such as SNO-
BOL4 and Icon [12]. Instead of embedding a com-
mand language in a programming language, or vice
versa, however, EZ was designed as a unified
language f rom the onset. For the most part, the con-
trol abstractions in EZ are traditional; some aspects
of Icon's goal-directed expression evaluation [11]
and coroutines [13] will be included in future ver-
sions. The data abstractions in EZ are particularly
simple and are an attempt to bridge the gap between
the data abstractions of command languages and
those of programming languages. This is accom-
plished by type fusion, which moves the differences
between some classes of types out of the language
and into the implementation. For example, strings
and text files are identical at the source-language
level; the use of seconda~y storage is hidden within
the implementation. The remainder of this paper
gives an overview of/~z and its use, a description of
its implementation, and a 'glimpse of its future
development.

2. Language Overview

As a programming language, EZ fits somewhere
between high-level string processing languages like
SNOBOL4 and low-level Algol-like languages like C
[18]. It shares many of the basic attributes of
languages like SNOBOL4 and Icon, such as concise,
expressive constructs, run-time flexibility, untyped
variables, heterogeneous structures, and automatic
type conversion. It also treats strings as scalar types
and has numerous 'mid-lever string operations simi-
lar to those in Icon. It does not, however, have pat-
tern matching or any form of backtracking.

Syntactically, EZ is similar to C with a few addi-
tional control constructs. EZ programs are sequences

of statements and procedure declarations. State-
ments outside procedures are executed immediately,
and procedure declarations assign procedures to
identifiers. Identifiers are either global or local.
Statements include the usual structured control flow
constructs and expressions. •z programs exist in a
'workspace' environment much like APL. Values,
global variables, and procedures exist until changed.

ez supports fewer data types than SNOBOL4 and
Icon because it treats several classes of types as a sin-
gle type. Types of variables vary during execution
and are the types of the values assigned to them.
Values are converted to the appropriate types
automatically as necessary for most operations, e.g.
operands of arithmetic operations are converted to
numeric types if possible. The following table lists
the EZ types and their traditional counterparts.

Ez type traditional types
numeric integer, real
string string, text file
procedure procedure, program
table array, record,

associative table, directory

Integers and real numbers serve their conven-
tional purposes. In arithmetic operations, integer
arithmetic is performed if both operands are integers,
otherwise, the operands are converted to reals and
real arithmetic is performed.

Strings are sequences Of characters. In string
operations, operands are converted to strings, if pos-
sible. Text files and strings are linguistically
equivalent. Files are manipulated as strings and may
be as large as desired. The implementation handles
the allocation and use of secondary storage, as in
Poplar [21]. Substrings, and hence subfiles, can be
manipulated and arbitrarily changed.

Tables are heterogeneous one-dimensional arrays
that can be indexed by, and can reference, arbitrary
values much like SNOBOL4 tables and awk arrays
[2]. Tables are as large is necessary to accommodate
their contents. Since tables can contain arbitrary
types, such as files, they are a generalization of direc-
tories in traditional systems.

EZ procedures serve their conventional purpose
and are declared as follows.

procedure n a m e (. . .)

local identifiers
statement...

end

local identifiers are known only within the procedure
in which they are declared. Undeclared identifiers
are global. Procedures are also data values; 'execut-

213

ing' a procedure declaration assigns the procedure to
n a m e , as if the assignment

n a m e = procedure (...)
local ident i f iers
s ta tement . . .

end

were made. Programs are also treated as procedures;
invoking a program is linguistically equivalent to cal-
ling a procedure.

Most expressions compute values as usual, but
some do not yield a value. The relational operators,
for example, return their right operand if the relation
is true, and do not return a value if their relation is
false. Other operators, such as assignment, ignore
the absence of values. For example,

m a x = m a x < a

changes max only if a is greater than max. Likewise,
variables do not have a value initially, and the lack of
a value in a context that requires one, such as for
addition, yields a run-time error. This facility is a
simplification of the sequence of values returned by
generators in Icon [11].

Control structures are driven by the presence or
absence of values. For example, in

if (a > m a x) m a x = a

m a x is changed only if the comparison yields a value.
Ez includes the conventional while and repeat loops
and the C for loop.

