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Figure 1:Comparison of our method (ITDMs) with regular TDMs and geometric LODs on a 12.5M polygon power plant model. ITDMs generate images

almost as good as static LODs at a frame rate 9 times faster. Moreover, ITDMs do not show the skin artifacts common in TDMs.

Abstract: We present an incremental algorithm to compute
image-based simplifications of a large environment. We use an
optimization-based approach to generate samples based on scene
visibility, and from each viewpoint create textured depth meshes
(TDMs) using sampled range panoramas of the environment. The
optimization function minimizes artifacts such as skins and cracks
in the reconstruction. We also present an encoding scheme for mul-
tiple TDMs that exploits spatial coherence among different view-
points. The resulting simplifications, incremental textured depth
meshes (ITDMs), reduce preprocessing, storage, rendering costs
and visible artifacts. Our algorithm has been applied to large, com-
plex synthetic environments comprising millions of primitives. It is
able to render them at20− 40 frames a second on a PC with little
loss in visual fidelity.
CR Categories and Subject Descriptors:I.3.3 [Computer Graph-
ics]:Picture/Image Generation-Display algorithms; I.3.7 [Computer
Graphics]: Three-dimensional Graphics and Realism
Keywords: interactive display, simplification, textured-depth
meshes, spatial encoding, walkthrough

1 Introduction
Image-based impostors are frequently used to accelerate the ren-
dering of complex models. They are widely used in computer gam-
ing, flight simulators, and interactive display of architectural mod-
els, urban environments, or real-world datasets. Different image-
based representations such as texture maps, textured depth meshes,
and depth images are widely used to drastically simplify portions
of the scene that are far from the current viewpoint. The time re-
quired to render these representations is mostly a function of image-
space resolution and is independent of scene complexity. Many
algorithms and systems have been proposed that approximate por-
tions of environments with image-based impostors for faster display
[Aliaga et al. 1999; Aliaga 1996; Aliaga and Lastra 1999; Chang
et al. 2001; Darsa et al. 1998; Decoret et al. 1999; Jeschke and
Wimmer 2002; Maciel and Shirley 1995; Schaufler and Sturzlinger
1996; Shade et al. 1998; Shade et al. 1996; Sillion et al. 1997; Wil-
son et al. 2001].

Image-based simplifications can have a number of visual arti-
facts, including dis-occlusions, cracks, tears, poor parallax effects,
and skins. Parallax effects can be added to flat images by triangu-
lating the depth values associated with the environment map from
each viewpoint. The resulting triangles can be warped using texture
mapping hardware [Sillion et al. 1997; Darsa et al. 1998; Decoret
et al. 1999; Aliaga et al. 1999]. Moreover, Z-buffer hardware can
be used for resolving occlusions and rendering interactively. How-
ever, the resulting textured depth mesh (TDM) representations can

still show skinsandcracksaround depth discontinuities where in-
formation is missing. Skinsare surfaces in a TDM that are not
present in the original environment. The left image in Fig. 1 shows
an example of the smearing artifacts caused by skins. Removing
skins leavescracksin an image where nothing is known about vis-
ible surfaces. Fig. 11 shows an example. Skins and cracks arise
because image-based samples contain information about only the
nearest surface visible from the sample viewpoint. Since no infor-
mation is available about surfaces occluded from that viewpoint,
they cannot be properly rendered; instead, artifacts appear when-
ever those surfaces should be visible.

Many of these problems can be alleviated by generating more
samples from different viewpoints. However, this increases the
costs of pre-processing, storage, and runtime rendering, becoming
intractable for large environments. Ideally, we want to capture most
of the visible surfaces in an environment using as few samples as
possible. This problem is closely related to theart galleryproblem
in computational geometry [O’Rourke 1997], though our definition
for a “good” sample is different. The classical art-gallery prob-
lem is NP-complete. As a result, there is little hope of computing
an optimal solution to the sampling problem. Given large environ-
ments with uneven distributions of primitives, no good approxima-
tions or practical algorithms are known for computing viewpoints
for image-based samples of the environment.
Overview: Our goal is to construct image-based simplifications
of parts of a large, complex environment. We partition the scene
into regions and compute simplifications for each region separately.
The simplifications consist of a number of image-based samples ac-
quired from viewpoints within the region. We build impostors from
these samples, then use those impostors at runtime to replace prim-
itives outside the navigable region. This approximation trades the
widely varying cost of rendering the original geometric environ-
ment for the constant, bounded cost of rendering from image-based
samples. We use a Voronoi-based sampling algorithm to acquire
potentially visible surfaces using a small number of samples, given
criteria for measuring error in the impostors.

We build a set ofincremental textured depth meshes(ITDMs)
by spatially encoding the samples in an image-based simplification
to replace many points with few triangles. This encoding exploits
the spatial relationships among samples to remove points that be-
long to surfaces that have already been captured. By reducing the
number of points that must be processed, we reduce preprocess-
ing and storage costs as well as improve rendering speed. We cre-
ate polygonal meshes from the reduced samples and apply view-
dependent simplification to the results. The output of this algorithm
is a set of ITDMs that can be rendered in place of the original prim-
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Figure 2:Overview of our two-phase simplification approach. Stages of Voronoi-based sampling are shown in blue. Incremental TDM construction is shown
in green.

itives captured by the simplification.

New Results:Our approach includes the following three novel al-
gorithms.

1. An optimization-based incremental algorithm that generates
panoramic range samples within a region. This algorithm re-
duces the severity of visibility artifacts.

