
Wang Tiles for Image and Texture Generation

Michael F. Cohen1 Jonathan Shade2,3 Stefan Hiller4 Oliver Deussen4

1Microsoft Research 2WildTangent 3University of Washington 4Dresden University of Technology

Abstract

We present a simple stochastic system for non-periodically tiling the
plane with a small set of Wang Tiles. The tiles may be filled with
texture, patterns, or geometry that when assembled create a contin-
uous representation. The primary advantage of using Wang Tiles is
that once the tiles are filled, large expanses of non-periodic texture
(or patterns or geometry) can be created as needed very efficiently
at runtime.

Wang Tiles are squares in which each edge is assigned a color.
A valid tiling requires all shared edges between tiles to have
matching colors. We present a new stochastic algorithm to non-
periodically tile the plane with a small set of Wang Tiles at runtime.

Furthermore, we present new methods to fill the tiles with 2D tex-
ture, 2D Poisson distributions, or 3D geometry to efficiently create
at runtime as much non-periodic texture (or distributions, or geom-
etry) as needed. We leverage previous texture synthesis work and
adapt it to fill Wang Tiles. We demonstrate how to fill individual
tiles with Poisson distributions that maintain their statistical proper-
ties when combined. These are used to generate a large arrangement
of plants or other objects on a terrain. We show how such envi-
ronments can be rendered efficiently by pre-lighting the individual
Wang Tiles containing the geometry.

We also extend the definition of Wang Tiles to include a coding
of the tile corners to allow discrete objects to overlap more than one
edge. The larger set of tiles provides increased degrees of freedom.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration - Viewing Algorithms— [I.3.6]: Computer Graphics—
Methodology and Techniques

Keywords: non-periodic tiling, Poisson distributions, texture syn-
thesis, Wang Tiles

1 Introduction

Modeling and rendering scenes that capture the complexity of the
real world is a difficult and time consuming task. A now well-known

means to overcome this problem is to create (or capture) a small ex-
ample of complexity and then reuse this example many times. Un-
fortunately, when the same example is used many times in a periodic
fashion, the repetition is often apparent and distracting.

We present a new stochastic algorithm to non-periodically tile the
plane with a small set of Wang Tiles [Wang 1961; Wang 1965]. This
allows Wang Tiles to share the efficiency of reusing example tiles
to create large expanses of complex texture, patterns, or pre-lighted
geometry at runtime, while avoiding the obvious visual artifacts of
periodicity.

Wang Tiles are a set of squares in which each edge of each tile is
colored. Matching colored edges are aligned to tile the plane. We
demonstrate that as few as eight tiles are needed to non-periodically
cover the plane. We present new methods to fill the tiles with 2D tex-
ture, 2D Poisson distributions, or 3D geometry to efficiently create
at runtime as much non-periodic texture (or distributions, or geom-
etry) as needed. We apply these results to modeling and rendering
problems.

Wang Tiles only define matching edge constraints. This is insuf-
ficient to maintain coherent features that cross more than one edge
(i.e., corners). To accommodate such features, we extend the notion
of Wang Tiles to include corner constraints in the spirit of [Neyret
and Cani 1999]. The increase in degrees of freedom also allows us
to modulate the texture by mixing two source textures.

1.1 Relation to Previous Work

There are a variety of methods where small samples are used to gen-
erate more complex patterns. Much of the research involved in these
methods strive to avoid visual artifacts arising from repeatedly using
the same sample data. Related work can be divided into two groups:
2D- and 3D-texturing methods, and geometry creation for com-
plex outdoor scenes and related level-of-detail methods. We also
touch on the relation of Wang Tiles to the broader literature on tiling.

Texture Synthesis: Stam was the first to consider the use of
square Wang Tiles for texture synthesis [Stam 1997]. Based on a
deterministic algorithm that uses a set of 16 tiles with colored edges
[Grünbaum and Shephard 1987] he created large non-repetitive tex-
tures, water surfaces and caustics by defining texture samples on
the tiles following the border constraints introduced by the shared
edges. In his paper, he describes the construction of a limited set of
patterns. A general algorithm for filling the tiles and quickly assem-
bling a tiling is not given. We extend his work in these directions.

Recent work in texture synthesis provides a means to avoid repe-
tition in two dimensions by using a small texture tile as an example
that is then used to create a larger amount of non-repetitive texture
that has the same visual properties.