2.1 P r i m i t i v e O p e r a t i o n s

EZ includes the conventional arithmetic, com-
parison, and logical operations, although some have
unconventional semantics. For example, the type of
a comparison operation depends on the types of the
operands. If both operands are strings, lexical com-
parison is performed; if either operand is numeric,
arithmetic comparison is performed, automatically
converting the other operand as necessary. This stra-
tegy permits strings to be compared with numerics
without requiring explicit conversions. Explicit
conversions can be used to force numeric comparison
between strings.

String concatenation and substring selection are
included in addition to the string comparison opera-
tions. Concatenation, denoted by the binary opera-
tor I I, creates a new string by appending the second
operand to a copy of the first operand. The operands
are automatically converted to strings as necessary.
Substrings, and hence subfiles, can be manipulated
and arbitrarily changed. Substrings are specified by
s[i'l 1, where i and j are character positions in s start-

ing at 1 from the left. s is automatically converted to
a string, if necessary. This facility subsumes random
access mechanisms in traditional systems. This
results from the fusion of strings and text files into a
single type.

As in Icon, substring numbering refers to posi-
tions between characters, so that , for example, the
positions in the string " H A T " are

H A T

I 2 3 4

Note that the position after the last character may be
specified. Positions may also be specified relative to
the right end of a string starting at 0 and continuing
with negative values toward the left:

H A T
1 l l 1

-3 -2 -1 0

For this string, the positions 4 and 0 are equivalent,
positions 3 and -1 are equivalent, etc. The substring
operation does not return a value if the substring
specification refers to a non-existent portion of the
string. Assignment to a substring changes the sub-
string to the new value and assigns the new string to
the subscripted variable. The value assigned to the
substring is automatically converted to a string as
necessary. For example,

s = "The file contains 72 characters"
s[19:21] = 6 4 * 6 4

assigns

" T h e f i l e c o n t a i n s 4 0 9 6 c h a r a c t e r s "

to s, and is equivalent to

s = s[1:19] II 64"64 II s [2 1 : 0]

Th e positions in a substring specification can be
given in either order; s[21:19] specifies the same sub-
string as s[19:21]. In addition, substrings can be
specified by starting position and length; for exam-
ple, s[19!2] and s[21!-2] are equivalent to the specifi-
cation above.

Tables are created automatically when a variable
is subscripted, e.g.

count["procedure"] = 1

assigns 1 to the table element at index "procedure".
I f the value of count is not a table, one is created and
assigned to count. Tables and table entries are
created only on assignment; referencing a non-
existent entry does not create the entry.

The control structure

214

fo r (/d in expr) s tatement

sequences through the table returned by expr. It
repeatedly assigns the index value of a table element
to id and executes statement until all of the elements
have been processed. For example,

s o m = 0
for (i in t)

sum = sum + t[i]

sums the e lements o f tab le t.

2.2 Built-in Values

Numerous built-in procedures and values are pro-
vided as the initial values of global variables. The
built-in procedures include string analysis functions
similar to those in Icon, type conversion and interro-
gation functions, and debugging functions. Exam-
ples include upto, many, and size. u p t o (s l , s2, i, j)
returns the leftmost position in s2[i:j] where a charac-
ter in sl occurs. If none of the characters in sl occur,
no value is returned, i and j areoptional and, if omit-
ted, default to l and 0, respectively, many(s1, s2, i, j)
operates similarly, but returns the position of the first
character in s2[i:j] that does not appear in sl. size(x)
returns the number of elements in a table or the
number of characters in a string. For other types, x is
converted to a string, and if the conversion fails, no
value is returned.

Although explicit type conversion is rarely
needed, built-in functions are provided so that run-
time errors that occur when implicit conversions fail
can be avoided. For example, numeric(x) returns the
result of converting x to a real or an integer. If the
conversion is not possible, no value is returned. The
functions string, integer, and real are similar, and
type(x) returns the type of x as a string (e.g. "string"),
or "void" ifx has no value.

External input and output are performed by the
built-in procedures read and write, read(f) reads the
next line from the external file f or from the standard
input if f is omitted, write(f) writes its arguments
to the external file f or to the standard output if f is
omitted.

