
An Optimal and Progressive Algorithm for Skyline Queries
Dimitris Papadias§ Yufei Tao† Greg Fu§ Bernhard Seeger*

§
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

{dimitris,greg}@cs.ust.hk

†
Department of Computer Science

Carnegie Mellon University
Pittsburgh, USA

taoyf@cs.cmu.edu

*
Dept. of Mathematics and Computer Science

 Philipps-University Marburg
Marburg, Germany

seeger@mathematik.uni-marburg.de

ABSTRACT
The skyline of a set of d-dimensional points contains the points
that are not dominated by any other point on all dimensions.
Skyline computation has recently received considerable attention
in the database community, especially for progressive (or online)
algorithms that can quickly return the first skyline points without
having to read the entire data file. Currently, the most efficient
algorithm is NN (nearest neighbors), which applies the divide-
and-conquer framework on datasets indexed by R-trees. Although
NN has some desirable features (such as high speed for returning
the initial skyline points, applicability to arbitrary data
distributions and dimensions), it also presents several inherent
disadvantages (need for duplicate elimination if d>2, multiple
accesses of the same node, large space overhead). In this paper we
develop BBS (branch-and-bound skyline), a progressive algorithm
also based on nearest neighbor search, which is IO optimal, i.e., it
performs a single access only to those R-tree nodes that may
contain skyline points. Furthermore, it does not retrieve duplicates
and its space overhead is significantly smaller than that of NN.
Finally, BBS is simple to implement and can be efficiently applied
to a variety of alternative skyline queries. An analytical and
experimental comparison shows that BBS outperforms NN
(usually by orders of magnitude) under all problem instances.

1. INTRODUCTION
The skyline operator is important for several applications
involving multi-criteria decision making. Given a set of objects
p1, p2,.., pN , the operator returns all objects pi such that pi is not
dominated by another object pj. Using the common example in the
literature, assume in Figure 1.1 that we have a set of hotels and for
each hotel we store its distance from the beach (x axis) and its
price (y axis). The most interesting hotels are the ones (a, i, k) for
which there is no point that is better on both dimensions.
Borzsonyi et al. [BKS01] propose an SQL syntax for the skyline
operator, according to which the above query would be expressed
as: [Select *, From Hotels, Skyline of Price min, Distance min],
where min indicates that the price and the distance attributes
should be minimized. The syntax can also capture different
conditions (such as max), joins, group-by and so on. For
simplicity, we assume that skylines are computed with respect to
min conditions on all dimensions; however, all methods discussed
can be applied with any combination of conditions.

x

y
b

a

i k

h

g

d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n

price

distance
Figure 1.1: Example dataset and skyline

Using the min condition, a point pi dominates1 another point pj if
and only if the coordinate of pi on any axis is not larger than the
corresponding coordinate of pj. Informally, this implies that pi is
preferable to pj according to any preference (scoring) function
which is monotone on all attributes. For instance, hotel a in
Figure 1.1 is better than hotels b and e since it is closer to the
beach and cheaper (independently of the relative importance of
the distance and price attributes). Furthermore, for every point p
in the skyline there exists a monotone function f such that p
minimizes f [BKS01].

Skylines are related to several other well-known problems,
including convex hulls, top-K queries and nearest neighbor
search. In particular, the convex hull contains the subset of
skyline points that may be optimal only for linear preference
functions (as opposed to any monotone function). Böhm and
Kriegel [BK01] propose an algorithm for convex hulls, which
applies branch and bound search on datasets indexed by R-trees.
In addition, several main-memory algorithms have been proposed
for the case that the whole dataset can fit in memory [PS85].

Top-K (or ranked) queries retrieve the best K objects that
minimize a specific preference function. As an example, given the
preference function f(x,y)=x+y, the top-3 query, for the dataset in
Figure 1.1, retrieves <i,5>, <h,7>, <m,8> (in this order), where the
number with each point indicates its score. The difference from
skyline queries is that the output changes according to the input
function and the retrieved points are not guaranteed to be part of
the skyline (h and m are dominated by i). Recent database
techniques for top-K queries include Prefer [HKP01] and Onion
[CBC+00] that are based on pre-materialization and convex hulls,
respectively. Several methods have been proposed for combining
the results of multiple top-K queries [F98, NCS+01].

Nearest neighbor queries specify a query point q and output
the objects closest to q, in increasing order of their distance.
Existing database algorithms assume that the objects are indexed
by an R-tree (or some other data-partition method) and apply

1 According to this definition two, or more, points with the same

coordinates can be part of the skyline.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD'2003, June 9-12, San Diego, California, USA.
Copyright 2003 ACM 1-58113-634-X/03/06...$5.00.

branch-and-bound search. In particular, the depth-first algorithm
of [RKV95] starts from the root of the R-tree and recursively
visits the entry closest to the query point. Entries, which are
farther than the nearest neighbor already found, are pruned. The
best-first algorithm of [HS99] inserts the entries of the visited
nodes in a heap, and follows the one closest to the query point.
The relation between skyline queries and nearest neighbor search
has been exploited by previous skyline algorithms and will be
discussed in Section 2.

Skylines, and other directly related problems such as multi-
objective optimization [S86], maximum vectors [KPL75, SM88,
M91] and the contour problem [M74], have been extensively
studied and numerous algorithms have been proposed for main-
memory processing. To the best our knowledge, however, the first
work that addresses skylines in the context of databases is
[BKS01], which develops algorithms based on block nested
loops, divide-and-conquer and index scanning. Tan et al.
[TEO01] propose progressive algorithms that can output skyline
points without having to scan the entire data input. Finally,
Kossmann et al. [KRR02] present an improved algorithm, called
NN due to its reliance on nearest neighbor search, which applies
the divide-and-conquer framework on datasets indexed by R-trees.
The experimental evaluation of [KRR02] shows that NN
outperforms previous algorithms in terms of overall performance
and general applicability independently of the dataset
characteristics, while it supports on-line processing efficiently.
Despite its advantages, NN has also some serious shortcomings
such as need for duplicate elimination, multiple node visits and
large space requirements.

Motivated by this fact, we propose a progressive algorithm
called BBS (branch and bound skyline), which, like NN, is based
on nearest neighbor search on multi-dimensional access methods,
but (unlike NN) it is optimal in terms of node accesses. BBS
incorporates the advantages of NN, without sharing its
shortcomings. We experimentally and analytically show that BBS
outperforms NN (usually by orders of magnitudes) both in terms
of CPU and IO costs for all problem instances, while incurring
less space overhead. In addition to its efficiency, the proposed
algorithm is simple and easily extendible to several variations of
skyline queries.

The rest of the paper is organized as follows: Section 2
reviews previous secondary-memory algorithms for skyline
computation, focusing more on NN since it is the most recent and
efficient algorithm. Section 3, analyzes the shortcomings of NN
and introduces BBS, providing a cost model for its expected
performance and a proof of its optimality. Section 4 proposes
alternative skyline queries and discusses their processing using
BBS. Section 5 experimentally evaluates BBS, comparing it
against NN under a variety of settings. Finally, Section 6
concludes the paper with some directions for future work.

2. RELATED WORK
This section surveys existing secondary-memory algorithms for
computing skylines, namely: (1) block nested loop, (2) divide-
and-conquer, (3) bitmap, (4) index and (5) nearest neighbor.
Specifically, (1-2) are proposed in [BKS01], (3-4) in [TEO01]
and (5) in [KRR02]. We do not consider the sorted list scan, and
the B-tree algorithms of [BKS01] due to their limited applicability
(only for two dimensions) and poor performance, respectively.

2.1 Block Nested Loop (BNL)
Intuitively, a straightforward approach to compute the skyline is
to compare each point p with every other point; if p is not
dominated, then it is a part of the skyline. BNL builds on this
concept by scanning the data file and keeping a list of candidate
skyline points in main memory. The first data point is inserted
into the list. For each subsequent point p, there are three cases:
(i) If p is dominated by any point in the list, it is discarded as it is
not part of the skyline.
(ii) If p dominates any point in the list, it is inserted into the list,
and all points in the list dominated by p are dropped.
(iii) If p is neither dominated, nor dominates, any point in the list,
it is inserted into the list as it may be part of the Skyline.