Wei and Levoy [Wei and Levoy 2000] use a statistical model that
selects a pixel of the given texture by analyzing the local neighbor-

http://www.ub.uni-konstanz.de/kops/volltexte/2007/2429/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-24291
http://www.siggraph.org/

(a) (b) (c) (d)

Figure 1: a) Eight Wang Tiles that can stochastically tile the plane; b) A small portion of the plane with a valid tiling. c) 12 Wang Tiles
constructed from two horizontal and three vertical colors; d) 18 Wang Tiles constructed from three horizontal and vertical colors.

hood of the pixel in the so far synthesized texture. Efros and Free-
man [Efros and Freeman 2001] randomly select square regions from
the sample image and fit (orquilt those parts to the already created
large texture. One of the challenges in this work is to maintain the
visual appearance of large coherent regions. The work cited above
achieves these goals at a computational and storage cost. We lever-
age these results to fill a small set of Wang Tiles, such that the re-
sultant tiling maintains the ability to include large coherent features.
The tiling itself mitigates the computational and memory require-
ments when creating large textures.

Several algorithms have been proposed to extend the methods
to arbitrary surfaces [Turk 2001; Wei and Levoy 2000; Tong et al.
2002], but these create large textures to cover the entire geometry.
The work presented here is most closely related to the non-periodic
texture mapping method based on triangles presented by Neyret et
al [Neyret and Cani 1999]. Using this kind of mapping, they are
able to texture a variety of objects. Because the triangles are rotated
to achieve a mapping, triangles are not well suited for textures
with directional content such as strokes or oriented patterns. Wang
Tiles avoid these problems since they are square and cannot be
rotated, but the tilings are restricted to surfaces that map to a plane.
The triangle rotation also requires the edges to have an orientation
effectively doubling the number of colors. Beyond these differences,
we focus in this paper primarily on new methods to construct the
tile interiors themselves.

Modeling of complex ecosystems: A complex data genera-
tion problem arises when modeling outdoor scenes. Deussen et al.
[Deussen et al. 1998] simulate such scenes by covering the plane
with tens of thousands of synthetic plants. Approximate instancing
helps them to reduce the geometric complexity but the storage of
the instancing information is sometimes a challenge, as stated in
[Deussen et al. 2002]. Wang Tiles can store plants or plant instances
on a small set of tiles while constructing large distributions through
tiling the plane. Lighting calculations can also be leveraged by
performing them only once per instance. For example, Layered
Depth Images [Gortler et al. 1996; Levoy and Hanrahan 1996;
Shade et al. 1998] showed how a point sampled representation
of such geometry can be pre-lighted and rendered from changing
viewpoints at interactive speeds. We show how the same methods
can be applied to Wang Tiles.

Tiling : There is also a vast literature on tiling methods [Grünbaum
and Shephard 1987; Glassner 1998], however, the square nature of
Wang Tiles avoids most of the issues related to assembling a tiling,
thus this rich literature is mostly outside the scope of this work. Ex-
panses of texture from a single square tile can be generated easily
by simply mirroring the tile, a process easily supported by texture
mapping hardware. Wang Tiles can be thought of as a way to over-
come the repetitive nature of such a simple scheme at only a modest
cost in memory, while maintaining the interactive speeds of hard-
ware supported texture mapping.

2 Wang Tiles

A Wang Tile set consists of square tiles with color-coded edges. The
squares cannot be rotated. A valid tiling of the infinite plane con-
sists of any number of copies from the set laid down such that all
contiguous edges have matching colors. This tiling is named after
Hao Wang who conjectured in 1961 that any set of tiles that can
produce a valid tiling of the plane must also be able to produce a pe-
riodic tiling of the plane [Gr̈unbaum and Shephard 1987]. This was
later refuted in a series of papers that eventually led to a set of only
13 tiles discovered by Culik that could be shown to be strictly ape-
riodic1 [Berger 1966; Culik II 1996; Kari 1996]. Theoreticians have
taken an interest in aperiodic sets, using them to simulate the proper-
ties of proposed DNA computers, and have shown they can simulate
any Turing machine. They have even been featured in a leading role
in a science fiction story, “Wang’s Carpets” by Greg Egan. We will
not draw on these more theoretical aspects of Wang Tiles, but rather
on their simplicity; specifically, that they are square and that a small
set can lead to a non-periodic tiling of the plane.