The initial values of global variables ascii, Icase,
and ucase are the ASCII character set, lower-case
letters, and upper-case letters, respectively. The ini-
tial values of input, output, and errout are the stan-
dard input, the standard output, and the error out-
put, respectively.

The value of the built-in variable root is an Ez
table that is the global symbol table, which contains
the built-in procedures and values described above.
The compiler determines the meaning of free identif-

iers by searching this table, making insertions as
necessary. For example, the assignment

section = "Introduction"

is equivalent to

r o o t [" s e c t i o n "] = " I n t r o d u c t i o n "

Changing roo t changes meanings of identifiers for
subsequent compilation. Assuming t is a table con-
taining a restricted set of built-in values,

roo t = t

would restrict subsequent programs to those values.
Actually, the compiler searches a chain of tables
beginning with root and continuing with root[".."]
and so on until the identifier is found or a table with
no ".." entry or whose ".." entry is not a table is
encountered. If the identifier is not found by this
search, it is inserted in root. As illustrated below, the
user and applications programs may construct and
modify these chains as desired.

3. Applications

Many operations performed in traditional sys-
tems by command interpreters and utility programs
are trivial in EZ. For example,

s ize(o ld)

prints the length of a file, and

if (new - = old)
wr i te("f i les are d i f f e ren t \n")

determines if two files hold the same text. Tradi-
tional string-processing utilities are easily written in
EZ. For example,

p rocedu re wc(s)
Ioca l .n l , nw, i, wchrs

wchrs = asci i [upto(. . . . , asci i)+1:-1]
nl = nw = 0
wh i le (i = up to (wch rs II " \ n " , s))

if (s[i [l] - - " . \ n ") {
nl = nl + 1
s = s[i+ l :0]
}

else {
nw = nw + 1
s = s [many(wchrs , s, i):O]
}

return (nl II II nw)
end

counts the n u m b e r o f words and l ines in a s t r ing (o r

215

file). For example,

write(size(old), " ", wc(old), " \ n ")

prints the number of characters, words, and lines in
old. wchrs is a string containing the printable char-
acters.

Tables provide a general directory structure. The
indices are the 'names' and the values are the 'files',
but both indices and values may be of arbitrary
types. So, for example, 'help' documents for a set of
procedures might be organized as a table indexed by
the procedures themselves instead of their names,
which might be ambiguous. Thus

procedure mail(...)
. . .

end
doc[mai l] = "mail - - receive mai l"

defines and documents mail.

Many operations on directories that require util-
ity programs in other environments are simple in EZ.
For example,

size(paper)

prints the number of entries in the directory paper,
and

for (i in paper)
write(i , " \ n ")

lists the 'names' of the 'files' in it. Deleting a file is
accomplished by the built-in function remove, which
removes an element and its index from a table:

remove(paper, "oldabstract")

Since table entries can refer to values of arbitrary
types, entries referring to other tables permit the con-
struction of hierarchical directory structures. Actu-
ally, arbitrary graphs are permitted. Maintaining a
focus of attention or 'current directory' amounts to \

maintaining a global variable whose value is the
focus. For example,

cd = paper

moves the focus to 'directory' paper, and

cd["t i t le"] = " E Z Programming"

creates a title 'f i le' in it. Addi t ional entries can be
made to facilitate moving about a directory structure
much as in UNIX. For example,

cd["sect ions"] [" . . "] = cd

causes ".." in directory sections to refer to its ances-
tor paper, and creates sect ions i f necessary. Hen-
ceforth,

cd = cd[".."]

moves the focus up one level.

The generality of EZ types permits flexibility in
directory manipulation. Consider the procedure
chdir, which changes root to a different directory
after establishing a path back to root.

procedure chdir(dir)
root[dir][" last"] = root
root = root[dir]

end

chdir maintains a graph of tables whose interconnec-
tions through the "last" entries represent the recent
history of the focus. This mechanism represents
dynamic relationships where the UNIX directory
mechanism represents static ones. The latter rela-
tionships, other relationships, or combinations
thereof could be represented using similar conven-
tions and procedures. For example, if the table
structure is a tree and if ". ." is used in place of "last",
the compiler resolves free identifiers by searching the
'path' from root to the root of the tree. This usage
offers a facility similar to Smalltalk's nested classes
[9]. Completely different schemes, such as maintain-
ing the static structure, dynamic history, and con-
tents in separate tables, are also possible.