The list is self-organizing because every point found
dominating other points is moved to the top. This reduces the
number of comparisons as points that dominate multiple other
points are likely to be checked first. A problem of BNL is that the
list may become larger than the main memory. When this
happens, all points falling in third case (cases (i) and (ii) do not
increase the list size), are added to a temporary file. This fact
necessitates multiple passes of BNL. In particular, after the
algorithm finishes scanning the data file, only points that were
inserted in the list before the creation of the temporary file are
guaranteed to be in the skyline and are output. The remaining
points must be compared against the ones in the temporary file.
Thus, BNL has to be executed again, this time using the
temporary (instead of the data) file as input.

The advantage of BNL is its wide applicability, since it can
be used for any dimensionality without indexing or sorting the
data file. Its main problems are the reliance on main memory (a
small memory may lead to numerous iterations) and its
inadequacy for on-line processing (it has to read the entire data
file before it returns the first skyline point).

2.2 Divide-and-Conquer (D&C)
The D&C approach divides the dataset into several partitions so
that each partition fits in memory. Then, the partial skyline of the
points in every partition is computed using a main-memory
algorithm (e.g., [SM88, M91]), and the final skyline is obtained
by merging the partial ones. Figure 2.1 shows an example using
the dataset of Figure 1.1. The data space is divided into 4
partitions s1, s2, s3, s4, with partial skylines {a,c,g}, {d}, {i},
{m,k}, respectively. In order to obtain the final skyline, we need
to remove those points that are dominated by some point in other
partitions. Obviously all points in the skyline of s3 must appear in
the final skyline, while those in s2 are discarded immediately
because they are dominated by any point in s3 (in fact s2 needs to
be considered only if s3 is empty). Each skyline point in s1 is
compared only with points in s3, because no point in s2 or s4 can
dominate those in s1. In this example, points c,g are removed
because they are dominated by i. Similarly, the skyline of s4 is
also compared with points in s3, which results in the removal of
m. Finally, the algorithm terminates with the remaining points
{a,i,k}. D&C is efficient only for small datasets (e.g., if the entire
dataset fits in memory then the algorithm requires only one
application of a main-memory skyline algorithm). For large
datasets, the partitioning process requires reading and writing the
entire dataset at least once, thus incurring significant IO cost.
Further, this approach is not suitable for on-line processing
because it cannot report any skyline until the partitioning phase
completes.

x

y
b

a

i k

h

g

d

f

e

c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n

s1 s2

s3 s4

Figure 2.1: Divide and conquer

2.3 Bitmap
This technique encodes in bitmaps all the information required to
decide whether a point is in the Skyline. A data point p = (p1,
p2, ..., pd), where d is the number of dimensions, is mapped to a
m-bit vector, where m is the total number of distinct values over
all dimensions. Let ki be the total number of distinct values on the
ith dimension (i.e., m =∑i=1~dki). In Figure 1.1, for example, there
are k1=k2=10 distinct values on the x-, y-dimensions and m =20.
Assume that pi is the ji-th smallest number on the ith axis; then, it
is represented by ki bits, where the (ki − ji +1) most significant bits
are 1, and the remaining ones 0. Table 2.1 shows the bitmaps for
points in Figure 1.1. Since point a has the smallest value (1) on
the x-axis, all bits of a1 are 1. Similarly, since a2 (=9) is the 9-th
smallest on the y-axis, the first 10−9+1=2 bits of its representation
are 1, while the remaining ones are 0.

id coordinate bitmap representation
a (1,9) (1111111111, 1100000000)
b (2,10) (1111111110, 1000000000)
c (4,8) (1111111000, 1110000000)
d (6,7) (1111100000, 1111000000)
e (9,10) (1100000000, 1000000000)
f (7,5) (1111000000, 1111110000)
g (5,6) (1111110000, 1111100000)
h (4,3) (1111111000, 1111111100)
i (3,2) (1111111100, 1111111110)
k (9,1) (1100000000, 1111111111)
l (10,4) (1000000000, 1111111000)
m (6,2) (1111100000, 1111111110)
n (8,3) (1110000000, 1111111100)

Table 2.1: The bitmap approach

Consider now that we want to decide whether a point, e.g., c with
bitmap representation (1111111000, 1110000000), belongs to the
skyline. The most significant bits whose value is 1, are the 4th and
the 8th, on dimensions x and y, respectively. The algorithm creates
two bit-strings, cX = 1110000110000 and cY = 0011011111111, by
juxtaposing the corresponding bits (i.e., 4th and 8th) of every point.
In Table 2.1, these bit-strings (shown in bold) contain 13 bits (one
from each object, starting from a and ending with n). The 1's in
the result of cX&cY=0010000110000, indicate the points that
dominate c, i.e., c, h and i. Obviously, if there is more than a
single 1, the considered point is not in the skyline2. The same
operations are repeated for every point in the dataset, to obtain the
entire skyline.

2 The result of "&" will contain several 1's if multiple skyline

points coincide. This case can be handled with an additional
"or" operation [TEO01].

The efficiency of bitmap relies on the speed of bit-wise
operations. The approach can quickly return the first few skyline
points according to their insertion order (e.g., alphabetical order
in Table 2.1), but cannot adapt to different user preferences,
which is an important property of a good skyline algorithm
[KRR02]. Furthermore, the computation of the entire skyline is
expensive because, for each point inspected, it must retrieve the
bitmaps of all points in order to obtain the juxtapositions. Also the
space consumption may be prohibitive, if the number of distinct
values is large. Finally, the technique is not suitable for dynamic
datasets where insertions may alter the rankings of attribute
values.

2.4 Index
The “index” approach organizes a set of d-dimensional points into
d lists such that a point p = (p1, p2, …, pd) is assigned to the ith
list (1≤i≤d), if and only if, its coordinate pi on the ith axis is the
minimum among all dimensions, or formally: pi≤pj for all j≠i.
Table 2.2 shows the lists for the dataset of Figure 1.1. Points in
each list are sorted in ascending order of their minimum
coordinate (minC, for short) and indexed by a B-tree. A batch in
the ith list consists of points that have the same ith coordinate (i.e.,
minC). In Table 2.2, every point of list 1 constitutes an individual
batch because all x-coordinates are different. Points in list 2 are
divided into 5 batches {k}, {i,m}, {h,n}, {l} and {f}.

list 1 list 2
a (1, 9) minC=1 k (9, 1) minC=1

b (2, 10) minC=2 i (3, 2), m (6, 2) minC=2
c (4, 8) minC=4 h (4, 3), n (8, 3) minC=3
g (5, 6) minC=5 l (10, 4) minC=4
d (6, 7) minC=6 f (7, 5) minC=5
e (9, 10) minC=9

Table 2.2: The index approach

Initially, the algorithm loads the first batch of each list, and
handles the one with the minimum minC. In Table 2.2, the first
batches {a}, {k} have identical minC=1, in which case the
algorithm handles the batch from list 1. Processing a batch
involves (i) computing the skyline inside the batch, and (ii) among
the computed points, it adds the ones not dominated by any of the
already-found skyline points into the skyline list. Continuing the
example, since batch {a} contains a single point and no skyline
point is found so far, a is added to the skyline list. The next batch
{b} in list 1 has minC=2; thus, the algorithm handles batch {k}
from list 2. Since k is not dominated by a, it is inserted in the
skyline. Similarly, the next batch handled is {b} from list 1, where
b is dominated by point a (already in the skyline). The algorithm
proceeds with batch {i,m}, computes the skyline inside the batch
that contains a single point i (i.e., i dominates m), and adds i to the
skyline. At this step the algorithm does not need to proceed
further, because both coordinates of i are smaller than or equal to
the minC (i.e., 4, 3) of the next batches (i.e., {c}, {h,n}) of lists 1
and 2. This means that all the remaining points (in both lists) are
dominated by i and the algorithm terminates with {a,i,k}.

Although this technique can quickly return skyline points at
the top of the lists, it has several disadvantages. First, as with the
bitmap approach, the order that the skyline points are returned is
fixed, not supporting user-defined preferences. Second, as
indicated in [KRR02], the lists computed for d dimensions cannot
be used to retrieve the skyline on any subset of the dimensions. In

general, in order to support queries for arbitrary dimensionality
subsets, an exponential number of lists must be pre-computed.

