Check for
Updates

software into the machine. This lead (sic) to the project of having students write debugging programs
which fit into this top page. Since a locally written binary loader was written in Th words, that meant
5 words were available in which the student had to write an interesting program.

The results of that assigmment cleerly demonstrated that significant programs could be written
in a minimum of space. Some of the programs which resulted were: s dump program which dumped core
onto the teletype at 8 words per line, e modify program which displayed the contents of = memory
location onto the teletype and enabled the user to change the contents of a locetion via the teletype,
and a punch program which punched a paper tape of specified core segments in a format which enabled
it to be reloaded by the binary loader at a later time, These programs, in a very crude manner,
approximated the facilities aveilable In the standard DEC debugging program ODT (1), however, each
one was significaently shorter, and only took 10 seconds to load from a teletype - thus 1t was useful
for debugging programs since no high speed I/0 device was available.

This example has some lmportant conseguences. While core is becoming less expensive, there are
still epplications where size is lmportant. Instructors of programming courses should not completely
lose sight of that fact. Vhile one shouldn't stress size over all other considerations, the above
exercise shows that swall programs can do relatively powerful things, even on a relatively simple
PDP 8 computer.

(1) Digital Equipment Corporation, Introduction to Programming, 1970 pp7.51-7.54

A PEDAGOCICAL MODEL FOR
TOP-DOWN SYNTAX ANALYSIS

G. E. Hedrick
Department of Computing and Information Sciences
Oklahoma State University
Stillwater, Oklahoma 7ThOTh

This paper describes a technique that has been used to teach syntactic analysis to computer
sclence students at Oklahoma State University. This technique is used in a course corresponding to
course 2 as described by Wegner (5). The particular methods taught are modifications of those developed
by Irons, and Cheatham and Settley (2,3). The programming techniques used to implement the model
are found in Barronm (1). A concise summary of the theory involved appears in Keller and Wright (4.

A set of rules which describes the syntax of a language is called a grammar. The grammar speci-
fies the valld strings in a langusge. If a string is valid it is called a sentence of the language.
An example of s grammar is given in table 1.

Table 1. A simple grammar.

P » V$P
P>V
Vs
Vb
Ve

V2
This grammar is equivalently stated in the familiar Backus Naur Form (BNF) in table 2.

Teble 2. The BNF equivalent of the grammar given in table 1.
<P>::=ViPlV
vy =afblef eee |z

The symbol ~» is read "consists of” or "is defined to be.” P is (arbitrarily) called the distin-
guished symbol: any complete entity is required to be a P if it is to be valid in the language whose
syntex this grammar describes. This langusge is ssid to be the language generated by the grammar.

In the sample grammar sbove, each item of the fomm Q=R is called & production. A produ?tion is &
mule of the grammar. In the grammar there are terminal and non-terminal symbols. A terminal symbol
could be called an atomic symbol -- it needs no further definition and stands for itself. A non-
termingl symbol is sometimes called s metavariable; 1t is defined in. terms of other non-terminal and
terminal symbols. In the example grammar the set of non-terminal symbols is {p,v} and the set of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F873721.873723&domain=pdf&date_stamp=1972-07-01

terminal symbols is {$,8,b,¢,...,2}.

One common method of determining whether a string belongs to 2 gilven ;aﬁguag? is aﬁllﬁ@ Lo~
down syntsx analysis. In a top-down syntex analysis a tree search takes place. ﬁm@ﬂv@@? ngd? of the
tree is the first item to be searched for and the last item to be Tound in a snocessful gearch.

The root node is slways the distinguished symbol. The item that is being ﬂ&arcﬁ@ﬁ i@r igxag%lﬁd a
goal. 1In the preceding grammar the intitial goal is the distinguished symbol, P FT?? the first
definition of P, V must be set as & goal and recognized before P can be rec@:miﬁed« his procags
continues until the goal is a terminal symbol, at which time & symbol from the input gt?i§@ can be
examined. If it does not match the gosl, the search backs up end the next alternative delinition
at that level 1s tested. If it does match, the program continues scanning the current definition,

The string a$b is valid in the language generated by the sample grammar. In order to show this,
it is necessary to show that the string is a P in the grammar. The search would have the form shown
in figure 1.

A top-down syntax analysis program such as the one described in this paper can be of significant
velue when teaching sbout production grammars. By using this rrogram students cen gein insioht inte
the nature of production grammars; they can observe how the same Program can be used with more than
one grammar; and they can see how syntax trees can be grown in a top~down sense.

Figure 1. The form of the seach. Successive goals in the search are shown as nodes of the tree
(read first top to bottom; then left to right.)

v 3 P
////// tried\\\\\x,
8 and P4
failed //
7
a 4]

The program is used to demonstrate the cencepts and structure of top-down synbax analysis. Thie
top-down recognition scheme has been Progremed on the IBM 1130 st Cklahoma State University. This
program, written in 1130 basic FORTRAN, reads = grammar by which it will analyze succeeding input
strings. Each student is required to create and supply hls own grammar. The restrictions on the nature
of the grammar that the student supplies ere described in deteil later in +his PEDEY .