(a) (b)

(c) (d)

Figure 2: Assemblies of tiles comparing stochastic tilings with
strictly aperiodic sets. Each small pseudo-colored square pixel rep-
resents one whole tile: (a)32× 32 tiles stochastically assembled (b)
32 × 32 strictly aperiodic set [Gr̈unbaum and Shephard 1987] (c)
256× 256 stochastic (d)256× 256 aperiodic.

We introduce a new stochastic process to laying down individual
tiles. This leads to the ability to generate large tilings at runtime
that are guaranteed to be non-periodic.

1We use the term non-periodic to indicate a tiling which is not periodic
(although the set itself could lead to a periodic tiling), as opposed to the term
aperiodic that refers to a set of tiles that can never produce a periodic tiling.

A stochastic tiling algorithm: We work with sets that can be
trivially shown to be able to tile the plane and also trivially shown
not to be aperiodic. In fact, a single tile, such as tileb in Figure 1(a)
can tile the plane on its own. When tiling the plane, each choice of
tile typically has two constraints. If one is placing tiles from West to
East and from North to South, then each tile placed must have N and
W edges that match the E and S edges already placed. If there are
K colors then there areK2 combinations of colors for two adjacent
edges of the tiles (e.g., the south (S) and east (E) edges)2. So long as
there is at least one tile in the set with each north (N) and west (W)
combination, then the following simple procedure produces a valid
tiling of any portion of the plane:

1. select any tile for the NW corner;

2. tile the top row left to right by choosing tiles for which the W
edge of the new tile matches the E edge of the previous tile;

3. select a first tile for the next row such that the N edge matches
the S edge from above;

4. continue this row by randomly selecting tiles for which the N
and W edges match the S and E edges from above and the left
respectively (since our set contains all NW combinations, this
is always possible); and

5. go to step 3 for as many rows as desired.

If the set contains at least two tiles for each NW combination (i.e.,
2 ×K2), then there are always at least two choices at each step. If
this choice is made with uniform probability, the plane will always
be tiled non-periodically because each step reduces to an indepen-
dent random process (i.e., a coin flip). One such set of 8 tiles with
2 colors is shown in Figure 1(a). Note that there are, in practical
terms, only two colors since the red and green used for the NS edges
could be replaced with the blue and yellow of the EW edges with no
change in the set.

In Figure 1(a) tilesa throughd contain all NW combinations as
do tilese throughh. The SE edge combinations are also each rep-
resented twice thus tilings can proceed from south to north as well.
Many other sets are possible with all required properties. A valid
tiling of a small portion of the plane may look like Figure 1(b).

This simple algorithm results in tilings that have a random ap-
pearance as can be seen in Figure 2(a)-(d). In Figure 2(a) a tiling
constructed from the tile set of Figure 1(a) is shown. Each tile was
given its own color to make them distinguishable from one another.
In Figure 2(b) a deterministic aperiodic tiling [Grünbaum and Shep-
hard 1987] of 16 tiles can be seen to still contain some repetitive
appearance. Figures 2(c) and (d) show larger parts of stochastic and
deterministic tiling.

Often larger sets of tiles are needed to fully avoid artifacts. Us-
ing three horizontal colors results in 12 tiles (Figure 1(c)) and using
three horizontal and three vertical colors results in 18 tiles (Figure
1(d)). The main advantage of a larger set is that it can substan-
tially reduce repetition artifacts as in Figure 6(d). Another advan-
tage is that using such a set we are able to introduce larger patterns
to the tiling of the plane. We will further address these issues in Sec-
tion 3.5 by introducing inhomogeneity into the tiling patterns. But
first we continue by describing our methods for creating valid tile
sets for two dimensional applications such as textured surfaces or
non-repetitive drawings.

2The orientable triangles in Neyrets work [Neyret and Cani 1999] would
require(2K)2/3, K is effectively doubled by the orientation, but reduced
by a factor of 3 since each triangle has 3 edge pair possibilities.

3 Tile Design

Wang Tiles provide the framework for constructing large expanses
of texture from a small amount of input. We will first demonstrate
and discuss an interactive tile design system. We follow this with
an automated system that takes discrete texture primitives, such as
images of leaves, as input. We introduce an optimization method
that assures that discrete primitives crossing tile boundaries are kept
intact while minimizing artifacts within the tile interiors.