2.5 Nearest Neighbor (NN)
NN uses the results of nearest neighbor search to partition the data
universe recursively. As an example, consider the application of
the algorithm to the data set of Figure 1.1, which is indexed by an
R-tree. NN performs a nearest neighbor query (using an existing
algorithm such as [RKV95, HS99]) on the R-tree, to find the
point with the minimum distance (mindist) from the beginning of
the axes (point o). Without loss of generality, we assume that
distances are computed according to L1 norm, i.e., the mindist of a
point p from the beginning of the axes equals the sum of the
coordinates of p. It can be shown that the first nearest neighbor
(point i with mindist 5) is part of the skyline. On the other hand,
all the points in the dominance region of i (shaded area in Figure
2.2a) can be pruned from further consideration. The remaining
space is split in two partitions based on the coordinates (ix,iy) of
point i: (i) [0,ix) [0,∞) and (ii) [0,∞) [0,iy). In Figure 2.2a, the first
partition contains subdivisions 1 and 3, while the second one,
subdivisions 1 and 2.

x

y
b

a

i k

h

g

d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n

1 2

3 4

x

y
b

a

i k

h

g

d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n

1

3 4

2

(a) discovery of point i (a) discovery of point a

Figure 2.2: Example of NN

The set of partitions resulting after the discovery of a skyline
point are inserted in a to-do list. While the to-do list is not empty,
NN removes one of the partitions from the list and recursively
repeats the same process. For instance, point a is the nearest
neighbor in partition [0,ix) [0,∞), which causes the insertion of
partitions [0,ax) [0,∞) (subdivisions 1 and 3 in Figure 2.2b) and
[0,ix) [0,ay) (subdivisions 1 and 2 in Figure 2.2b) in the to-do list.
If a partition is empty, it is not subdivided further. In general, if d
is the dimensionality of the data-space, each skyline point
discovered causes d recursive applications of NN. Figure 2.3a
shows a 3D example, where point n with coordinates (nx,ny,nz) is
the first nearest neighbor (i.e., skyline point).

1
3

5

7

2

4

6

8

(nx, ny, nz)

axis x

axis yaxis z

1

3

5

7

2

4

6

8

(a) First skyline point (b) 1st query [0,nx) [0,∞) [0,∞)

1
3

5

7

2

4

6

8

 1
3

5

7

2

4

6

8

(c) 2nd query [0,∞) [0,ny) [0,∞) (d) 3rd query [0,∞) [0,∞) [0,nz)

Figure 2.3: NN partitioning for 3 dimensions

The NN algorithm will be recursively called for the partitions (i)
[0,nx) [0,∞) [0,∞) (Figure 2.3b), (ii) [0,∞) [0,ny) [0,∞) (Figure
2.3c) and (iii) [0,∞) [0,∞) [0,nz) (Figure 2.3d). Among the eight
space subdivisions shown in Figure 2.3, the 8th one will not be
searched by any query since it is dominated by point n. Each of
the remaining subdivisions however, will be searched by two
queries, e.g., a skyline point in subdivision 2, will be discovered
by both the 2nd and 3rd query. In general, for d>2, the overlapping
of the partitions necessitates duplicate elimination. Kossmann et
al. [KRR02] propose the following elimination methods:
Laisser-faire: A main memory hash table stores the skyline points
found so far. When a point p is discovered, it is probed and if it
already exists in the hash table, p is discarded; otherwise, p is
inserted into the hash table. The technique is straightforward and
incurs minimum CPU overhead, but results in very high IO cost
since large parts of the space will be accessed by multiple queries.
Propagate: When a point p is found, all the partitions in the to-do
list that contain p are removed and re-partitioned according to p.
The new partitions are inserted into the to-do list. Although
propagate does not discover the same skyline point twice, it
incurs high CPU cost because the to-do list is scanned every time
a skyline point is discovered.
Merge: The main idea is to merge partitions in the to-do, thus
reducing the number of queries that have to be performed.
Partitions that are contained in other ones can be eliminated in the
process. Like propagate, merge also incurs high CPU cost since it
is expensive to find good candidates for merging.
Fine-grained Partitioning: The original NN algorithm generates
d partitions after a skyline point is found. An alternative approach
is to generate 2d non-overlapping subdivisions. In Figure 2.3 for
instance, the discovery of point n will lead to 6 new queries (i.e.,
23-2 since subdivisions 1 and 8 cannot contain any skyline
points). Although fine grain partitioning avoids duplicates, it
generates the more complex problem of false hits, i.e., it is
possible that points in one subdivision (e.g., 4) are dominated by
points in another (e.g., 2) and should be eliminated.

According to the experimental evaluation of [KRR02], the
performance of laisser-faire and merge is unacceptable, while fine
grain partitioning was not implemented due to the false hits
problem. Propagate is significantly more efficient, but the best
results were achieved by a hybrid method that combines
propagate and laisser-faire. Compared to previous algorithms,
NN is significantly faster for up to 4 dimensions. In particular,
NN returns the entire skyline faster than index and their difference
increases (sometimes to orders of magnitudes) with the size of the
skyline. On the other hand, index has better performance for
returning skyline points progressively, as it simply scans through
the extended B-tree to return points that are good in one
dimension. However, as claimed in [KRR02], these points are not
representative of the whole skyline because certain dimensions are
favored. For higher than 3 dimensions, the cost of NN increases
due to the growth of the overlapping area between partitions and,
to a lesser degree, due to the performance deterioration of R-trees.
For these cases, index is also inapplicable due to its extreme space
requirements (if skylines on subsets of the dimensions are
allowed). D&C and bitmap are not favored by correlated datasets
(where the skyline is small) as the overhead of merging and
loading the bitmaps, respectively, does not pay-off. BNL performs
well for small skylines, but its cost increases fast with the skyline
size (e.g., anti-correlated datasets, high dimensionality) due to the
large number of iterations that must be performed.

3. BRANCH AND BOUND SKYLINE ALGORITHM
Despite its performance advantages compared to previous skyline
algorithms, NN has some serious shortcomings, which are
presented in Section 3.1. Then, Section 3.2 describes BBS and
Section 3.3 illustrates its IO optimality.

3.1 Motivation
A recursive call of the NN algorithm terminates when the
corresponding nearest neighbor query does not retrieve any point
within the corresponding space. Lets call such a query empty, to
distinguish it from non-empty queries that return results, each
spawning d new recursive applications of the algorithm (where d
is the dimensionality of the data space). Figure 3.1 shows a query
processing tree, where empty queries are illustrated as transparent
cycles. For the second level of recursion, for instance, the second
query does not return any results, in which case the recursion will
not proceed further.

1NN

12 d

12 d

12 d

12 d

12 d

Figure 3.1: Recursion tree

Some of the non-empty queries may be redundant, meaning that
they return skyline points already found by previous queries. Let s
be the number of skyline points in the result, e the number of
empty queries, ne the number of non-empty ones, and r the
number of redundant queries. Since every non-empty query either
retrieves a skyline point, or it is redundant, then ne=s+r.
Furthermore, the number of empty queries in Figure 3.1 equals
the number of leaf nodes in the recursion tree, i.e., e = ne⋅(d-1)+1.
By combining the two equations we get e=(s+r)⋅(d-1)+1. Each
query must traverse a whole path from the root to the leaf level of
the R-tree before it terminates; therefore, its IO cost is at least h
node accesses, where h is the height of the tree.

Summarizing the above observations, the total number of
accesses for NN is: NANN ≥ (e+s+r)⋅h = (s+r)⋅h⋅d+h > s·h·d. The
value s·h·d is a rather optimistic lower bound since, for d>2, the
number r of redundant queries may be very high (depending on
the duplicate elimination method used), and queries normally
incur more than h node accesses. On the other hand, as will be
shown shortly, BBS is at least d times faster than the lower bound
of NN.