Type fusion allows procedures to apply in multi-
ple contexts. Consider the emerging EZ line editor.
It initially scans a string (text file) and converts it to a
table (directory) with one entry per 'line' of the file
because it is cheaper to insert and delete entries in a
table than it is to insert and delete characters in a
string. Immediately, all procedures and utilities writ-
ten to operate on files are available to edit individual
lines in a file. For example, a character translitera-
tion procedure can be applied selectively to specified
lines of a file instead of to all lines indiscriminately.

Conversely, line editor procedures are available
to edit structures other than text files [7]. Consider
the editor's procedure to delete line n from a global
table tbl, which slides up the remaining lines to fill
the gap:

procedure Delete(n)
if (in teger (n))

for (; n < size(tbl); n = n + 1)
tbl[n] = tbl[n+l]

remove(tbl, n)
end

Delete was written to remove a line from a file, but it
can also be used remove a subdirectory from a direc-
tory. For example, as suggested above, a document
might be structured as a tree, with the root contain-
ing a directory of several sections, with each section

216

containing several paragraphs and figures, etc. The
editor's procedure to delete lines of text from a file
can also delete sections from a paper, paragraphs
from a section, etc. If they were numbered, it also
slides up their successors, which is as useful when
deleting sections or paragraphs as when deleting
lines.~" Delete subsumes a text editor's line deletion
command and a directory system's file deletion com-
mand.

The editor's insertion procedure is also useful in
multiple contexts. It inserts a value v just before
position n, sliding down the remaining entries if n
specifies a spot in a numbered sequence:

procedure Insert(n, v)
if (integer(n))

fo r (i = s ize(tb l) ; i >= n; i = i - 1)
tbl [i+l] = tbl[i]

tb l [n] = v
end

Insert and Delete combine to offer many common
text- and directory-editing functions.

Insert(3, read())

inserts new text , and

Insert(3, tb l [1])

makes a copy of line 1 before line 3. The sequence

Insert("new", tbl["old"])
Delete("old")

renames a file in a directory, and the analogous
operation on lines in a file

Insert(3, tb l [1])
De le te (I)

' renames ' l ine 1 to l ine 2, tha t is, moves l ine 1 to l ine
.

These procedures implement the editor and are
called by a general command interpreter. Different
structures can be edited by binding different editing
procedures to the same command interpreter. This is
accomplished by compiling the command interpreter
with different symbol tables. This generality and
type fusion combine to allow otherwise separate
functions to share a common implementation. Text
editors have been extended to offer directory editing
before [7, 23], but the new functions require new
code. EZ represents both files and directories as

~'Besides allowing structured documents, this representa-
tion also allows a clean separation of text from formatter
parameters. For example, the text could be represented as
a numbered table of strings with unnumbered table entries
recording the number of lines of text, the indentation, etc.

tables and thus subsumes both editors with a single
table editor. With fewer types, commands have
wider applicability.

4. Implementation

The current implementation of EZ is written in C
and runs under UNIX. Many of the implementation
techniques used are similar to those used in SNO-
BOL4 and Icon. The 'compilation' part of EZ is
implemented using YACC [15] and associated tradi-
tional techniques. EZ programs are compiled into an
interpretive code and executed accordingly.

Type fusion, the longevity of values, the applica-
tive nature of strings (and files), and the potential for
large values (e.g. tables and files), complicate the
implementation of the execution-time environment.
At the lowest level, storage is divided into fixed-size
pages that reside on secondary storage. All values
are represented by small, fixed-size descr ip tors that
include the necessary data or point to pages organ-
ized according to type. All types of data can be
paged to secondary storage. A large software cache
is used to reduce paging activity. Non-resident
strings, tables, and procedures correspond to the
traditional concepts of text files, directories, and
object or executable files.