2. An algorithm for detecting skins and other visibility artifacts
that appear in TDMs and a measure of their severity.

3. A new spatial encoding technique that reduces redundancy
among different range samples and represents ITDMs incre-
mentally using a dependency tree.

Our current sample generation and rendering algorithm is targeted
for walkthrough applications where the user’s motion generally lies
in a plane and allows for translation and rotation. Different compo-
nents of our approach are shown in Figure 2.

We have applied our algorithm to two complex architectural en-
vironments. We take portions of the scene outside several different
navigable regions with sizes between2 and 30 meters square in
the powerplant model. The simplification for each region replaces
1, 185 objects comprising12.5 million polygons with5 − 18 IT-
DMs created with a maximum error threshold of0.2 steradians.
The 405 ITDMs take about1.4GB of space as compared to 660
MB for the original environment. We are able to render them at
20 − 40 frames per second on a PC with an NVIDIA GeForce 4
graphics card in immediate mode. We have also performed prelim-
inary comparisons with two other algorithms for rendering large
datasets. The use of ITDMs improves the frame-rate by an average
factor of 9 over an algorithm that uses geometric levels-of-detail,
with little loss in image quality. Our approach results in fewer vi-
sual artifacts as compared to previous algorithms based on TDMs.
Overall, ITDMs reduce pre-processing time, storage overhead, and
rendering cost and result in better simplifications.

Organization: We briefly survey related work in section 2. In sec-
tion 3 we present the Voronoi-based incremental algorithm for cap-
turing a set of samples in an environment. In section 4 we use
these samples to construct incremental textured depth meshes. In
section 5 we highlight the performance of our approaches together
and compare them with earlier methods. We analyze our approach
and highlight some of its limitations in Section 6. We conclude in
Section 7.

2 Prior Work
2.1 Interactive Display of Large Models
Many rendering acceleration techniques based on geometric levels
of detail (LODs) or visibility culling have been proposed for large,
complex environments. Several different LOD computation algo-
rithms for polygonal models are surveyed in [Luebke et al. 2002].
Many of the algorithms reduce the problem to an optimization algo-
rithm and track simplification error using geometric measures such
as surface deviation, texture deviation, Hausdorff distance, and ap-
pearance attributes [Hoppe 1997; Garland and Heckbert 1997; Lue-
bke and Erikson 1997]. In addition to these geometric measures,
LOD algorithms have been proposed that use image-space error

measures such as RMS error [Lindstrom and Turk 2000] and per-
ceptually based contrast sensitivity functions [Luebke et al. 2002].

LOD algorithms work well in environments composed of fine
tessellations of smooth surfaces. Environments with high depth
complexity are more difficult: because LODs do not actually re-
move surfaces from an environment, they will not help in situa-
tions where an application is fill-bound. Similarly, environments
with many coarsely tessellated objects are a difficult case for LODs
since a drastic simplification of the environment can result in large
screen-space errors.

By contrast, visibility culling algorithms accelerate rendering
by culling away a subset of primitives that are not visible from the
current viewpoint. A recent survey is given in [Cohen-Or et al.
2001]. While good algorithms have been proposed for architectural
and urban settings, current visibility culling methods for general en-
vironments either need special hardware [Greene et al. 1993], per-
form approximate culling [El-Sana et al. 2001], or require multiple
graphics cards and introduce additional latency in the system [Bax-
ter et al. 2002].

2.2 Image-Based Representations

Image-based representations and impostors accelerate rendering by
providing a drastic simplification of distant geometry. For example,
many flight simulation systems use images to represent terrains and
other specialized models. Common image-based representations
include point primitives, flat images, textured depth meshes, and
depth images. Point primitives [Pfister et al. 2000; Rusinkiewicz
and Levoy 2000] work well for over-sampled datasets. Flat images
[Aliaga 1996; Debevec et al. 1998; Maciel and Shirley 1995; Shade
et al. 1996; Schaufler and Sturzlinger 1996] are mapped onto planar
projections, but only display correct perspective when viewed from
the location where the image was created. Textured depth meshes
(TDMs) [Aliaga et al. 1999; Darsa et al. 1998; Jeschke and Wim-
mer 2002; Sillion et al. 1997; Wilson et al. 2001] replace the planar
projections used by flat images with simplified meshes created from
sampled depth values. TDMs are extended to handle multiple layers
in [Decoret et al. 1999]. TDMs are height fields, and many algo-
rithms have been proposed for simplification and view-dependent
level-of-detail control of such datasets [Luebke et al. 2002]. How-
ever, no good algorithms are known for automatic sampling and
TDM generation in large environments.

Depth images [Aliaga and Lastra 1999; Max and Ohsaki 1995;
McMillan and Bishop 1995] are rendered at runtime using 3D im-
age warping. Layered depth images [Shade et al. 1998] have been
proposed as an extension to reduce disocclusion artifacts at the cost
of increased storage overhead. The geometric portion of a TDM can
be thought of as a polygonal encoding of a depth image. Depth im-
ages may require special-purpose hardware or multiprocessor sys-
tems for fast display. Many algorithms generate triangulations from
depth images, simplify the meshes and render the resulting data
[Nyland et al. 2001]. Overall, image-based representations can ei-
ther be precomputed from a set of viewpoints or dynamically up-
dated at runtime [Decoret et al. 1999; Schaufler and Sturzlinger
1996; Shade et al. 1996].
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Figure 3:The visibility of the void surface in this simple environment falls into one of four categories depending on the relative placement of a sample location
S and a viewpointV . Gray regions show the void volume. Shaded blue regions show the projected extent of the void surface with respect to the viewpoint.
Part (e) summarizes the characteristics according to the placement of a viewpoint with respect to a sample location. Labeled, colored regions correspond to
the cases in parts (a) through (d). Unlabeled gray regions are those parts of case (d) where the viewpoint passes beyond the critical lineL and the rear wall is
not visible at all.