Another problem of NN concerns the to-do list size, which
can exceed that of the dataset for as low as 3 dimensions, even
without considering redundant queries. Consider, for instance, a
3D uniform dataset (cardinality N) and a skyline query with the
preference function3 f(x,y,z)=x. The first skyline point n (nx,ny,nz)
has the smallest x coordinate among all data points, and adds
partitions Px=[0,nx) [0,∞) [0,∞), Py=[0,∞) [0,ny) [0,∞), Pz=[0,∞)
[0,∞) [0,nz) in the to-do list. Note that the NN query in Px is
empty because there is no other point whose x-coordinate is below
nx. On the other hand, the expected volume of Py (Pz) is ½

3 NN (and BBS) can be applied with any monotone function; the

skyline points are the same, but the order that they are
discovered may be different.

(assuming unit axis length on all dimensions), because the nearest
neighbor is decided solely on x-coordinates, and hence ny (nz)
distributes uniformly in [0,1]. Following the same reasoning, a
NN in Py finds the second skyline point that introduces three new
partitions such that one partition leads to an empty query, while
the volumes of the other two are ¼. Pz is handled similarly, after
which the to-do list contains 4 partitions with volumes ¼, and 2
empty partitions. In general, after the ith level of recursion, the to-
do list contains 2i partitions with volume 1/2i, and 2i-1 empty
partitions. The algorithm terminates when 1/2i<1/N (i.e., i>logN)
so that all partitions in the to-do list are empty. Assuming that the
empty queries are performed at the end, the size of the to-do list
can be obtained by summing the number e of empty queries at
each recursion level i:

log
1

1

2
N

i

i

−

=
∑ = N-1

The implication of the above equation is that even in 3D, NN may
behave like a main-memory algorithm (since the to-do list, which
resides in memory, is at the same order of size as the input
dataset). Using the same reasoning, for arbitrary dimensionality
d>2, e= Θ ((d−1)logN), i.e., the to-do list may become orders of
magnitude larger than the dataset, which seriously limits the
applicability of NN. In fact, as shown in Section 5, the algorithm
does not terminate in the majority of experiments involving 4 and
5 dimensions.

3.2 Description
Like NN, BBS is also based on nearest neighbor search.
Although both algorithms can be used with any data-partition
method, in this paper we use R-trees due to their simplicity and
popularity. The same concepts can be applied with other multi-
dimensional access methods for high-dimensional spaces, where
the performance of R-trees is known to deteriorate. Furthermore,
as claimed in [KRR02], most applications involve up to 5
dimensions, for which R-trees are still efficient. For the following
discussion, we use the set of 2D data points of Figure 1.1,
organized in the R-tree of Figure 3.2 with node capacity=3. An
intermediate entry ei corresponds to the minimum bounding
rectangle (MBR) of a node Ni at the lower level, while a leaf entry
corresponds to a data point. Distances are computed according to
L1 norm, i.e., the mindist of a point equals the sum of its
coordinates and the mindist of a MBR (i.e., intermediate entry)
equals the mindist of its lower-left corner point.

x

y
b

a

i k

N2
N1

N3

N4

h

N6

N7

g

d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n
N5

a b c d e f g h i l k

e1 e2 e3 e4

e6 e7

N1
N2

N6

N3 N4

N7

R

m n

N5

e5

Figure 3.2: R-tree

BBS, similar to previous algorithms for nearest neighbors
[RKV95, HS99] and convex hulls [BK01], is based on the
branch-and-bound paradigm. Specifically, it starts from the root
node of the R-tree and inserts all its entries (e6, e7) in a heap
sorted according to their mindist. Then, the entry with the
minimum mindist (e7) is "expanded". This expansion process
removes the entry (e7) from the heap and inserts its children (e3,
e4, e5). The next expanded entry is again the one with the
minimum mindist (e3), in which the first nearest neighbor (i) is
found. This point (i) belongs to the skyline, and is inserted to the
list S of skyline points.

Notice that up to this step BBS behaves like the best-first
nearest neighbor algorithm of [HS99]. The next entry to be
expanded is e6. Although the best-first algorithm would now
terminate since the mindist (6) of e6 is greater than the distance (5)
of the nearest neighbor (i) already found, BBS will proceed
because node N6 may contain skyline points (e.g., a). Among the
children of e6, however, only the ones that are not dominated by
some point in S are inserted into the heap. In this case, e2 is
pruned because it is dominated by point i. The next entry
considered (h) is also pruned because it is dominated by point i.
The algorithm proceeds in the same manner until the heap
becomes empty. Figure 3.3 shows the ids and the mindist of the
entries inserted in the heap (skyline points are bold and pruned
entries are shown with strikethrough fonts).

action heap contents S
access root <e7,4><e6,6> ∅
expand e7 <e3,5><e6,6><e5,8><e4,10> ∅
expand e3 <i,5><e6,6><h,7><e5,8>

<e4,10><g,11>
{i}

expand e6 <h,7><e5,8><e1,9><e4,10><g,11> {i}
expand e1 <a,10> <e4,10><g,11><b,12><c,12> {i,a}
expand e4 <k,10><g,11><b,12><c,12><l,14> {i,a,k}

Figure 3.3: Heap Contents

The pseudo-code for BBS is shown in Figure 3.4. Notice that an
entry is checked for dominance twice: before it is inserted in the
heap and before it is expanded. The second check is necessary
because an entry (e.g., e5) in the heap may become dominated by
some skyline point discovered after its insertion (therefore it does
not need to be visited).

Algorithm BBS (R-tree R)
1. S=∅ // list of skyline points
2. insert all entries of the root R in the heap
3. while heap not empty
4. remove top entry e
5. if e is dominated by some point in S discard e
6. else // e is not dominated
7. if e is an intermediate entry
8. for each child ei of e
9. if ei is not dominated by some point in S
10. insert ei into heap
11. else // e is a data point
12. insert ei into S
13. end while
End BNN

Figure 3.4: BBS algorithm

Next we present a proof of correctness for BBS.

■ Lemma 1: BBS visits (leaf and intermediate) entries of an R-
tree in ascending order of their distance to the origin of the axis.

The proof is straightforward since the algorithm always visits
entries according to their mindist order preserved by the heap.
■ Lemma 2: Any data point added to S during the execution of the
algorithm is guaranteed to be a final skyline point.

Proof: Assume, on the contrary, that point pj was added into
S, but it is not a final skyline point. Then, pj must be dominated by
a (final) skyline point, say, pi, whose coordinate on any axis is not
larger than the corresponding coordinate of pj, and at least one
coordinate is smaller (since pi and pj are different points). This in
turn means that mindist(pi)< mindist(pj). By Lemma 1, pi must be
visited before pj. In other words, at the time pj is processed, pi
must have already appeared in the skyline list, and hence pj should
be pruned, which contradicts the fact that pj was added in the list.
■ Lemma 3: Every data point will be examined, unless one of its
ancestor nodes has been pruned.

Proof: The proof is obvious since all entries that are not
pruned by an existing skyline point are inserted into the heap and
examined.

Lemmas 2 and 3 guarantee that if BBS is allowed to execute
until its termination, it will correctly return all skyline points,
without reporting any false hits. An important issue regards the
dominance checking, which can be expensive if the skyline
contains numerous points. In order to speed up this process we
insert the skyline points found in a main-memory R-tree.
Continuing the example of Figure 3.2, for instance, only points i,
a, k will be inserted (in this order) to the main-memory R-tree.
Checking for dominance can now be performed in a way similar
to traditional window queries. An entry (i.e., node MBR or data
point) is dominated by a skyline point p, if its lower left point falls
inside the dominance region of p, i.e., the rectangle defined by p
and the edge of the universe.

Figure 3.5 shows the dominance regions for points i, a, k and
two entries; e is dominated by i and k, while e' is not dominated
by any point (therefore is should be expanded). Notice that, in
general, most dominance regions will cover a large part of the
data space, in which case there will be significant overlap between
the intermediate nodes of the main-memory R-tree. Unlike
traditional window queries that must retrieve all results, this is not
a problem here because we only need to retrieve a single
dominance region in order to determine that the entry is
dominated (by at least one skyline point).

x

y

a

i k

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

e
e'

edge of the
universe

lower left point of e'

lower left point of e

Figure 3.5: Entries of the main-memory R-tree

As a conclusion of this section we informally evaluate BBS with
respect to the criteria of [HAC+99, KRR02]:

(i) Progressiveness: the first results should be output to the
user almost instantly and the algorithm should produce more
and more results the longer the execution time.