After the program reads the grammer, it reads one or more input strings, testing
determine whether 1t is valid in the languasge generated by the student’'s grammar. That is, the ori-
ginal gremmar describes the syntax of some languege and the syntax anslysis program checks to determine
if the input strings are valid in thet langusge. If the input string 1s found to be valid, then s
syntaex tree (a graphical representation of the structure of the string, similer in nature to the
grammatical disgrem of & sentence in nigh school) for that string 1s produced on the console printer.
If the input string is not velid, then a messege Lo that effect is typed on the ronsole printer,

each string to

The input to the syntax enalysis program is divided into two distinct sections plus control
cards, the distinet sections comprising the input of some grammer, G, and the input of some set of
input strings, S, 82, cevy S o The first of the control cards contains the murber of productions in
the grammar. (e g.,“there ere twenty-eight productions in +able 1.) There is another input card
which terminstes the reading of the grammar, The final card with control information is the lash
card in the deck; it serves to terminste all input to the syntax analysis program,

A production can be considered to be g definition in the input grammar. The item being defined
is called the left part of the production; the definition of that item ig called the right pert of the
production. After the card which indicates the number of productions 1s read, sach prmiucﬁi@n of G
is read in turn. It is possible for the same ler: part to have more then ons right part; when this
is the case, the successive right parts are called alternatives, £11 alternatives for a leflt part
mst be input as guccessive productions., The lsst input production is used only to flag the end of

ghetirammar; in thet role, it must have = left part which sppears in the right part of no other pro-
uetion. gnt

The student who makes use of this program is required to manipulate his grammary to a certsln
extent. Several things which could be done sutcmatlcally by the program are ;el&gatgd to the student
as an exercise. The exercoises permit him to chserve the gtrocture &f the gr&mmﬁyﬁamd the arg&mizaﬁioﬂ
of the top-down search. Internelly the progrem uses undgue positive 1mﬁﬁg§r values to represent

egeh non-terminal symbol. The distinguished symbol of the grammar always has the value of unity
assigned to 1t. The integers may be chosen arbitrarily except for the fact that no one of these value
con exceed the dimension of the array which is used to hold the grammar. To enable the students to °
meke similar asslgoments to the non-terminal symbols, the following scheme was suggested: assi

wnity to the distingulshed symbol; scan the 11st of productions counting lines during tﬁe scanE'gn

when a new left part ls encountered, assign the line number to the non-terminal synbol which 1s’the
left part. [lnelly all terminal symbols in the grammar are assigned a value of zero. The positive
integer assignments to the non~terminal symbols allow definitions for new goals to be found quickly
during the search. A simple test for zero can be used to determine whether or not a symbol is a
terminal symbol.

The last sectlon of Input thet the student must supply comprises the strings to be analyzed.
Tach string consists of one to elghty characters. Any valid EBCDIC character, except a slash ()
in column one, is permitted in the Input strings. The input characters must be terminal symbols in
the grammar 1T an Input string ie to be valld. A card with a slash in column one signifies the end
of input data; the program will terminate normally upon reading such a card.

After each input string 8. is read, a top-down enalysis is begun. Pointers are set to the first
production [the one which glve® the Iinitial definition of the distinguished symbol) and the first
symbol on the right hand side of the production. These pointers are called G and C respectively.
Mnother pointer is set so that it polnts to the first character in Si'

The pointer, G, which was set to point to the distinguished synmbol 1s said to point to the current
goal -~ the distingulshed symbol is the initial goal. As the right side of a production is scanned,
some non-terminal symbols may be encountered. Whenever a non-terminal symbol is found, the environment
(of the program) at that time 1s placed in a stack and the non-terminal symbol just found is set up
as & new goal. If a goal other than the original goal is recognized, the environment is restored so
that the next symbol in the right part cen bte examined. After all of the symbols in a right part
have been recognized, the symbol which is the left part 1s said to be recognized. This requires at
least one preduction to contain only terminal symbols in its right part.

When s student uses this program he may obtain the output which was described previously or he
may run the program in the trace mode. When the program is run in the trace mode, the search can be
followed explicitly; it is possible to loock at each step of the search by looking at each successive
goal and examining the output for indications of "failures" and retries.

The model for top-down syntax analysls described in this paper has been used with success at
(klshoma State University. It has been used to demonstrate the general technique and to show how the
structure of the grammer can affect the time required to perform analysis.

References

1. Barron, D. W., Recursive techniques in programming, American Elsevier Publishing Co., New York,
New York, 1968.

2. Cheatham, T. E. and Settley, Kirk, Syntex Directed compiling, Proc. American Federation of Infor-
mation Processing Societies Spring Joint Computer Conference, 196k.

3. Irons, BEdgar T., A syntax directed compiler for ALGOLA0, Association for Computing Machinery
Commmications, L{1961) 51-55.

L. Keller, R. F., and Wright, C. T., Algebraic langusges and their translators, Holt, Rinehart and
Winston, New York, New York, to be published.

5. Wegner, Peter, A view of computer science educatlon, Mmerican Mathematical Monthly 79(1972)
168-179.

13