2.3 Sampling Large Environments
Most earlier algorithms for generating image-based samples of
large environments choose viewpoints uniformly using regular
grids [Shade et al. 1996; Wilson et al. 2001] or model-dependent
characteristics [Aliaga et al. 1999]. Another approach is to gener-
ate samples adaptively to guarantee a constant frame rate [Aliaga
and Lastra 1999]. Artifacts arising from the use of image-based
impostors are characterized in [Decoret et al. 1999]. The authors
also describe an algorithm to improve the quality of TDMs by mea-
suring the size ofvisibility events. This improvement is computed
in 2 1

2
D urban environments in which viewing regions are restricted

to 1D line segments.
The problem of sample acquisition in a navigable region is ad-

dressed in [Fleishman et al. 2000]. The authors subdivide polygons
in a scene into very small patches, place many cameras around the
border of the navigable region, and choose a subset of those cam-
eras that collectively see most of the visible polygons. An alternate
approach based on visibility regions is given in [Sturzlinger 1999].

Issues of sampling large environments also arise in the “art
gallery” and “next best view” problems in computational geometry,
computer vision, reverse engineering, and robot motion planning.
In the art gallery problem the task is to position optimally a set of
guards that collectively see an entire environment [O’Rourke 1997].
The art gallery problem assumes complete knowledge of scene ge-
ometry. The optimal-placement problem is NP-complete. Global
visibility algorithms such as the ones based on aspect graphs can
compute all visibility events. Based on that information, we can
compute sample locations that capture all visible surfaces. How-
ever, computation of aspect graphs in 3D can take as long asO(n9),
wheren is the number of primitives in the scene.

Most sampling problems in reverse engineering and computer
vision assume that object and scene geometry are initially unknown.
The goal is to construct a model using as few observations as pos-
sible. Thebest-next-viewproblem addresses the issue of finding a
viewpoint where a new observation will add the most information
to a partially captured environment. A survey of prior work on this
problem is given in [Pito 1999]. Most best-next-view algorithms
operate by identifying depth discontinuities in range images or in
the model under construction and reasoning about the visibility and
occlusion of such discontinuities [Banta et al. 1995; Maver and Ba-
jcsy 1993; Reed and Allen 1999]. Such methods use local tech-
niques to generate additional samples, sometimes resulting in large
databases of many samples. Some algorithms for automatic scene
acquisition have combined best-next-view computation with robot
motion planning [Gonzalez-Banos and Latombe 1998; Gonzalez-
Banos and Latombe 2001; Reed and Allen 1999]. These algorithms
also consider the cost of computing a collision-free motion needed
to reach the next viewpoint. Such constraints do not arise in our
application that deals with synthetic environments.

Our criteria for generating samples are based on minimizing the
reconstruction error visible from the navigable volume. Unlike the

art gallery and global visibility computation algorithms, we do not
attempt to guarantee capture of all visible surfaces or events.
2.4 Incremental Encodings
The notion of incremental representation of a data set is common
in video and geometry compression. Schemes such as MPEG store
only one out of every N frames in its entirety. The intervening
frames are represented as differences from previous frames. A sim-
ilar technique has been described for polygon-assisted JPEG and
MPEG compression of synthetic images [Levoy 1995]. A spatial
video encoding scheme that represents a 3D space of images instead
of a 1D temporal sequence is presented in [Wilson et al. 2001]. An
approach to compressing a space of images using spanning trees
is presented in [Aliaga et al. 2002]. Incremental encodings have
been proposed for progressive simplifications of polygonal models
[Hoppe 1997; Luebke et al. 2002]. Instead of image-to-image dif-
ferences, these approaches store trees of decimation operations like
edge-collapses to transform one mesh to another. A hierarchical
image compression scheme for multi-layer image-based rendering
system is presented in [Chang et al. 2001]. [Jeschke and Wimmer
2002; Jeschke et al. 2002] have proposed incremental construction
schemes for layered image-based impostors.

3 Voronoi-Based Sampling
In this section we describe our Voronoi-based sampling algorithm
that is used to generate panoramic samples of an environment. We
partition an environment into regions and compute samples for each
region separately. We reduce sample generation to an optimization
problem and use properties of the void surface in formulating the
objective function.
3.1 Problem Definition
Our goal is to capture potentially visible surfaces using a minimum
number of samples given some criterion for error in the impostors.
We introduce some of the terms that are used in the rest of the paper:

The potentially visible set (PVS) contains all surfaces visible
from some navigable regionN .

The navigable region, N , is a region of free space containing all
possible viewpoints for a particular simplification. We sim-
plify the part of the scene outsideN .

A sample is a panoramic environment map plus per-pixel depth
and camera information. We represent a sample as six range
images arranged as a cube environment map.

A sample location is the viewpoint from which a sample is ac-
quired.

In the rest of this section, we will assume that we are dealing with
rectangular 2D regions, as is appropriate for a person moving about
at constant eye height, though the algorithm works for 3D. We char-
acterize theerror introduced by our lossy simplification scheme ac-
cording to the severity of the artifacts – skins and cracks, described
in Section 1 – introduced during reconstruction.
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Figure 4:Skin identification criteria. We classify an edgeE as a skin if either endpoint is at maximum depth (Test 1), the angle betweenE and a ray~r from
the viewpoint through its midpoint falls below some thresholdα (Test 2), or if some other sample locationSi can see past the midpoint ofE to some more
distant surface (Test 3).