3.1 Interactive Tile Design

The simplest way to design a set of Wang Tiles is to create them
interactively. A simple tool allows us to place geometric primitives
within the set. The primitives can be imported from any drawing
tool. If a primitive is moved such that it overlaps an edge, it will
automatically appear in all tiles with the same and opposing edges.
Thus, primitives can reside partially in one tile and partially in tiles
with the opposite edge of the same color. A perspective projection
of a portion of the tiled plane provides immediate feedback of the
overall appearance and large scale patterns that might occur. Fig-
ure 3 shows two manually created sets from line patterns and the re-
sulting tilings with several hundred tiles. Although the texture was
created from only eight Wang Tiles, almost no repetition artifacts
can be seen.

Figure 3: Two interactively designed eight tile sets to the left of
resulting tilings.

3.2 Automatic Tile Design for Texture Synthesis

To create a continuous texture from a sample, textures must be found
for each tile that fit together across the boundaries with matching
colors. In our variant of the algorithm we generate such textures.
A tile is created by combining diamond shaped (squares rotated by
45 degrees) sample portions of the source image, one for each edge
color of horizontal and vertical edges. Therefore, for a set of eight
tiles we need four sample images, and for the set of 18 tiles six
sample images.

(a) (b)

Figure 4: a) Four subimages are combined to form each Wang Tile;
b) construction of an eight tile set.

The set of Wang Tiles can also be generated automatically. Our
method is derived from work by Efros and Freeman [Efros and Free-
man 2001]. In their method a large texture is created from small

(a) (b) (c) (d)

Figure 6: a) Source image; b) texture generated using image quilting; c) 18 Wang Tiles automatically generated based on set in Figure 1(d);
d) resulting part of infinite texture (8×6 tiles) with some tile instances highlighted.

Figure 7: Three textures using 18 Wang Tiles.

Figure 5: A32×32 pseudocolored tiling where each diamond shape
color represents the label of the sample chosen, or equivalently, one
of four edge colors. This shows the non-periodicity achieved with
only four subimages.

square sample images obtained randomly from the source image.
The sample is fitted to the already created image by optimizing a
cutting path in an overlapping region. If the color differences of the
pixels along the cutting path are below a given threshold, the sample
image is added to the texture.

Each tile is now constructed by combining the four sample dia-

monds that correspond to the edge colors of the tile. In this case
we have to find four cutting paths to combine the four samples to
form the tile (cf. Figure 4(a)). This is done using the optimiza-
tion algorithm given in [Efros and Freeman 2001]. Next, the four
combined samples that together have a diamond shape are cut along
their diagonals. This forms the final tile slightly smaller than the
sample diamonds due to the samples’ overlap. Because the same
image sample is used for all tiles that share the edge color the tiles
will always fit together. If the north edge of a tile is colored red, the
lower diagonal part of the “red” diamond is used for synthesizing
the upper part of tile, and vice versa for a red south edge. Figure 4
illustrates this process and its use on a set of eight tiles. Figure 5
shows a pseudo-colored result of a tiling with these eight tiles.

Some visible artifacts may remain (see Figure 8) for two reasons:
(1) because so few sample patches of the original texture are used,
and (2) due to artifacts introduces by the Efros’ quilting algorithm.
The first reason can be overcome, albeit at some cost, by increasing
the number of tiles. Often one can effectively reduce the artifacts,
without increasing the number of tiles, by minimizing the quilting
errors. To do this, we iterate over sets of samples. For each set, its
overall quilting error is the sum of the pixel color errors that occur
along all cutting paths (e.g., 32 paths for the eight tile set). If the
error is too high, four new sample images are selected, the paths are
calculated and the overall error is computed. This is repeated until
a small overall error is obtained or a preset number of iterations is
completed.

In our trials, a set of eight tiles requires about 3 seconds of opti-
mization to produce good fitting tiles. An 18 tile set takes 15 sec-

Figure 8: An example of a synthesized texture where the diamond
shaped artifacts are apparent.

onds on a standard PC with 2 GHz. Once the set of samples is found,
the generation of large textures is very fast. This is a major advan-
tage of tiling or pattern based methods over other texture synthesis
techniques where the creation of texture is dependent on the overall
amount of texture required [Wei and Levoy 2000; Efros and Free-
man 2001].

Figure 6 shows some results. A small image showing some
daisies in a meadow is selected (a). In (b) a texture created by the
original image quilting algorithms is shown. The tiles of an eighteen
tile set are given in (c). (d) shows the result if 8×6 tiles are com-
bined. Figure 7 shows some other examples of images generated by
eighteen Wang Tiles.