(ii) Absence of false misses: given enough time, the
algorithm should generate the entire skyline.
(iii) Absence of false hits: the algorithm should not insert into
S points that will be later replaced.
(iv) Fairness: the algorithm should not favor points that are
particularly good in one dimension.
(v) Incorporation of preferences: the algorithm should allow
the users to determine the order according to which skyline
points are returned.
(vi) Universality: the algorithm should be applicable to any
dataset distribution and dimensionality, using some standard
index structure.

BBS satisfies property (i) as it returns skyline points instantly in
ascending order of their distance to the beginning of the axes,
without having to visit a large part of the R-tree. Lemma 3 ensures
property (ii), since every data point is examined unless some of its
ancestors is dominated (in which case the point is dominated too).
Lemma 2 guarantees property (iii). Property (iv) is also fulfilled
because BBS outputs points according to their mindist, which
takes into account all dimensions. Regarding user preferences (v),
as we discuss in Section 4.1, the user can specify the order of
skyline points to be returned by appropriate preference functions.
Furthermore, BBS also satisfies property (vi) since it does not
require any specialized indexing structure, but (like NN) it can be
applied with R-trees or any other data-partition method.
Furthermore, the same index can be used for any subset of the d-
dimensions that may be relevant to different users.

3.3 Analysis
In this section we first prove that BBS is IO optimal, meaning that
(i) it visits only the nodes that may contain skyline points and (ii)
it does not access the same node twice. Then, we provide a
qualitative comparison with NN in terms of node accesses and
space overhead (i.e., the heap versus the to-do list sizes).

Central to the analysis of BBS is the concept of skyline
search region (SSR), i.e., the part of the data space that may
contain skyline points. Consider for instance the running example
(with skyline points i, a, k). The SSR is the area (shaded in Figure
3.5) defined by the skyline and the two axes.
■ Lemma 4: Any skyline algorithm based on R-trees must access
all the nodes whose MBRs intersect the SSR.

For instance, although entry e' in Figure 3.5 does not contain
any skyline points, this cannot be determined unless the node of e'
is visited.
■ Lemma 5: If an entry e does not intersect the SSR, then there is
a skyline point p whose distance from the origin of the axes is
smaller than the mindist of e.

Proof: Since e does not intersect the SSR, it must be
dominated by at least a skyline point p, meaning that p dominates
the lower-left corner point of e. This implies that the distance of p
to the origin of the axes is smaller than the mindist of e.
■Theorem: The number of node accesses performed by BBS is
optimal.

Proof: First we prove that BBS only accesses nodes that may
contain skyline points. Assume, to the contrary, that the algorithm
also visits an entry (let it be e in Figure 3.5) that does not intersect
the SSR. Clearly, e should not be accessed because it cannot
contain skyline points. Consider a skyline point that dominates e
(e.g., k). Then, by Lemma 5, the distance of k to the origin is
smaller than the mindist of e. According to Lemma 1, BBS visits
the entries of the R-tree in ascending order of their mindist to the

origin. Hence, k must be processed before e, meaning that e will
be pruned by k, which contradicts the fact that e is visited.

In order to complete the proof we only need to show that an
entry is not visited multiple times. This is straightforward because
entries are inserted into the heap (and expanded) at most once,
according to their mindist. ■

To quantify the actual cost of BBS, next we derive the
number of node accesses for computing the entire skyline. Let
Pi(ξ, ψ) be the probability that the MBR of a level-i node
intersects the rectangle with corner points (0, 0) and (ξ, ψ); then,
the node density Di(ξ, ψ) at level-i is the derivative of Pi(ξ, ψ), or
formally () ()2, , /i iD Pξ ψ ξ ψ ξ ψ= ∂ ∂ ∂ [TSS00]. The number NAi of

node accesses at the ith level (leaf nodes are at level 0) equals:

1i intr ii

N
NA P

f −+= , and

() (), ,intr i ix y SSRP D x y dxdy− ∈= ∫ ∫

where N is the cardinality of the dataset, f the node fan-out (N/f i+1
is the total number of nodes at level i), and Pintr-i is the probability
that a level-i node intersects the SSR. As analyzed in [TSS00], the
value of Di(ξ, ψ) depends on the data density at location (ξ, ψ),
i.e., the number of nodes covering point (ξ, ψ) increases with the
data D(ξ, ψ) density around (ξ, ψ). The crucial observation is that,
D(ξ, ψ)=0 for every (ξ, ψ) ∈ SSR, because there cannot be any
point in SSR (otherwise such a point would appear on the
skyline). It follows that Di(ξ, ψ) is also low (but may not be zero,
see [TSS00] for deriving Di(ξ, ψ) from D(ξ, ψ)), resulting in a
small NAi. The total number NABBS of node accesses performed by
BBS is the sum of accesses NAi at each level. Similar conclusions
also hold for higher dimensionality.

Assuming that each leaf node visited contains some skyline
point, NABBS is below s·h. This bound corresponds to a rather
pessimistic case, where BBS has to access a complete path for
each skyline point. Many skyline points, however, may be found
in the same leaf nodes, or in the same branch of a non-leaf node
(e.g., the root of the tree!), so that these nodes only need to be
accessed once. Therefore, BBS is at least d (=s·h·d / s·h) times
faster than NN. In practice, for d>2, the speed-up is much larger
than d (several orders of magnitude) as NANN = s·h·d does not take
into account the number r of redundant queries.

Finally, we compare the memory overhead of the heap in
BBS and the to-do list in NN. The number of entries nheap in the
heap is at most (f−1)· NABBS. This is a pessimistic upper bound,
because it assumes that a node expansion removes from the heap
the expanded entry and inserts all its f children (in practice most
children will be dominated by some discovered skyline point and
pruned). Since for independent dimensions the expected number
of skyline points is s=Θ((lnN)d−1/(d-1)!) [B89], nheap ≤ (f−1)·
NABBS ≈ (f−1) · h · s ≈ (f−1)· h ·(lnN)d−1/(d-1)!. For d≥3 and typical
values of N and f (e.g., N=100k and f≈100), the heap size is much
smaller that the corresponding to-do list size, which as discussed
in Section 3.1 can be in the order of (d−1)logN. Furthermore, a
heap entry stores d+2 numbers (i.e., entry id, mindist, and the
coordinates of the lower-left corner), as opposed to 2d numbers
for to-do list entries (i.e., d-dimensional ranges).

In summary, the main-memory requirement of BBS is at the
same order as the size of the skyline, since both the heap and the
main-memory R-tree sizes are at this order. This is a reasonable
assumption because (i) skylines are normally small and (ii)
previous algorithms, such as index, are based on the same
principle. Nevertheless, specialized heap management techniques
(e.g., [HS99]) can be applied for very limited memory.

4. VARIATIONS OF SKYLINE QUERIES
Next we propose novel variations of skyline queries and illustrate
how BBS can be applied for their processing. In particular,
Section 4.1 discusses ranked skylines, Section 4.2 constrained
skyline queries, Section 4.3 dynamic skylines, and Section 4.4
enumerating and K-dominating queries.

4.1 Ranked skyline queries
Given a set of points in the d-dimensional space [0, 1]d, a ranked
(top-K) skyline query (i) specifies a parameter K, and a preference
function f which is monotone on each attribute, (ii) and returns the
K skyline points p that have the minimum score according to the
input function. Consider the running example, where K=2 and the
preference function is f(x,y)=x+3y2. The output skyline points
should be <k,12>, <i, 15> in this order (the number with each
point indicates its score).

BBS can easily handle such queries by modifying the mindist
definition to reflect the preference function (i.e., the mindist of a
point with coordinates x and y equals x+3y2). The mindist of an
intermediate entry equals the score of its lower left point.
Furthermore, the algorithm terminates after exactly K points have
been inserted into S. Due to the monotonicity of f, it is easy to
prove that the points returned are skyline points. The only change
with respect to the original algorithm is the order of entries
visited, which does not affect the correctness or optimality of BBS
because in any case an entry will be considered after all entries
that dominate it.