3.1.1 Decomposition into Regions
The separable problem of decomposing a large environment into
smaller viewing regions is discussed in [Reference suppressed]. We
use the simple approach of partitioning the environment with an
octree until cells contain no more than a specified number of poly-
gons. Each cell is treated as a separate region. Each region’s sim-
plification contains all objects that are not completely inside that
region.
3.2 Simplification as Greedy Optimization
Given a region, our goal is to generate samples that minimize the
visibility artifacts. We compute viewpoints for the samples in an
image-based simplification using a greedy, incremental optimiza-
tion strategy. This strategy has four major components:

1. Anobjective functionmeasuring the reconstruction error to be
minimized

2. A set ofinitial conditionsspecifying a few initial samples
3. A set oftermination criteriato judge when the simplification

is “good enough”
4. An update phaseto choose the location for the next sample

3.3 Objective Function
The objective function measures the severity of reconstruction er-
rors with respect to a set of samples and viewpoints. Rather than
identifying these errors by comparing the reconstructed image with
an image of the original environment, we identify regions of space
where we have little or no information and quantify the visibility
of those regions. We first describe a subdivision of space that al-
lows us to construct the boundary of such regions. Next we present
the operations necessary to compute this subdivision (and thus the
objective function) from a set of samples.
3.3.1 The Void Surface
The void surface, described in [Pito 1999], forms the boundary be-
tween space visible from one or more sample locations (thevisible
volume) and space about which nothing is known (thevoid volume)
Fig. 3(a) shows an example. The red point is a sample location. Red
line segments show parts of the void surface, while shaded gray area
belongs to the void volume. Since artifacts appear when we attempt
to render surfaces within the void volume, we can approximate their
severity by quantifying the visibility of the void surface. We are in-
terested in theglobal void surfacethat obscures space not seen by
any one of a group of samples. We will build up an approximation
of the global void surface using the individual void surfaces defined
by each single sample.
3.3.2 Characteristics of the Void Surface
Although the exact behavior of the void surface is highly scene-
dependent, we claim that it will tend to become more visible as a
viewpoint V moves farther away from a sample locationS. We
support this claim with examples drawn from a simple environment
shown in Fig. 3. This environment has exactly two surfaces (one
rear wall and one front wall). The front wall is pierced by a gap. The

visibility of the void surface (which can only be seen through the
gap) can be assigned to one of the following four cases according
to the relative placement ofV andS:

• The void surface is not visible at all. (Fig. 3(a))

• The void surface is visible on both sides of the gap. The rear
wall will always be visible.(Fig. 3(b))

• The void surface is visible on one side of the gap. The rear
wall will always be visible. (Fig. 3(c))

• The void surface is visible on one side of the gap. If the view-
point passes beyond a critical lineL, nothing except the void
surface is visible beyond the gap. (Fig. 3(d))

This behavior will help us compute candidate sample locations
for the next sample in our optimization. A new sample will con-
tribute information wherever it sees surfaces obscured by the void
surface. Viewpoints that see large areas that are covered by the
void surface (e.g. viewpoints beyondL in Fig. 3(d)) will contribute
more information than those in situations such as Fig. 3(a).

3.3.3 The Void Surface in a Sample
We can compute a close approximation to the void surface within
a single sample by triangulating the depth buffer as a height field.
This is the process that gives rise to skins in textured depth meshes.
In fact, those skins make up exactly the surface we want to iden-
tify: they form a boundary between visible volume (surfaces and
free space sampled by the TDM) and void volume (space occluded
by the surfaces visible in a TDM). We will use skins as an approxi-
mation of the void surface within a sample.

We identify skins by computing per-pixel adjacency within a
captured depth buffer. If two pixelsuscreen andvscreen are not part
of the same surface, the edgeE between the corresponding world-
space pointsuworld andvworld does not correspond to any surface
in the environment. We detect such edges using the following three
tests, illustrated in Fig. 4.

1. If eitheruscreen or vscreen has a depth value beyond some
threshold, the edge is a skin.

2. Construct the view ray~r from the sample location through the
midpoint of the edgeE. If the angle between~r andE is less
than some thresholdα, the edge is a skin.

3. For each sampleSi, construct a ray~r from Si’s viewpoint
through the midpoint ofE. If the first intersection between~r
and a surface visible fromSi is beyond the midpoint ofE, the
edge is a skin.

We compute the adjacency information for all eight neighbors
of each pixel of each face in each sample. The void surface for
a sample is approximated by constructing triangles that cover the
discontinuity between any two pixels that are not adjacent.
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Figure 5:Candidates for the next sample location (blue squares) are con-
structed from the Voronoi diagram of existing sample locations (red circles).

3.3.4 Approximating the Global Void Surface
In the previous section we used skins to identify the void surface
within a single sample. However, we are interested in theglobal
void surface defined by a group of samples. The global void vol-
ume contains all space not observed by any sample in the group.
Any point in the global void volume must therefore be occluded
by the void surfaces for each sample. This allows us to describe
the visibility of the global void surface as follows. LetSkins(Si)
be the void surface for sampleSi, Vglobal be the global void sur-
face, andProjection(surf, V ) be the screen-space projection of
the visible portion of some surfacesurf from viewpointV . Given
a group of samplesS1 . . . Sn and a viewpointV , we have:

Projection(Vglobal, V ) =
nT

i=1

Projection(Skins(Si), V ).