3.3 Automatic Tile Design for Object Distributions

Figure 9: Dart throwing problem for Poisson distributions near
edges. The example above illustrates the problem with two tiles with
blue east edges and two tiles with corresponding blue west edges.
A dart landing ata has a disc (and thus an influence) that extends
beyond the border of tile 1 in which it lands. This extension into
tiles 3 and 4 appears as the grayed out areasa′. No new darts can
land in these regions. A new dart can land atb. Its disc lies fully in-
side tile 2. This new dart atb will now always have an empty space
to its right of almost 2 disc radii since the dart ata has precluded
new darts landing nearby in tiles 3 and 4. This illustrates the prob-
lem with pure dart throwing for defining a Poisson distribution with
Wang Tiles.

The creation of pseudo-random distributions is another area
where Wang Tiles can be used efficiently. For complex ecosystems
like those presented in [Deussen et al. 1998], tens of thousands of
objects have to be distributed. Instancing can minimize the amount
of geometry needed, but even the storage of plant instances can
consume lots of memory for large distributions. Alternatively, a
few objects can be positioned on a small set of Wang Tiles and
then the full population can be generated by combining the tiles
non-periodically.

Poisson disc distributions: To represent distributions, the tiles
each contain a set of point positions. The goal is find a set of point
distributions on each tile, that when combined will result in an over-
all distribution with desired properties. Purely random distributions
are trivial to create by simply placing random positions on the tiles.
When combined, the overall distribution remains random since there
are no dependencies between points.

However, in many cases purely random distributions are not the
best choice. In a crowd each person might position themselves to
leave a certain distance from any other person. Biological and en-
vironmental forces also do not lead to random placements of plants.
In both cases the distribution can often be described by a so called
Poisson disc distribution that avoids crowding. In such a distribu-
tion, a small disc around each object defines a region in which no
other object of the distribution is found.

Using Wang Tiles, the challenge is to find positions on each tile
that generate a Poisson disc distribution across all possible tilings.
This presents a challenge since points placed near the border of a
tile have influence on the placement of points in any other tile with
a matching opposite edge.

Often, dart throwing is used to generate Poisson disc distribu-
tions: a series of random positions is created one at a time (the
darts). Each position is added to the already generated point set if
it does not overlap with any of the discs of points already inserted.
This works fine (given infinite time) for an infinite plane but is
not sufficient in the case of Wang Tiles. If a dart falls near a tile
boundary, one has to check all the discs of all points that possibly
lie on the opposite tile with the same edge. In essence, for a point
near a border, part of its disc is repeated in all possible neighboring
tiles. Thus, the total area in all tiles that cannot accept a new dart
due to this point is larger than one disc. This causes less points to
be inserted near the border (see Figure 9) distorting the distribution
in the overall tilings.

(a) (b)

(c)

Figure 10: Eight Wang Tiles with joint Poisson distributions, a por-
tion of the plane resulting from these tiles; b) Fourier transform
showing some weak grid structure, from [Hiller et al. 2001]; c) com-
parison of a distribution generated from one tile with 160 plants (up-
per row) and another one created from 8 tiles with 20 plants each
(lower row).

(a) (c)

(b) (d) (e)

Figure 11: The corner problem: a) A Wang tile with all combinations of marked corners. b) Tiling from the expanded tile set that shows various
combinations of marked/unmarked tile corners. Constructing an inhomogeneous tiling: c) two source images; d) tiling that contains density
information. e) a tiled plane (12x12) constructed from a tile set with inhomogeneities.

Lloyd’s method: An alternative for creating Poisson disc distri-
butions is to use Lloyd’s method to optimize an initial set of point
positions [Deussen et al. 2000; Hausner 2001; McCool and Fiume
1992]. Lloyd’s method has the advantage over dart throwing in that
points can interact with each other.

A starting Poisson distribution point set is created independently
in each tile. Then, one tile is selected and surrounded by 8 tiles from
the set. A Voronoi diagram is constructed across the nine tile set,
and the points within the selected center tile are relaxed to satisfy
the Poisson disc constraints across the tile boundaries. The local
tilings and relaxation steps are repeated several times for all tiles
until the distribution stabilizes. This results in consistent appearing
point distributions, such as one shown in Figure 10 for a set of eight
Wang Tiles. Details and a numerical evaluation of this optimization
process can be found in Hiller et al. [Hiller et al. 2001] and as an
application to sampling in Deussen [Deussen et al. 2000]. Figures
12 and 13(e) show this process applied to positioning sunflowers in
a simulated sunflower field.