None of the previous skyline algorithms (see Section 2)
supports ranked skyline efficiently. Specifically, BNL, D&C,
bitmap, and the index methods require first retrieving the entire
skyline, sorting the skyline points by their scores, and then
outputting the best K points. On the other hand, although NN can
also be used with any monotone function, its application to ranked
skyline may incur almost the same cost as that of a complete
skyline. This is because, due its divide-and-conquer nature, it is
difficult to establish the termination criterion. If, for instance,
K=2, NN must perform d queries after the first nearest neighbor
(skyline point) is found, compare their results, and return the one
with the minimum score. The situation is more complicated when
K is large because the output of numerous queries must be
compared.

4.2 Constrained skyline queries
Given a set of constraints, a constrained skyline query returns the
most interesting points in the data space defined by the
constraints. Typically, each constraint is expressed as a range
along a dimension and the conjunction of all constraints forms a
hyper-rectangle (referred to as the constraint region) in the d-
dimensional attribute space. Consider the hotel example, where a
user is interested only in hotels whose price (y- axis) is in the
range 4-7. The skyline in this case contains points g, f and l
(Figure 4.1), as they are the most interesting hotels in the
specified range.

BBS can easily process such queries. The only difference
with respect to the original algorithm is that entries not
intersecting the constraint region are pruned (i.e., not inserted in
the heap). Figure 4.2 shows the contents of the heap during the
processing of the query in Figure 4.1. The NN algorithm can also
support constrained skylines with a similar modification. In
particular, the first nearest neighbor (e.g., g) is retrieved in the

constraint region using constrained nearest neighbor search
[FSAA01]. Then, each space subdivision is the intersection of the
original subdivision (area to be searched by NN for the un-
constrained query) and the constraint region.

x

y
b

a

i k

N2
N1

N3

N4

h

N6

N7

g

d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n
N5

Figure 4.1: Constrained query example

action heap contents S

access root <e7,4><e6,6> ∅
expand e7 <e3,5><e6,6><e4,10> ∅
expand e3 <e6,6> <e4,10><g,11> ∅
expand e6 <e4,10><g,11><e2,11> ∅
expand e4 <g,11><e2,11><l,14> {g}
expand e2 <f,12><d,13><l,14> {g,f,l}
Figure 4.2: Heap contents for constrained query

The index method can be modified for constrained skylines, by
processing the batches starting from the beginning of the
constraint ranges (instead of the top of the lists). Bitmap can avoid
loading the juxtapositions (see Section 2.3) for points that do not
satisfy the query constraints. D&C may discard, during the
partitioning step, points that do not belong to the constraint
region. For BNL, the only difference with respect to regular
skylines is that only points in the constrained region are inserted
in the self-organizing list.

4.3 Dynamic skyline queries
Assume a database containing points in d-dimensional space with
axes d1, d2, …, dd. A dynamic skyline query specifies m dimension
functions f1, f2, …, fm such that each function fi (1≤i≤m) takes as
parameters the coordinates of the data points along a subset of the
d axes. The goal is to return the skyline in the new data space with
dimensions defined by f1, f2, …, fm. Consider a database that stores
the following information for each hotel: (i) its x-, (ii) y-
coordinates, and (iii) its price (i.e., the database contains 3
dimensions). Then, a user specifies his/her current location (ux,uy),
and requests the most interesting hotels, where preference must
take into consideration the hotels' proximity to the user (in terms
of Euclidean distance) and the price. Each point p with co-
ordinates (px,py,pz) in the original 3D space is transformed to a
point p' in the 2D space with coordinates (f1(px,py), f2(pz)), where
the dimension functions f1 and f2 are defined as:

 () () ()22
,1 x y x x y yf p p p u p u= − + − , and f2(pz)= pz.

The terms original and dynamic space refer to the original d-
dimensional data space and the space with computed dimensions
(from f1, f2, …, fm), respectively. Correspondingly, we refer to the
coordinates of a point in the original space as original
coordinates, while to those of the point in the dynamic space as
dynamic coordinates.

BBS is applicable to dynamic skylines by expanding entries
in the heap according to their mindist in the dynamic space (which
is computed on-the-fly when the entry is considered for the first
time). In particular, the mindist of a leaf entry (data point) e with

original coordinates (ex,ey,ez), equals () ()22

x x y y ze u e u e− + − + ,

and the mindist of an intermediate entry e whose MBR has ranges
[ex0,ex1] [ey0,ey1] [ez0,ez1] is computed as mindist([ex0,ex1] [ey0,ey1],
(ux,uy))+ez0, where the first term equals the mindist between point
(ux,uy) to the 2D rectangle [ex0,ex1] [ey0,ey1]. Furthermore, notice
that the concept of dynamic skylines can be employed in
conjunction with ranked and constraint queries (i.e., find the top-5
hotels within 1km, given that the price is twice as important as the
distance). BBS can process such queries by appropriate
modification of the mindist definition (the z coordinate is
multiplied by 2) and by constraining the search region
(f1(x,y)≤1km).

Regarding the applicability of the previous methods, BNL
still applies because it evaluates every point, whose dynamic
coordinates can be computed on-the-fly. D&C and NN can also be
modified for dynamic queries with the transformations described
above, suffering, however, similar problems of the original
algorithms. Bitmap and index are not applicable because these
methods rely on pre-computation, which provides little help when
the dimensions are defined dynamically.

4.4 Enumerating and K-dominating queries
Enumerating queries return, for each skyline point p, the number
of points dominated by p. This information may be relevant for
some applications as it provides some measure of "goodness" for
the skyline points. In the running example, for instance, hotel i,
may be more interesting than the other skyline points since it
dominates 9 hotels as opposed to 2 for hotels a and k. Lets call
num(p) the number of points dominated by point p. A
straightforward approach to process such queries involves two
steps: (i) first compute the skyline and (ii) for each skyline point p
apply a query window in the data R-tree and count the number of
points num(p) falling inside the dominance region of p. Notice
that since all (except for the skyline) points are dominated, all the
nodes of the R-tree will be accessed by some query. Furthermore,
due to the large size of the dominance regions, numerous R-tree
nodes will be accessed by several window queries. In order to
avoid multiple node visits, we apply the inverse procedure, i.e.,
we scan the data file and for each point we perform a query in the
main-memory R-tree to find the dominance regions that contain it.
The corresponding counters num(p) of the skyline points are then
increased accordingly.

An interesting variation of the problem is the K-dominating
query, which retrieves the K points that dominate the largest
number of other points. Strictly speaking, this is not a skyline
query, since the result does not necessarily contain skyline points.
If K=3, for instance, the output should include hotels i, h and m,
since num(i)=9, num(h)=7 and num(m)=5. In order to obtain the
result, we first perform an enumerating query that returns the
skyline points and the number of points that they dominate. This
information for the first K=3 points is inserted into a list sorted
according to num(p), i.e., list = <i,9>, <a,2>, <k,2>. Clearly, the
first element of the list (point i) is the first result of the 3-
dominating query. Any other point potentially in the result, should
be in the dominance region of i, but not in the dominance region
of a, or k (i.e., in the shaded area of Figure 4.3a); otherwise, it

would dominate fewer points than a, or k. In order to retrieve the
candidate points we perform a local skyline query S' in this region
(i.e., a constrained skyline query), after removing i from S and
outputting it to the user. S' contains points h and m. The new
skyline S1 = (S-{i}) ∪ S' is shown in Figure 4.3b.

x

y
b

a

i k

h

g

d

f

e

c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n

x

y
b

a

k

h

g

d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n

(a) Search region for the 2nd point (b) Skyline S1 after removal of i

x

y
b

a

k

h

g

d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n

x

y
b

a

k

g

d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n

(c) Search region for the 3nd point (b) Skyline S2 after removal of h

Figure 4.3: Example of 3-dominating query

Since h and m do not dominate each other, they may each
dominate at most 7 points (i.e., num(i)-2), meaning that they are
candidates for the 3-dominating query. In order to find the actual
number of points dominated, we perform a window query in the
data R-tree using the dominance regions of h and m as query
windows. After this step, <h,7> and <m,5> replace the previous
candidates <a,2>, <k,2> in the list. Point h is the second result of
the 3-dominating query and is output to the user. Then, the
process is repeated for the points that belong to the dominance
region of h, but not in the dominance regions of other points in S1
(i.e., shaded area in Figure 4.3c). The new skyline S2 = (S1-
{h})∪ {c,g} is shown in Figure 4.3d. Points c and g may dominate
at most 5 points each (i.e., num(h)-2), meaning that they cannot
outnumber m. Hence, the query terminates with <i,9> <h,7>
<m,5> as the final result. In general, the algorithm can be thought
of as skyline "peeling", since it computes local skylines at the
points that have the largest dominance. Figure 4.4 shows the
pseudo-code for K-dominating queries.