We computeProjection(Vglobal, V ) using the graphics hardware.
First, we render the valid surfaces in each sampleSi. We then com-
puteProjection(Skins(Si)) by rendering the skins for sample
Si into the same buffer as these valid surfaces. We use the stencil
buffer to accumulate the screen-space intersection of these individ-
ual void surfaces.
3.3.5 Computing Projected Area and Objective Function
The algorithm described in the previous section identifies pixels
that belong to the visible extent of the global void surface. Re-
call that the value of the objective function at some pointV is the
magnitude of the solid angle subtended by the portion of the global
void surface visible fromV . We compute this by adding up the
solid angles subtended by each pixel inProjection(Vglobal, V ).
If we treat a single pixel as a spherical polygon with interior angles
θ1 . . . θ4, the functionArea(p) yields the solid angle subtended by
a single pixelp:

Area(p) = (
4P

i=1

θi)− 2π.

GivenArea(p) for each pixel, the overall objective functionF for
a viewpointV and a set of samples,S1 . . . Sn, is defined in terms
of the solid angle subtended by all pixels belonging to the global
void surface. LetG = Projection(Vglobal, V ). We then have

F (V, S1 . . . Sn) =
P
p∈G

Area(p).

As we acquire more samples,n increases andF () decreases. The
goal of our optimization is to keep acquiring new samplesSi until
the objective functionF () falls below some threshold.
3.4 Starting and Ending Criteria
In order to capture a large part of the potentially visible set with
a few samples and thus minimize the required number of simpli-
fication steps, we begin with one sample taken from each of the
four corners of the navigable region. The optimization process con-
tinues until the value of the objective function falls below some
user-specified thresholdε.
3.5 Finding the next sample location
At each step of the optimization, we compute the location for the
next sample to be acquired. We begin with the initial samples from
the corners of the navigable region and add samples in a greedy
manner.

Figure 6: Identifying redundant points in a sample. Red points are sam-
ple locations, gray lines are projection planes for those samples, and blue
rectangles are objects in the world.

3.5.1 Candidate locations for the next sample
Ideally, we would like the next sample viewpoint to be at the point
in the navigable region where the objective function attains its max-
imum. Since the objective function is scene-dependent, with many
local maxima and minima, finding this point exactly can be pro-
hibitively expensive in complex environments. We instead search a
limited set of candidate viewpointsC1, C2, . . . , Cn to find the next
sample location.

We construct these candidate viewpoints using the assumption
that the visible extent of the void surface increases as the distance
from a viewpoint to the existing sample locations increases. We use
the 2D Voronoi diagram of previous sample locations to find points
as far from any sample location as possible. Since the Voronoi di-
agram can extend beyond the navigable region, we choose the ac-
tual candidate viewpointsC1 . . . Cj by collecting all of the Voronoi
vertices that fall within the navigable region and by finding the in-
tersections between the boundary of the navigable region and the
edges of the Voronoi diagram. See Fig. 5 for an example.

We evaluate the objective function (the visible extent of the void
surface) at each candidate viewpointCj . The point at which the
void surface subtends the largest solid angle is chosen as the view-
point location for the next sample of the environment.

The simplification process ends when the maximum de-
tected visibility error falls below a user-specified threshold. The
panoramic samples constructed by the simplification process will
be used to compute a corresponding set of impostors.

4 Incremental Textured Depth Meshes
The image-based simplification method presented in Section 3 re-
places the parts of a complex environment outside some navigable
region with a set of panoramic samples. In this section we spatially
encode those samples to construct an incrementally represented set
of textured depth meshes.

The process of constructing ITDMs can be seen as a lossy en-
coding of range data. Although a simplified polygonal mesh ap-
proximates most or all of the points in an input sample, it is not
possible to recover those points exactly. We only address mesh en-
coding in this paper. The image portion of a TDM can be separately
encoded using JPEG or image-based spatial encoding algorithms
[Aliaga et al. 2002; Wilson et al. 2001].
4.1 Reducing Redundancy in a Group of Samples
The first stage of ITDM construction is to identify and remove re-
dundant information within a group of samples. This removal takes
place by identifying and deleting points in a sampleS0 that belong
to surfaces visible in some other set of samplesS1, S2, . . . , Sk.
This introduces a dependency between samples: if surfaces present
in a sampleS1 are removed from a sampleS0, then the meshes cre-
ated fromS0 depend on the meshes created fromS1 to fill in gaps.
We refer to the meshes created from a single sample as ascan cube.

We first identify a single sample within a group to serve as the
intra sample. By definition, the intra sample does not depend on
any other sample: all of its surfaces are considered non-redundant.
All other samples in the group are designateddelta samples, as they
will store only the difference (delta) between their potentially visi-
ble sets. To minimize the amount of information present in the delta
samples, we want to choose an intra sampleI that maximizes the
intersection between its PVS and those of the delta samples. We
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choose the sample nearest the centroid of all sample locations in a
group to be the intra sample.
4.1.1 Building a Dependency Tree
The dependency treeD for a group of samples is rooted at the intra
sample and incorporates all of the delta samples as vertices. We
build it by first constructing a complete graph with one node for
each sample in the group. The edge between verticesi and j in
the graph is assigned a weight proportional to the cubed distance
between the sample locations for samplesSi andSj . D is then
computed as a minimum spanning tree rooted at the intra sample
Sintra. By choosing the cubed distance as the edge weight, we
favor spanning trees where a particular node’s parent or child nodes
are close to it in space.
4.1.2 Identifying Redundant Points
The dependency tree yields a partial order on the set of samples that
allows us to compute the differences in delta samples. We remove
from each delta sample all points that are present in surfaces in
any of that delta sample’s ancestors, up to and including the intra
sample. Our redundancy test only considers whether or not a given
point is present in a surface captured in a given sample. The test for
a sample elements within a sampleS (illustrated in Fig. 6) is as
follows:

1. Transform the screen-space points to its world-space location
sworld.

2. Projectsworld into the screen-space pointsnew in sampleS′.

3. Find the elementt at screen-space coordinatessnew in sample
S′.

4. Transformt into the world-space pointtworld.
5. If sworld andtworld are within some distanceε, sample ele-

ments is redundant.