3.4 The Corner Problem

Edge coloring and the texture synthesis process ensures that the tiles
always fit together. But a problem arises if an object or a visible
artifact of the texture is placed across a corner of a tile. In this case
the vertical edge color constraint enforces all tiles with same col-
ored opposite vertical edges to include the remainder of this object
to ensure the fitting condition. As the same object is also on the
horizontal edge, all tiles that contain the corresponding horizontal
edges have to be adapted similarly. In total, in a two colored set of
eight tiles six tiles have to be adapted, in a three colored set (18 tiles)
twelve tiles. This results in visible repetitive patterns.

We are able to create a tile set that avoids such corner problems,
albeit at the cost of adding more tiles to the set. As shown in the next

paragraph, the solution also offers the possibility to generate tilings
that contain inhomogeneities.

A solution is found by coding the corners of a tile as an addi-
tional bit of information, essentially coloring the corners as well as
the edges3. For a single tile,24 = 16 possibilities of corner codings
can occur (cf. Figure 11(a)). A set of tiles with two colored edges in
this case is expanded to 16×8=128 tiles. The number can be reduced
to 64 tiles and still maintain the stochastic selection since there are
only three corners that must match as each tile is inserted. In the ex-
panded set for each of these two possibilities all corner combinations
in the tile have to be stored. In Figure 11(b) a tiling with marked and
unmarked corners in arbitrary combinations is shown.

3.5 Introducing Inhomogeneity

So far the generated textures and distributions are quite homoge-
neous. The selection process for textures and object positions en-
ables us to avoid visible patterns, but the generated textures appear
uniform. To improve the appearance it would be helpful to allow the
tiling process to locally change the texture content.

The corner marked tile sets can help here. To create an inhomoge-
neous tiling, the texture synthesis process takes two source images
instead of one. The tiles are generated by choosing one source im-
age for creating all those parts of a tile with marked corners and the
other one for the rest (cf. Figures 4(b) and 11(c)). Of course, the
two images must potentially fit together via the quilting algorithm to
achieve natural textures.

This enables us to create tilings with two different density levels
as shown in Figure 11(c). Here, the marked corners are shown as re-
gions of different density. In Figure 11(e) a result can be seen using

3It should be noted that the triangular tiles in [Neyret and Cani 1999]
already take into account the corners as part of their coding as well.

two images of daisies, one with a high daisy density and the other
one with low density. The texture quilting optimization process in
this case lasts longer (about 1 minute on a 2 GHz PC). But, once this
is run, generating large amounts of textures at runtime is relatively
free both in texture memory and time.

4 Three Dimensional Applications

Figure 12: A Wang tiled field filled with sunflowers

The manual effort required to model natural environments and the
computational cost required to render such scenes can both be very
high. Systems that attempt to render realistic looking natural envi-
ronments have solved either one problem, or the other, but not both.
The systems presented in Weber and Penn [Weber and Penn 1995],
Mech and Prusinkiewicz [M̌ech and Prusinkiewicz 1996], Deussen
et al. [Deussen et al. 1998], and Prusinkiewicz et al. [Prusinkiewicz
et al. 2001] are capable of creating realistic plants and environments.
However, the models created by these systems are of such high detail
that they can not be rendered in real-time. Deussen et al. [Deussen
et al. 2002] achieve frame rates from 4-8 fps for complex vegeta-
tion, but they need lots of memory to store their plant models. This
makes their approach not so well suited for larger areas. At the other
end of the spectrum, geometric level-of-detail algorithms [Hoppe
1996; Perbert and Cani 2001] have increased the effective geometric
complexity that can be rendered in real-time, but provide no direct
support for realistic shading.

We address both problems with the use of Wang Tiles as con-
tainers for 3D geometry. In our example application of a sunflower
field, we use tiles to group a set of flowers into a single lighting
environment. We use eleven variations of a model of a sunflower
and position them stochastically in each of 8 Wang Tiles based on
the Poisson disc distribution discussed earlier. Sunflowers that inter-
sect a tile boundary are repeated in all tiles with opposite matching
colors. A tiling draped over a height field can be rendered with a
standard ray tracer as seen in Figure 12.

