
software into the machine. (L%)is lead (sic) to the project of having students write debugging programs
which fit into this top page. Since a local~y written binary loader was written in 74 words, that meant
54 words were available in which the student had to write an interesting program.

<Tfae results of that assigr~ment clearly demonstrated that significant programs could be written
in a minimum of space. Some of' the programs Which resulted were: a dump program which dumped core
onto the telety'pe at 8 .~ords per line, a modify program which displayed the contents of a memory
location onto the teletype and enabled the user to change the contents of a location via the teletylp%
and a punch progrmn which p~nched a paper tape of' specified core seg~nents in a format which enabled
it to be reloaded by the binary loader at a later time. These programs~ in a very crude manner,
approximated the facilities available in the standard DEC debugging program ODT (i), however, each
one was significantly shorter, and only took i0 seconds to load from a teletype - thus it was useful
for deb~ging programs since no high speed I/0 device was available.

This exmuple h.as some important consequences. While core is becoming less expenslv% there are
still applications Where size is important. Instm]ctors of programming courses should not completely
lose si@j]t of that fact, ~,4aile one shouldn't stress size over all other considerations, the above
exercise shows that small programs can do relatively powerful thir~gs, even on a relatively simple
PDP 8 eozmpu%er~

(i) Digital Equipment Corporation, Introduction to Programmlng~ 1970 pp7.51-7.54

[A PEmCOOICI~L MODEL FOR 1
~TOP-mOWN SY~TA× m,mLYSlSl

G. E. Hedrick
Depertment of Computing and Information Sciences

Oklahoma State University
Stillwater, Oklahoma 74074

This paper describes a technique that has been used to teach syntactic analysis to computer
science students at Oklahoma State [~iversity. This technique is used in a course corresponding to
course 2 as described by Wegner (5). The particular methods taught are modifications of those developed
by Irons, and Cheatham and Sattley (2,3). The programming techniques used to implement the model
are found in Barron (i). A concise summary of the theory involved appears in Keller and Wright (4).

A set of rules which describes the syntax of a language is called a grammar. The grammar speci-
fies the valid strings in a language. If a string is valid it is called a sentence of the language.
An example of a grammar is given in table i.

Table I. A simple gr~mznaro

P ~ vSP
P ~ V
V - ~ a
V - C b
V - ~ c

V-~z

This grammar is equivalently stated in the familiar Backus Naur Form (BNF) in table 2.

Table 2. The BNF equivalent of the grammar given in table i.
~P>: : =vSPI v
<v~:: --a Ibl cl ... J z

The symbol -~ is read "consists of" or "is defined to be." P is (arbitrarily) called the distin-
guished symbol: any complete entity is required to be a P if it is to be valid in the language whose
syntax this grammar describes. This language is said to be the language generated by the grammar.
In the sample grammar shover each item of the form Q-~ R is called a production. A production is a
~mle of the grammar. Im the grammar there are terminal and non-terminal s~mbols. A terminal symbol
could be called an atomic symbol -- it needs no further definition and stands for itself. A non-
terminal s~mCool is sameti~ms called a metavariable; it is defined in terms of other non-terminal and
teln~linal s~mabols~ In the example grammar the set of non-termiinal symbols is ~P,V) and the set of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F873721.873723&domain=pdf&date_stamp=1972-07-01

terminal symbols is {$,a,b,c,...,z}.

One common method of determining ,Soother a stri~ belongs to a given la~gu%Te is called top-
down syntax analysis. In a top-down syntax sna/o~sis a tree search tslkes place. The root node of the
tree is the first item to be searched for and the last item to be found in a su<'cessful search.
The root node is always the distinguished symbol. :flqe 1tam that is bet:q< searched For Is called a
goal. In the preceding grammar the intitial goal is the distin%iulshed symbol, P. ;~r<>m the first
definition of P~ V must be set as a goal and recognized before P cs~n be reeegmlzed~ Ti~is process
continues until the goal is a terminal symbol~ at ~;~ieh time a sylnbol from the input st~-ing can be
examined. If it does not match the ~oal, the sea:rch backs up and the next alternative de~Initj on
at that level is tested. If it does match, the progre~m continues scanning the current definition.

The string a$b is valid in the language generated by the sample gra~mnar, In order to show this,
it is necessary to show that the string is a P in the grammar. ~e search would h a v e t~e form shown
in figure i.

A top-down syntax analysis program such as the one described in this paper can be of signiflcsnt
value when teaching about production grammars, lb ~ using this program students can gain insi~[ht into
the nature of production grs~mmars9 they can Observe how the sa~ne program can be used with more t?~an
one grammar; and they can see how s)mtax trees can be gro~m in a top-devon senses

Figure I. The form of the seach. Successive goals in the search are shown as nodes of the tree
(read first top to bottom; then left to right.)

V ¢ P

f ailed /

a b

The Program is used to demonstrate the concepts and structure of top~do~ s~tax analysis. This
top-down recognition scheme has been programed on the ~3M 1130 at (~Klahom~a ~[¢tate [Aniverslty. q~!is
program, written in 1130 basic FORTPAN, reads a granm~r by which it will analyze sueceedin~{ input
strings. Each student is required to create and supply his o,~n~ gra~mT)ar. ~i~e restrictions on the nature
of the grpmmmar that the student supplies are described in detail later in this paper.