The equality toleranceε increases with the distance from the view-
point to the sample point to account for the decreasing precision of
the depth buffer with increased depth. The complete algorithm for
redundant sample removal iterates over every depth samples in ev-
ery scanS of the environment and tests it in turn against all ofS’s
ancestor scans.
4.2 Mesh Creation
We construct polygonal meshes for those portions of a sample that
remain after redundant points have been removed. We begin by cre-
ating a dense, regular mesh over the surviving points in each sam-
ple. Although this mesh has many more polygons than we want to
render, its regular structure makes it well suited to geometric sim-
plification. We apply view-dependent simplification to reduce the
storage and rendering cost for our impostors by taking advantage of
the limited viewpoints and viewing directions for a set of TDMs.
4.2.1 Generating a Dense Regular Mesh
In order to avoid introducing cracks or skins in the reconstruction
as can happen with some point-based impostor schemes, we create
the mesh for each face of each scan cube as a continuous surface
wherever we can be reasonably sure of surface connectivity. This
connectivity information is exactly the same as the per-pixel adja-
cency computed during Voronoi-based sampling and uses the tests
described in Section 3.

In order to cover seamlessly the entire space surrounding the
viewpoint, we cover the entire solid angle subtended by each sur-
viving pixel in a sample with two triangles. Since OpenGL samples
the scene at pixel centers [Woo et al. 1997], we compute depth val-
ues at the corners of each pixel by interpolating among the four
pixels surrounding each corner. Once again, we use per-pixel adja-
cency to identify depth discontinuities. We include a pixel’s depth
value in the interpolation only if there is no discontinuity between
it and the pixel being triangulated.

We construct triangles for every non-redundant pixel of every
face of every sample. The result is a set of six regular meshes for
each scan cube. The next stage of ITDM construction is geometric
simplification to reduce the number of polygons in these meshes.

(a) Four sides of a panoramic view from the house environment.

(b) Per-pixel adjacency. Darkened pixels are endpoints of skin edges.

(c) Visibility error. Lighter pixels are observed by fewer samples than
darker ones. Red pixels belong to the global void surface.

Figure 7:Skin detection and visualization of the void surface in the house
environment

4.2.2 Simplifying Dense Meshes
The viewpoints for a group of samples are all defined to fall within
some navigable region. The incremental TDMs created from these
samples will be used only for viewpoints within that region. As a re-
sult, we compute a hierarchical representation for view-dependent
simplification as part of ITDM generation.

We must take particular care to avoid errors that cause screen-
space deviation in silhouette and boundary edges in the dense
meshes. Since textures will be applied to ITDMs using projective
texturing instead of per-vertex texture coordinates, the texture will
not deform with the geometry. Instead, screen-space errors in sil-
houettes and mesh boundaries will cause the projected texture to
appear partly on surfaces neighboring the locus of error. More-
over, by preserving screen-space boundaries we can assemble the
six faces of a scan cube seamlessly into a panorama surrounding
the viewer.

The simplification process consists of two phases. First, we
generate a view-independent sequence of edge collapses by sim-
plifying the original mesh using a quadric error metric formulation
[Garland and Heckbert 1997] until it has only a few hundred trian-
gles. These edge collapses form a merge tree similar to those used
in view-dependent simplification algorithms such as [Hoppe 1997;
Luebke and Erikson 1997; Xia et al. 1997].

The second phase consists of a static, view-dependent simpli-
fication. The merge tree constructed in the first phase of simplifi-
cation defines a hierarchical grouping of the vertices in the input
mesh. This grouping is used as an input to a hierarchical view-
dependent simplification scheme [Luebke and Erikson 1997]. This
view-dependent phase preserves mesh boundaries and silhouette
edges to within half a pixel of error. We identify a set of silhouette
edges by taking several viewpoints at the extremes of the navigable
region and constructing the union of the set of silhouettes from each
viewpoint. No further modifications are made to the meshes after
this phase terminates.
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Model # of regions # of samples
per region
(avg.)

Time per
sample (avg.)
(min)

Sample size
(avg.) (KB)

Time per
scan cube
(avg.) (min)

Avg. %
of points
removed

Avg. scan
cube size
(KB)

Avg. scan
cube polygon
count

House 11 6.3 4.75 1,284 28.9 91.4% 114 5,039
Powerplant 31 13 5.9 1,879 10.2 89.0% 3,340 169,342

Table 1:Preprocessing statistics for the house and power plant environments. The higher polygon count and storage requirements for the power plant are a
result of its high complexity. Scan cubes in the house took a long time to create because some samples contained objects spanning hundreds of thousands of
pixels that were simplified as one unit. Removing redundant points reduced storage requirements by a factor of two and processing times by a factor of six.