4.1 Layered Depth Image Tiles

A lower quality, but real-time rendering can be achieved by Wang
Tiles in which the geometry within each tile is pre-shaded. This is
possible since Wang Tiles are not allowed to be reoriented when
constructing the tilings. We discuss one possible represention in
which the geometry is sampled into a hierarchy of 3D textures. The

(a) (b)

(c) (d)

(e)

Figure 13: LOD selection. (a) A typical portion of the sunflower
field. (b) This view straddles two of the 8 wedges that divide the
space of directions around a tile. (c) Levels of detail false-colored.
Red (not seen below us) is highest detail, orange is lowest detail.
(d) Layout of directions and resolution levels from viewpoint; e) A
Frame from interactive LDI renderer with 20 flowers per tile. Sky is
environment mapped, mountains are geometry. Frames rendered at
between 2.7 and 4.0 fps on a P4 1.7 GHz PC.

3D textures are each represented as Layered Depth Images (LDIs)
that convert complex geometry into a sparse set of pre-shaded sam-
ples [Shade et al. 1998].

Real time rendering is enhanced by extending LDIs with a novel
view-dependent multi-resolution formulation of the representation.
Since tiles further from the viewpoint require fewer samples, we cre-
ate 7 levels of detail of each tile, each with successively fewer sam-
ple points. Tiles viewed from a particular direction need include
only those points of geometry seen from that direction. To address
this we create 8 variations of each tile specialized for viewing from
each of 8 compass directions.

The complete system consists of an offline and an online compo-
nent. Offline, we create and pre-shade the hierarchical set of tiles
composed of instances of the eleven sunflower models. At runtime,
we compute a tiling of the plane that is draped over a terrain and

render the visible tiles in back to front order. Each tile is selected
from the appropriate hierarchy level and from the appropriate view-
ing direction based on its distance and orientation to the camera.
Each sample point within each tile is splatted to the screen in back
to front order as described in the original LDI paper [Shade et al.
1998] (see Figure 13).

Because we focus here on the application and construction of the
Wang Tiles, we leave the details of how the original geometry is
sampled to create the hierarchical LDIs to a technical report [Shade
et al. 2002].

We are able to render the sunflower field in real-time on a 2GHz
PC with an Nvidia GeForce4 graphics card. Across the data sets, our
software renderer was able to maintain a rendering rate of between
4.5 and 5.7 million depth pixels per second. This corresponds to
about 4 fps for the sunflower field. Given the point-rendering capa-
bilities of modern graphics hardware, namely point-sprites in mod-
ern graphics APIs, we believe point-sampled tiles can reach 30 fps.

5 Discussion and Future Work

We have shown the versatility and usefulness of Wang Tiles for im-
age and texture synthesis, and for generating large point distribu-
tions. Wang Tiles were interesting in their own right as a theoretical
entity. They should also now prove their usefulness in a variety of
practical graphics applications.

Computer games can benefit from the extremely compact repre-
sentation for texture using tiles. We also look forward to seeing how
well a hardware point based renderer works with the LDI tiles.

Based on a reviewer comment, we are also investigating the possi-
bility of generating the Poisson distributions with an algorithm sim-
ilar to the way we texture the tiles in section 3.2.

In addition, techniques that use volumetric textures [Neyret
January-March 1998] or slices [Perbert and Cani 2001] can poten-
tially save a lot of memory by tiling non-periodically with only small
samples of their data represented in the tiles.

Another three-dimensional application is to create tilings of vol-
umes with Wang-like cubes. In this case, each tile is a small cube
with sides colored. Doing so, we would need a set of 32 tiles to
tile the space non-periodically. Applications for such tilings can be
particle systems that represent clouds or stars in galaxies. We are
certain there are many other applications of these elegant entities we
have not thought of.

Acknowledgements

The authors would like to acknowledge the many useful discussions
with Don Mitchell during preparation of an early version of this
work. We also wish to thank the reviewers (both in this and past
years) for many helpful comments.

References

BERGER, R. 1966. The undecidability of the domino problem.Memoirs
American Mathematical Society, 66, 1–72.

CULIK II, K. 1996. An aperiodic set of 13 wang tiles.Discrete Mathematics
160, 245–251.

DEUSSEN, O., HANRAHAN , P., PHARR, M., L INTERMANN , B., MĚCH,
R., AND PRUSINKIEWICZ, P. 1998. Realistic modeling and rendering of
plant ecosystems. InSIGGRAPH 98 Conference Proceedings, 275–286.

DEUSSEN, O., HILLER , S., VAN OVERVELD, K., AND STROTHOTTE, T.
2000. Floating points: A method for computing stipple drawings.Com-
puter Graphics Forum, Eurographics 2000 Conference Proceedings 19,
4, 40–51.