Strings and text files are implemented as linked
lists of substrings bounded by the page size. The dis-
tribution of strings is used to determine the page size;
the intent is for most strings to fit on one page. In the
current implementation, the page size is 128 bytes.

The exact representation of tables is adapted to
their contents during execution [14]. Tables with
small integer indices are organized much like UNIX
files: the descriptor points to a page that points to
other pages containing table elements or further
pointers [25]. When a table with small integer indices
is assigned an non-integer index or a large integer
index, it is reorganized as a hash table. Both of these
organizations efficiently accommodate tables with
non-contiguous indices.

Other values are implemented in similar fashion.
For example, compiled code is stored in linked lists
of pages, and, like all other values, is paged in on
demand during execution. Since all pages, including
those containing root, ultimately reside on secondary
storage, this approach facilitates saving the state of
the system.

Secondary storage is allocated in units of pages
and is accomplished by simply extending the external
file by the requested amount. Secondary storage is
reclaimed by an off-line process using a traditional
garbage collection algorithm.

217

The straightforward implementation used in the
initial version of EZ suffers from a few efficiency
problems. The applicative nature of strings (and
hence files), which has well established benefits,
causes the worst of these problems. In the current
implementation, after'executing

a = "... a long string ..,"
b = a

a and b logically refer to two different strings. Inter-
nally, however, they refer to the same string. Thus,
executing

b[i:j] = "... another string ..."

which refers to the substring between positions i and
j, causes a copy of the original string to be made in
order to preserve the value of a. An alternative stra-
tegy, currently under investigation, is to use lazy
evaluation to reduce the amount of copying neces-
sary.

5. Conclusion

The unification of a high-level programming
language and a command language is accomplished
in EZ by fusing normally distinct linguistic mechan-
isms. Type fusion and the implementation of root as
an EZ table exemplify this general principle. It is dif-
ficult to place examples of use into either the pro-
gramming or command language category. Typical
use, in which users maintain tables of procedures,
blurs the distinction beyond the point of recognition.
Such usage appears particularly promising for
stand-alone systems on small computers. The
current version of EZ has been implemented with this
application in mind.

Initial experience with EZ has suggested addi-
t i o n a l fusion. Treating strings and files as a single
type has proven very convenient. It is useful, in some
circumstances, to include tables in this fusion. For
example, the editor described above converts a file to
a table . When editing is finished, the editor converts
the table back to a file. In the EZ environment, these
conversions appear artificial. Fusing tables with
strings and files would simplify this kind of process-
ing as well as directory processing. For example,
scanning a directory could be accomplished by scan-
ning all of the files in the directory, and many opera-
tions defined on files would generalize to tables.
Similarly, automatic conversion from strings to pro-
cedures via compilation would blur the somewhat
artificial distinction between source and object code.
This facility would permit

while (read()())

to serve as a simple command interpreter much as in
Lisp. Current research is focused on these kinds of
fusion.

There are other control abstractions that might
be useful in EZ. Three under active consideration are
coroutines, history mechanisms, and goal-directed
evaluation. Coroutines are the main control abstrac-
tion in a companion research effort in command
languages [8], which seeks to decompose system utili-
ties into their fundamental components, and have
proven useful in other programming languages
[13, 26]. Adding coroutines to EZ would make it an
ideal language in which to write command language
interpreters. History mechanisms and Icon's goal-
directed expression evaluation offer retentive control
facilities that add another dimension of programma-
bility to EZ, especially in program development and
maintenance applications.

The generality of Ez complicates its evaluation.
For example, the use of root and its associated search
strategy yield unusual 'scope rules' whose benefits
and implications are yet to be completely under-
stood. More use and experimentation with EZ is
needed to determine its range of applications and
future development.

Despite the embryonic state of the EZ environ-
ment, it is clear that using a high-level language as
both a programming and command language shows
great potential [20]: EZ also represents an approach
to providing the flexibility and dynamic mechanisms
so often advocated as essential to programming
environments [10].

Acknowledgements. D. S. Chimenti implemented major
components of the initial version of EZ, and R. L. Camp-
bell and C. J. Lerner made improvements.