4.3 Rendering Distant Primitives Using ITDMs
The ITDM construction process yields the following information:

• A set of simplified polygonal meshes (one mesh for each of
the six faces of a scan cube corresponding to one of the origi-
nal samples of the environment)

• The viewpoints of the cameras used to acquire the original
samples

• The spanning treeD that was used for redundant sample re-
moval

• Color information from the original samples.

We use these components to identify a set of scan cubes to construct
a view of the environment for rendering with few or no cracks. This
identification can incorporate a triangle budget to maintain some
minimum frame rate or a scan budget to maximize fidelity at the
risk of lower frame rates.

4.3.1 Rendering with a Fidelity Target
In order to maximize fidelity at the (possible) expense of lower
frame rates, the user can specify a budget of up tok scan cubes
when rendering ITDMs. We select a set of scan cubesD1 . . . Dk to
meet this budget as follows.

The first scan cube selected, denotedD1, is the one whose sam-
ple location is nearest the user’s viewpoint. This will probably be a
delta cube. Since a delta cube contains only those portions of sur-
faces not visible in any of its ancestors, we also select the ancestors
D2, D3, . . . , Dj of D1 in the dependency tree, up to and including
the intra scan (Dj). Scans are added to the renderable set beginning
with the intra scanDj and proceeding down the dependency tree to-
wardD1. This reversal ensures that a delta cube will be added to
the renderable set only after all of its parents are already present. If
the set of scan cubes to be added is larger than the scan budget, we
truncate the set.

OnceD1 has been added, more scan cubes can be selected for
rendering if the scan budget has not been exhausted. We select the
scanDj+1 nearest to the user that has not yet been selected for
rendering, find the path fromDj+1 to the root of the dependency
tree, then add it and its ancestors to the renderable set in reverse
order as above. This process of selection and addition continues
until the scan budget is exhausted.

4.3.2 Rendering with a Triangle Budget
The user may wish to guarantee some minimum frame rate instead
of image fidelity. The algorithm for selecting scan cubes for ren-
dering is exactly the same as above except for the termination con-
ditions. Rather than track the number of scan cubes selected so far,
we track the number of primitives in selected scan cubes that fall
within the view frustum.

After computing a set of scan cubes, we draw the meshes that
fall within the view frustum. We use projective texture mapping to
place the color information from the original samples back onto the
simplified geometry.

5 Implementation and Results
We have tested Voronoi-based sampling and ITDMs in two complex
environments. The first is a one-story model of a house contain-
ing 262,879 triangles with per-vertex colors, surface normals, and
texture coordinates. Moreover, the house model incorporates 19

megabytes of high-resolution textures to provide surface detail. Al-
though the house model is small enough to be rendered at close-to-
interactive rates on current graphics hardware without image-based
simplification, its visibility patterns are complex enough to provide
good tests for our methods. Our second environment is a model of
an 80-meter-tall coal-fired power plant containing 12.5 million tri-
angles. Surfaces in the power plant are augmented with per-vertex
color and normals.

5.1 Navigable Region Generation
We tested our algorithm in several navigable regions in both envi-
ronments. Regions in the power plant were automatically created to
be as large as possible while enclosing no more than a user-specified
number of polygons. One set of samples and one set of impostors
are created for each navigable region in order to replace primitives
outside the region. Regions in the power plant vary from2 to 30
meters on a side to accommodate an irregular distribution of primi-
tives. Regions in the house are chosen to be uniformly2 meters on
a side due to the model’s smaller size. In our current implementa-
tion, we do not simplify the primitives inside the navigable region.
At runtime, they are rendered using the original geometry.

5.2 Voronoi-Based Sampling
We selected31 regions in the power plant and11 in the house to
test the performance of Voronoi-based sampling algorithm. These
regions include a mix of easy and difficult cases as discussed in
Section 6. In each region, we computed an image-based simplifi-
cation of all primitives outside that region. Table 1 gives aggregate
preprocessing statistics for each model.

5.2.1 Per-pixel Adjacency and Visibility Error Computation
We chose a difficult region in the power plant for a closer evalua-
tion of incremental Voronoi-based sampling. The difficulty in this
region arises from many complex, interacting occluders near the
navigable region on all sides. This region is shown in the video in
the comparison between ITDMs and static LODs. Sampling began
with a set of 4 samples (512x512 pixels on each face) from the cor-
ners of the navigable region and continued until the sampling algo-
rithm run had acquired 20 samples total. Fig. 8 shows the decrease
of the detected visibility error as more samples were added.

5.3 Incremental Textured Depth Meshes
We generated a set of ITDMs for each of the regions in which
we ran the Voronoi-based sampling algorithm. In this section we
give preprocessing statistics for the creation of ITDMs and com-
pare their rendering speed and fidelity with both static LODs and
standard TDMs.

5.3.1 Preprocessing
We generated ITDMs for 31 cells in the power plant environment
using the sample groups created by our approach. Table 1 gives
statistics on preprocessing time and storage requirements. Over-
all, the power plant environment was far more complex and time-
consuming to handle than the house. The higher scan cube creation
time for the house is an implementation detail: when simplifying
meshes, we handle one object at a time, which is inefficient when
one or two objects cover the entire screen (as is often the case in the
house).

The process of removing redundant samples resulted in a6-
times improvement in the time required for geometric simplifica-
tion and a2-times reduction in the size of the resulting meshes.
We measured this by running ITDM creation twice on the same
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Figure 8:Decrease in maximum detected visibility error as more samples
are generated to simplify a region of the power plant containing 12.5M tri-
angles and 1,185 objects.