Obviously all existing algorithms can be employed for
enumerating queries, since the only difference with respect to
regular skylines is the second step (i.e., counting the number of
points dominated by each skyline point). Actually, the bitmap
approach can avoid scanning the actual dataset, since information
about num(p) for each point p, can be obtained directly by
appropriate juxtapositions of the bitmaps. On the other hand, K-
dominating queries require an effective mechanism for skyline
"peeling", i.e., discovery of skyline points in the dominance
region of the last point removed from the skyline. Since this
requires the application of a constrained skyline query, the
relative performance of algorithms is similar to that for
constrained skylines, discussed in Section 4.2.

Algorithm K-dominating_BBS (R-tree R, int K)
1. compute skyline S using BBS
2. for each point in S compute the number of dominated points
3. insert the top-K points of S in list sorted on num(p)
3. counter=0
4. while counter < K
5. p = remove first entry of list
6. output p
7. S' = set of local skyline points in the dominance region of p
8. if (num(p)-|S'|)> num(last element of list)
 // S' may contain candidate points
9. for each point p' in S'
10. find num(p') // perform a window query in data R-tree
11. if num(p') > num(last element of list)
12. update list // remove last element and insert p'
13. counter=counter+1;
14. end while
End K-dominating_BBS

Figure 4.4: K-dominating_BBS algorithm

5. EXPERIMENTAL EVALUATION
In this section we verify the effectiveness and efficiency of BBS
by comparing it against NN under a variety of settings. NN
applies a combination of laisser-faire and propagate for duplicate
elimination, since as discussed in [KRR02], it gives the best
results. Specifically, only the first 20% of the to-do list is searched
for duplicates using propagate and the rest of the duplicates are
handled with laisser-faire. Following the common methodology
in the literature, we employ independent (uniform) and anti-
correlated datasets with dimensionality d in the range [2,5] and
cardinality N in the range [100K, 10M]. Datasets are indexed by
R*-trees [BKSS90] using a page size of 4Kbytes resulting in node
capacities between 204 (d=2) and 94 (d=5). A Pentium 4 CPU at
2.4GHz with 512Mbytes Ram is used for all experiments.

We evaluate several factors that affect the performance of the
algorithms. In particular, Sections 5.1 and 5.2 study the effect of
dimensionality and cardinality, respectively. Section 5.3 compares
the progressive behavior of the algorithms and, finally, Section
5.4 evaluates the performance of BBS and NN on constrained
queries. We do not perform experiments with the other query
types as their cost can be predicted by the presented results. In
particular, the cost of a top-K skyline query is the same as that of
a progressive query, in which BBS terminates after the first K
points are returned. For dynamic skylines the only difference with
respect to regular queries is in the computation of mindist.
Enumerating queries, in addition to a regular skyline query,
require a scan of the data file. Finally, K-dominating queries
combine enumerating and constrained queries.

5.1 The effect of dimensionality
In order to study the effect of dimensionality we use the datasets
with cardinality N=1M and vary d between 2 and 5. Figure 5.1
shows the number of node accesses as a function of
dimensionality, for independent (5.1a) and anti-correlated (5.1b)
datasets. Figure 5.2 illustrates a similar experiment that compares
the algorithms in terms of CPU-time under the same settings. NN
could not terminate successfully for d>4 in case of independent,
and for d>3 in case of anti-correlated datasets due the prohibitive
size of the to-do list (to be discussed shortly). BBS clearly
outperforms NN and the difference increases fast with

dimensionality. The degradation of NN is caused mainly by the
growth of the number of partitions (i.e., queries), as well as the
number of duplicates. The degradation of BBS is due to the
growth of the skyline and the poor performance of R-trees in high
dimensions. Notice that these factors also influence NN, but their
effect is small compared to the inherent deficiencies of the
algorithm itself. Furthermore, although the existence of an LRU
buffer will reduce the node accesses of NN (BBS will not be
affected since it visits every node at most once), its disadvantage
compared to NN will still be very large due to the CPU overhead.

NN BBS

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

2 3 4 5

dimensionality

node accesses

 1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

2 3 4 5
dimensionality

node accesses

Independent Anti-correlated

Figure 5.1: Node accesses vs. d (N=1M)
CPU time (secs)

dimensionality
0

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

2 3 4 5
1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

2 3 4 5

dimensionality

CPU time (secs)

Independent Anti-correlated

Figure 5.2: CPU-time vs. d (N=1M)

Figure 5.3 shows the maximum sizes (in Kbytes) of the heap, the
to-do list and the dataset, as a function of dimensionality. For
d=2, the to-do list is smaller than the heap, and both are negligible
compared to the size of the dataset. For d=3, however, the to-do
list surpasses the heap (for independent data) and the dataset (for
anti-correlated data). Clearly, the maximum size of the to-do list
exceeds the main-memory of most existing systems for d≥4 (anti-
correlated data), which also explains the missing numbers about
NN in the diagrams for high dimensions. Notice that [KRR02]
report the cost of NN for returning up to the first 500 skyline
points using anti-correlated data in 5 dimensions. NN can return a
number of skyline points (but not the complete skyline), because
the to-do list does not reach its maximum size until a sufficient
number of skyline points have been found (and a large number of
partitions have been added). This will be further discussed in
Section 5.3, where we study the size of the to-do list as a function
of the points returned.

to-do list heap dataset

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

2 3 4 5

dimensionality

size (Kbytes)

 1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

2 3 4 5
dimensionality

size (Kbytes)

Independent Anti-correlated

Figure 5.3: Heap and to-do list size vs. d (N=1M)

Figure 5.4 compares the CPU-time (as a function of d) of BBS
using main-memory R-trees and an alternative implementation
that exhaustively scans the list of current skyline points to

determine if an entry is dominated. The gain of R-trees increases
with the dimensionality and is higher for anti-correlated data,
because in both cases the number of skyline points (and
dominance checks) increases.

exhaustive scan main-memory R-tree

dimensionality

CPU time (secs)

0

1e-2

1e-1

1e+0

1e+1

2 3 4 5
1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

2 3 4 5

dimensionality

CPU time (secs)

Independent Anti-correlated

Figure 5.4: Main-memory R-tree gains vs. d (N=1M)

5.2 The effect of cardinality
Figures 5.5 and 5.6 show the number of node accesses and CPU
time, respectively, versus the cardinality for 3D datasets. Even
though the effect of cardinality is not as important as that of
dimensionality, in all cases BBS is several orders of magnitude
faster than NN. For anti-correlated data, NN does not terminate
successfully for N≥5M, again due to the prohibitive size of the to-
do list. Some irregularities in the diagrams (a small dataset may be
more expensive than a larger one) are due to the positions of the
skyline points and the order in which they are discovered. If for
instance, the first nearest neighbor is very close to the beginning
of the axes, both BBS and NN will prune a large part of their
respective search spaces (and reduce the total cost).

NN BBS

cardinality

node accesses

1e+0

1e+1

1e+2

1e+3

1e+4
1e+5

100K 500k 1M 2M 5M 10M
cardinality

node accesses

100K 500k 1M 2M 5M 10M1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

Independent Anti-correlated

Figure 5.5: Node accesses vs. N (d=3)

1e-3

1e-2

1e-1

1e+0

1e+1

100K500K1M 2M 5M 10M

cardinality

CPU time (secs)

 100K 500K 1M 2M 5M 10M
cardinality

CPU time (secs)

1e-2

1e+0

1e+2

1e+4

1e+6

Independent Anti-correlated

Figure 5.6: CPU-time vs. N (d=3)

5.3 Progressive behavior
Next we evaluate the speed of the algorithms in returning skyline
points incrementally. Figures 5.7 and 5.8 show the node accesses
and CPU time of BBS and NN as a function of the points returned
for datasets with N=1M and d=3 (the number of points in the final
skyline is 119 and 977, for independent and anti-correlated
datasets, respectively). Both algorithms return the first point with
the same cost (since they both apply nearest neighbor search to
locate it). Then, BBS starts to gradually outperform NN and the
difference increases with the number of points returned.