After the program reads the gra~mar~ it reads one or more input strings, testing each stri~ to
determine whether it is valid in the language generated by the student's grammar. 7hat Is; the ori-
ginal grammar describes the syntax of some language and the syntax analysis program ~,~ ~ ecmo to determine
if the input strings are valid in that langn/s.ge, if the input strip47 is Found to be valid, then
syntax tree (a graphical representation of the st~/eture of the strin~ si~milar in nature to the
gr82~atleal diagram of a sentence in high school) for that string is produced on the console printer.
If the input string is not valid, then a message to that effect is typed on the console printer.

The input to the syntax analysis program is divided into two ~ +
dl~,,inc~ sections plus control

cards, the distinct sections comprising the input of some grammar, G~ and the inp~t of some set of
input strir~gs, S_, S_, ..., S . %Zne first of the control cards cont~i-s the nuumber o~" in the grammar. ± ~ n - productions

(e.g., there are twenty-eight productions in table 1) T~ere is anothe °--
. input c a r d

which terminates the reading of the grammar. [iqqe final card with control information is the last
card in the deck; it serves to terminate all inv~t to the syntax analysis progrsAm.

A production can be considered to be a definition in the input gr~J~ar~ ~e ~tem being defined
is called the left part of the production; the definition of that item is ealled the right part of the
production. After the card which indicates the number of productions is read, each production of ~
is read in ~urn. It is possible for the same left part to have more than one right paget; when this
is the ease~ ~he successive right parts are called l~ernstlves. All alternatives for a left part a ~

must be input as successive productions. 9/no last input production is used onlj to flag the end of
the gra~ar; in that role, it mlat have a left part which appears in the ri~£ht par¢~ of no other pro- duetion, o

~ae student who makes use of this program Is required to manipulate hi~ gr~,~r to a certain
extent. Several things which could be done auto~atleally by the program are relegated to the student
as an exercise. The exercises permit him to obser~fe the structure of the gr~r ~nd the organizsti0n
of the top-do%nn search. Internall~ the program uses unique positive integer values to represent

I II 1

each non-te~m_inal s~ubol. :fhe distinguished symbol of the grammar always has the value of unity
assigned to it. 7~ne integers may be chosen arbitrarily except for the fact that no one of these values
can exceed the dimension of the array which is used to hold the grammar. To enable the students to
make similar assigruments to the non-termlnal symbols~ the following scheme was suggested: assign
unity to the distin~<uished symbol; scan the llst of productions counting lines during the scan;
when a new left part in encountered, assign the llne number to the non-terminal symbol which is the
left part. ~[naLiy all terminal symbols in the grammar are assigned a value of zero. The positive
integer assignments to the non-terminal symbols allow definitions for new goals to be found quickly
during the search~ A simple tent for zero can be used to determine whether or not a symbol is a
terminal symbol.

The last section of input that the student must supply comprises the strings to be analyzed.
Each string consists of one to eighty characters. Any valid EBCDIC character, except a slash (/)
in columx~ one, is pe~mz[tted in the input strings. The input characters must be terminal symbols in
the gramme ~° i~' an input string is to be valid. A card with a slash in column one signifies the end
of input data; the program will terminate normally upon reading such a card.

After each input string S i is readj a top-down analysis is begun. Pointers are set to the first
production (the one which gives the initial definition of the distinguished symbol) and the first
symbol on the right hand side of the production. These pointers are called G end C respectively.
Another pointer is set so that it points to the first character in S i.

The pointer, G~ which was set to point to the distinguished symbol is said to point to the current
goal -- the distinguished symbol is the initial goal. As the right side of a production is scanned,
some non-termlnal s~nbols may be encountered. Whenever a non-termlnal symbol is found, the environment
(of the program) at that time is placed in a stack and the non-terminal symbol just found is set up
as a new goal, If a goal other than the original goal is recognized, the environment is restored so
that the next s$~ubol in the right part can be ~xamlned. After all of the symbols in a right part
have been recognized~ the symbol which is the left part is said to be recognized. This requires at
least one production to contain only terminal symbols in its right part.

When a student uses this program he may obtain the output which was described previously or he
may run the program in the trace mode. When the program is run in the trace mode, the search can be
followed explicitly~ it is possible to look at each step of the search by looking at each successive
goal and examining the output for indications of "failures" and retries.

Tse model for top-doom syntax analysis described in this paper has been used with success at
Oklahoma State University. It has been used to demonstrate the general technique and to show how the
structure of the grammar can affect the time required to perform analysis.

References

I. Barron, D. W., Recursive tec~uniques in programming, American Elsevier Publishing Co., New York,
New York, 1968.

2. Cheatham, T. E. and Sattley, Kirk, Syntax Directed compiling, Proc. American Federation of Infor-
mation Processing Societies Spring Joint Computer Conference, 1964.

3. Irons, Edgar T. ~ A syntax directed compiler for ALGOL60, Association for Computing Mmchinery

Communications, 4(1961) 51-55-

4. Keller, R. F., and Wright, C. T., Algebraic languages and their translators, Holt, Rinehart and

Winston, New York, New York, to be published.

5. Wegner, Peter 7 A view of computer science education, ~nerlcan Mathematical Manthly 79(1972)

168-179.

13