DEUSSEN, O., COLDITZ , C., STAMMINGER , M., AND DRETTAKIS, G.
2002. Efficient rendering of complex ecosystems using points and lines.
In IEEE Visualization 2002, IEEE, 219–226.

EFROS, A., AND FREEMAN, W. 2001. Image quilting for texture synthesis.
In Proceedings of SIGGRAPH 2001, 341–346.

GLASSNER, A. 1998. Aperiodic tiling, part 1.IEEE Computer Graphics
and Applications 18, 4 (May).

GORTLER, S. J., GRZESZCZUK, R., SZELISKI , R., AND COHEN, M. F.
1996. The lumigraph. InProceedings of SIGGRAPH 1996, 43–54.

GRÜNBAUM , B., AND SHEPHARD, G. C. 1987.Tilings and Patterns. W.
H. Freeman and Company. ISSN 0716711931.

HAUSNER, A. 2001. Simulating decorative mosaics. InSIGGRAPH 2001
Conference Proceedings, 573–578.

HILLER , S., DEUSSEN, O., AND KELLER, A. 2001. Tiled blue noise
samples. InProceedings of Vision Modelling Visualization 2001, Infix-
Verlag, 265–272.

HOPPE, H. 1996. Progressive meshes. InProceedings of SIGGRAPH 1996,
99–108.

KARI , J. 1996. An small aperiodic set of wang tiles.Discrete Mathematics
160, 259–264.

LEVOY, M., AND HANRAHAN , P. 1996. Light field rendering. InProceed-
ings of SIGGRAPH 1996, 31–42.

MCCOOL, M., AND FIUME , E. 1992. Hierarchical poisson disk sampling
distributions. InGraphics Interface ’92, 94–105.

M ĚCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of plants in-
teracting with their environment. InProceedings of SIGGRAPH 1996,
397–410.

NEYRET, F., AND CANI , M.-P. 1999. Pattern-based texturing revisited. In
Proceedings of SIGGRAPH 1999, 235–242.

NEYRET, F. January-March 1998. Modeling, animating, and rendering com-
plex scenes using volumetric textures.IEEE Transactions on Visualiza-
tion and Computer Graphics 4, 1, 55–70.

PERBERT, F., AND CANI , M. 2001. Animating prairies in real-time. In
2001 ACM Symposion on Interacive 3D Graphics, 103–110.

PRUSINKIEWICZ, P., MÜNDERMANN, L., KARWOWSKI, R., AND LANE,
B. 2001. The use of positional information in the modelling of plants. In
Proceedings of SIGGRAPH 2001, 289–300.

SHADE, J., GORTLER, S., HE, L., AND SZELISKI , R. 1998. Layered depth
images. InProceedings of SIGGRAPH 1998, 231–242.

SHADE, J., COHEN, M. F., AND M ITCHELL , D. 2002. Tiling layered depth
images. ftp://ftp.cs.washington.edu/tr/2002/12/UW-CSE-02-12-07.pdf.

STAM , J. 1997. Aperiodic texture mapping. Tech. rep., R046. Euro-
pean Research Consortium for Informatics and Mathematics (ERCIM).
http://www.ercim.org/publication/technicalreports/046-abstract.html.

TONG, X., ZHANG, J., LIU , L., WANG, X., GUO, B., AND SHUM , H.-Y.
2002. Synthesis of bidirectional texture functions on arbitrary surfaces.
ACM Transactions on Graphics 21, 3 (July), 665–672. ISSN 0730-0301
(Proceedings of ACM SIGGRAPH 2002).

TURK, G. 2001. Texture synthesis on surfaces. InProceedings of ACM
SIGGRAPH 2001, ACM Press / ACM SIGGRAPH, Computer Graphics
Proceedings, Annual Conference Series, 347–354. ISBN 1-58113-292-1.

WANG, H. 1961. Proving theorems by pattern recognitionII . Bell Systems
Technical Journal 40, 1–42.

WANG, H. 1965. Games, logic, and computers.Scientific American
(November), 98–106.

WEBER, J., AND PENN, J. 1995. Creation and rendering of realistic trees.
In Proceedings of SIGGRAPH 1995, 119–128.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using tree-
structured vector quantization. InProceedings of SIGGRAPH 2000, 479–
488.

	Text1: Also publ. as Paper in: International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), San Diego, Calif., 2003
	Text2: Konstanzer Online-Publikations-System (KOPS)URL:http://www.ub.uni-konstanz.de/kops/volltexte/2007/2429/ URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-24291