References

1. IBM Virtual Machine Facility~370: EXEC User's
Guide, IBM Corp., Order No. GC20-1812.

2. A.V. Aho, B. W. Kernighan and P. J. Weinberger,
Awk--A Pattern Scanning and Processing
Language, Software--Practice & Experience 9, 4
(Apr. 1979), 267-279.

3. D. Beech, Command Language Directions, Proc.
IFIP TC 2.7 Working Conf. on Command
Languages, Lund, Sweden, 1979.

4. S.R. Bourne, The UNIX Shell, Bell System Tech. J.
57, 6 (July 1978), 1971-1990.

218

5. P. Brinch Hansen, The Solo Operating System: Job
Interface, Software--Practice & Experience 6, 2
(Apr. 1976), 151-164.

6. J . R . Ellis, A Lisp Shell, SIGPLAN Notices 15, 5
(May 1980), 24-34.

7. C .W. Fraser, A Generalized Text Editor, Comm.
ACM23, 3 (Mar. 1980), 154-158.

8. C .W. Fraser, A Software System and Command
Language Based on Connecting Coroutines, Tech.
Rep. 80-17, Dept. of Computer Science, The Univ. of
Arizona, Tucson, AZ, June 1980.

9. A. Goldberg, D. Robson and D. H. H. Ingalls,
Smalltalk-80: The Language and Its
Implementation, Addison Wesley, Reading, MA,
1983.

10. J . W . Goodwin, Why Programming Environments
Need Dynamic Data Types, IEEE Trans. on
Software Eng. SE-7, 5 (Sep. 1981), 451-457.

11. R. E. Griswold, D. R. Hanson and J. T. Korb,
Generators in Icon, A CM Trans. Prog. Lang. and
Systems3, 2 (Apr. 1981), 144-161.

12. R. E. Griswold and M. T. Griswold, The Icon
Programming Language, Prentice Hall, Englewood
Cliffs, N J, 1983.

13. D. R. Hanson and R. E. Griswold, The SL5
Procedure Mechani.grn, Comm. ACM 21, 5 (May
1978), 392-400.

14. D.R. Hanson, Data Structures in SL5, J. Computer
Lang. 3, 3 (Oct. 1978), 181-192.

15. S. C. Johnson, Yacc - - Yet Another Compiler-
Compiler, Comp. Sci. Teeh. Rep. No. 32, Bell
Laboratories, Murray Hill, New Jersey, July 1975.

16. A.K. Jones, The Narrowing Gap Between Language
Systems and Operating Systems, Proc. IFIPS 77,
Montreal, Canada, 1977, 869-873.

17. W.N. Joy, An Introduction to the C Shell, Tech.
Rep., Computer Science Div., Dept. of Electrical
Engineering and Computer Science, University of
California, Berkeley, CA, Nov. 1980.

18. B. W. Kernighan and D. M. Ritchie, The C
Programming Language, Prentice Hall, Englewood
Cliffs, N J, 1978.

19. J. Levine, Why a Lisp-Based Command Language?,
SIGPLA N No tices 15, 5 (May 1980), 49-53.

20. J. R. Mashey, Using a Command Language as a
High-Level Programming Language, Proc. 2nd Int.
Conf. on Software Eng., San Francisco, CA, Oct.
1976, 169-176.

21. J .H . Morris, E. Schmidt and P. Wadler, Experience
with a String Processing Applicative Language,
Conf. Rec. 7th ,4 CM Syrup. on Prin. of
Programming Languages, Las Vegas, NV, Jan. 1980,
32-46.

22. E. Sandewall, Programming in the Interactive
Environment: The Lisp Experience, Computing
Surveys 10, 1 (Mar. 1978), 35-71.

23. R. M. Stallman, EMACS, The Extensible,
Customizable Self-Documenting Display Editor,
Proc. ACM Syrup. on Text Manipulation, Portland,
OR, June 1981, 147-156.

24. W. Teitelbaum, Interlisp Reference Manual, Tech.
Rep., Xerox PARC, Palo Alto, CA, Dec. 1975.

25. K. Thompson, UNIX Implementation, Bell System
Tech. J. 57, 6 (July 1978), 1931-1946.

26. N. Wirth, Programming in Modula-2, Springer
Verlag, New York, NY, 1981.

219