NN BBS

0

1e+1

1e+2

1e+3

1e+4

1e+5

0 20 40 60 80 100 119
number of reported points

node accesses

0

1e+2

1e+4

1e+6

1e+8

0 200 400 600 800 977
number of reported points

node accesses

Independent Anti-correlated

Figure 5.7: Node accesses vs. # points returned (N=1M, d=3)

number of reported points

CPU time (secs)

0

1e-2

1e-1

1e+0

0 20 40 60 80 100 119

0

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

0 200 400 600 800 977
number of reported points

CPU time (secs)

Independent Anti-correlated

Figure 5.8: CPU-time vs. # points returned (N=1M, d=3)

Figure 5.9 presents an interesting experiment that compares the
sizes of the heap and to-do lists as a function of the points
returned. The heap reaches its maximum size at the beginning of
BBS, whereas the to-do list towards the end of NN. This happens
because before BBS discovers the first skyline point, it inserts all
the entries of the visited nodes in the heap (since no entry can be
pruned by existing skyline points). The more skyline points are
discovered, the more heap entries are pruned, until the heap
eventually becomes empty. On the other hand, the to-do list size is
dominated by empty queries, which occur towards the late phases
NN when the space subdivisions become too small to contain any
points. Thus, NN could still be used to return a number of skyline
points (but not the complete skyline) even for relatively high
dimensionality.

to-do list heap

number of reported points

0

2

4

6

8

10

0 20 40 60 80 100 119

size (Kbytes)

0

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

0 200 400 600 800 977
number of reported points

size (Kbytes)

Independent Anti-correlated

Figure 5.9: Heap, to-do list vs. # points returned (N=1M, d=3)

5.4 Constrained skyline queries
Finally, we present a comparison between BBS and NN on
constrained skyline queries. Figure 5.10 shows the node accesses
of BBS and NN as a function of the constraint region volume
(N=1M, d=3), which is measured as a percentage of the volume of
the data universe. The locations of constraint regions are
uniformly generated and the results are computed by taking the
average of 50 queries. Again BBS is several orders of magnitude
faster than NN (similar results are obtained for CPU-time). The
counter-intuitive observation here is that constrained queries are
usually more expensive than regular skylines. To verify this
consider Figure 5.11a that illustrates the node accesses of BBS on
independent data, when the volume of the constraint region ranges
between 98% and 100% (i.e., regular skyline). Even a range very

close to 100% is much more expensive than a regular query. This
can be explained by the skyline search region (SSR). As discussed
in Section 3.3, for regular queries, the number of nodes that
intersect the SSR (and must be visited by BBS) is very small. On
the other hand, a constrained query has to visit many nodes at the
boundary of the constraint region since they may all contain
skyline points. Similar observations hold for anti-correlated data
and NN (see Figure 5.11b).

NN BBS

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

0 8 16 32 64

constrained region (%)

node accesses

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

0 8 16 32 64

constrained region (%)

node accesses

Independent Anti-correlated

Figure 5.10: Node accesses vs. constraint region (N=1M, d=3)

constrained region (%)

node accesses

0

200

400

600

800

1000

1200

1400

98 98.5 99 99.5 100
constrained region (%)

node accesses

0

10000

20000

30000

40000

50000

60000

70000

98 98.5 99 99.5 100
BBS NN

Figure 5.11: Node accesses vs. constraint region 98-100%
(Independent, N=1M, d=3)

6. CONCLUSION
All existing database algorithms for skyline computation have
several deficiencies, which severely limit their applicability. BNL
and D&C are very sensitive to main memory size and the dataset
characteristics. Furthermore, neither algorithm is progressive.
Bitmap is applicable only for datasets with small attribute
domains and cannot efficiently handle updates. Index (like
bitmap) does not support user-defined preferences and cannot be
used for skyline queries on a subset of the dimensions. Although
NN was presented as a solution to these problems, it introduces
new ones, namely poor performance and prohibitive space
requirements for more than three dimensions.

We believe that BBS overcomes all these deficiencies since
(i) it is efficient for both progressive and complete skyline
computation, independently of the data characteristics
(dimensionality, distribution), (ii) it can easily handle user
preferences and process numerous alternative skyline queries
(e.g., ranked, constrained skylines), (iii) it does not require any
pre-computation (besides building the R-tree), (iv) it can be used
for any subset of the dimensions, and (v) it has limited main-
memory requirements.

Although in this implementation of BBS we used R-trees in
order to perform a direct comparison with NN, the same concepts
are applicable to any data-partition access method. In the future,
we plan to investigate alternatives for high dimensional spaces,
where R-trees are inefficient. Another interesting topic is the fast
retrieval of approximate skyline points, i.e., points that do not
necessarily belong to the skyline but are very "close". Finally, we
want to explore new variations of skyline queries, in addition to
the ones proposed in Section 4.

ACKNOWLEDGEMENTS
This work was supported by grants HKUST 6081/01E, HKUST
6197/02E from Hong Kong RGC and Se 553/3-1 from DFG. We
would like to thank Mordecai Golin for his helpful comments.

REFERENCES
[B89] Buchta, C. On the Average Number of Maxima in a

Set of Vectors. Information Proc. Letters, 33, 1989.
[BKS01] Borzsonyi, S, Kossmann, D., Stocker, K. The Skyline

Operator. ICDE, 2001.
[BKSS90] Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.

The R*-tree: An Efficient and Robust Access Method
for Points and Rectangles. SIGMOD, 1990.

[BK01] Böhm, C., Kriegel, H. Determining the Convex Hull
in Large Multidimensional Databases. DAWAK,
2001.

[CBC+00] Chang, Y., Bergman, L., Castelli, V., Li, C., Lo, M.,
Smith, J. The Onion Technique: Indexing for Linear
Optimization Queries. SIGMOD, 2000.

[F98] Fagin, R. Fuzzy Queries In Multimedia Database
Systems. PODS, 1998.

[FSAA01] Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., Abbadi,
A. Constrained Nearest Neighbor Queries. SSTD,
2001.

[HAC+99] Hellerstein, J. Anvur, R., Chou, A., Hidber, C.,
Olston, C., Raman, V., Roth, T., Haas, P. Interactive
Data Analysis: the Control Project. IEEE Computer,
32(8), 1999.

[HKP01] Hristidis, V., Koudas, N., Papakonstantinou, Y.
PREFER: A System for the Efficient Execution of
Multi-parametric Ranked Queries. SIGMOD, 2001.

[HS99] Hjaltason, G., Samet, H. Distance Browsing in Spatial
Databases. ACM TODS, 24(2):265-318, 1999.

[KPL75] Kung, H., Luccio, F., Preparata, F. On Finding the
Maxima of a Set of Vectors. Journal of the ACM,
22(4), 1975.

[KRR02] Kossmann, D., Ramsak, F., Rost, S. Shooting Stars in
the Sky: an Online Algorithm for Skyline Queries.
VLDB, 2002.

[M74] McLain D. Drawing Contours from Arbitrary Data
Points. Computer Journal, 17(4), 1974.

[M91] Matousek, J. Computing Dominances in En.
Information Processing Letters, 38(5), 1991.

[NCS+01] Natsev, A., Chang, Y., Smith, J., Li., C., Vitter. J.
Supporting Incremental Join Queries on Ranked
Inputs. VLDB, 2001.

[PS85] Preparata, F., Shamos, M. Computational Geometry -
An Introduction. Springer 1985.

[RKV95] Roussopoulos, N., Kelly, S., Vincent, F. Nearest
Neighbor Queries. SIGMOD, 1995.

[S86] Steuer, R. Multiple Criteria Optimization. Wiley,
New York, 1986.

[SM88] Stojmenovic, I., Miyakawa, M. An Optimal Parallel
Algorithm for Solving the Maximal Elements Problem
in the Plane. Parallel Computing, 7(2), 1988.

[TEO01] Tan, K., Eng, P. Ooi, B. Efficient Progressive Skyline
Computation. VLDB, 2001.

[TSS00] Theodoridis, Y., Stefanakis, E., Sellis, T. Efficient
Cost Models for Spatial Queries Using R-trees.
TKDE, 12(1):19-32, 2000.