Figure 9:Visibility error for a region in the power plant as more samples
are acquired. Darker colors represent lower errors. Red points are sample
locations, blue points are candidate viewpoints, and yellow lines show the
Voronoi diagram of existing sample locations. From left to right, we show
the error function after acquiring 5, 7, and 9 samples.

data sets: once with redundant points removed, once with all points
kept (equivalent to creating all scan cubes as intra scans). All other
settings were left unchanged. The comparatively small decrease in
storage space is due to the higher number of boundary edges (which
are preserved exactly) in meshes with redundant points removed.
5.4 Comparison with previous approaches
In this section, we compare our algorithm with two earlier ap-
proaches for rendering large, complex models. The first one is
based on standard TDMs [Aliaga et al. 1999; Darsa et al. 1998;
Sillion et al. 1997; Wilson et al. 2001], where the scene was sub-
divided into uniform-sized cells and a single panoramic TDM was
computed for each cell. These cells were kept small in order to
minimize the severity of skins. The second approach uses LODs of
all the objects in the scene and switches between different LODs
based on the viewpoint.
5.4.1 Rendering Speed
The increased fidelity of ITDMs comes at the cost of higher poly-
gon counts in order to accommodate the geometric portion of mul-
tiple ITDMs. As a result, the frame rate of an interactive system is
lower with ITDMs than with standard TDMs. Standard TDMs are
typically created from uniformly spaced samples, only render one
scan cube at a time, and are simplified far more aggressively than
ITDMs. The frame rates achieved by ITDMs are illustrated in Fig.
10. The frame rates we observe with ITDMs are well within inter-
active ranges (20 − 40 frames per second) for most viewpoints.
These frame rates are consistently faster than those achieved by
static LODs, which fall to2 or 3 frames per second when the user
looks toward the (very complex) center of the power plant.
5.4.2 Image Quality
The overall image quality of ITDMs is almost comparable to that
of static LODs, though they show small visual artifacts like small
cracks from some viewpoints. ITDMs also do not have the popping
artifacts that arise when switching between different static LODs.

ITDMs provide a higher-quality reconstruction of the far field
with fewer artifacts than standard TDMs, as shown in Fig. 1. This is
due largely to the absence of skins in ITDMs. Since depth disconti-

Figure 10: Comparison of frame rates for standard TDMs, ITDMs, and
static LODs in the power plant. ITDMs maintain an interactive frame rate
while providing a reconstruction with fewer artifacts than standard TDMs.

nuities in a single ITDM are exposed (rather than covered by skins),
we can fill in the holes and thus reduce or eliminate visibility arti-
facts by rendering meshes constructed from several different sample
locations. Examples of increasing ITDM fidelity by adding samples
to the reconstruction are shown in Figure 11. By contrast, render-
ing more than one standard textured depth mesh in the same view
region makes matters worse: not only do the skins from the first
TDM obscure any newly visible surfaces contained in subsequent
meshes, but the skins in subsequent meshes will probably obscure
surfaces that are already rendered properly in the reconstruction!
Moreover, navigable regions in systems using standard TDMs are
often kept small to minimize the severity of artifacts. Since we have
reduced these artifacts, we can create larger cells while maintaining
a high-fidelity reconstruction of the far field. This can lead to lower
preprocessing and storage costs due to fewer sets of impostors that
must be generated.
Lack of Popping: We have also reduced the artifacts that appear
when the user moves between different regions. In some systems
[Aliaga et al. 1999], this transition was accompanied by a distract-
ing “pop” as the artifacts from one TDM were replaced with the
(drastically different) artifacts from another. Cell-to-cell transitions
using ITDMs are far smoother due to the reduced incidence of skins
and cracks.

5.4.3 Storage Overhead
The storage costs of ITDMs are greater than those of static LODs
and lower than those of standard TDMs for a particular image qual-
ity. Static LODs roughly double the size of the input database, turn-
ing the660MB power plant into1.3GB of geometry. ITDMs for
the 31 navigable regions occupy a total of1.4GB. TDMs acquired
at 1.5-meter intervals (to increase image quality) throughout these
regions occupy a total of9.4GB, almost7 times larger than ITDMs.

These figures depend on the particular error measures used.
Static LODs typically generate several versions of an object, each
with half the polygons of its predecessor: this leads to the doubling
of database size. Lower error thresholds for TDMs and ITDMs de-
crease the spacing between adjacent samples. In such a scenario the
storage overhead for ITDMs is considerably lower as compared to
that of TDMs. This is mainly due to our improved sampling algo-
rithm, which generates fewer viewpoints as well as the removal of
redundant points during construction of delta cubes.

6 Analysis and Limitations
In this section we analyze the performance of our algorithms, high-
light cases where they are expected to work well, and describe many
of their limitations.

6.1 Complexity
We discuss the complexity of Voronoi-based sampling and ITDM
construction in terms of the number of samples,n. We assume
that the size of a sample is constant. The overall behavior of each
algorithm depends on the complexity of its various steps, which are
described below.
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Figure 11:Fidelity improvement of ITDMs with more scans. From left to right, we show a far field in the power plant rendered with the intra cube plus zero,
two, and five delta cubes. The ITDM dependency tree is shown at bottom left. Red nodes show which cubes are rendered.

6.1.1 Sampling algorithm

the complexity of the various steps performed as each sample is
added. Identifying skins and building the void surface within a
sample can take up toO(n) time in the worst case when using
the multiple-source-image test. Acquiring a sample and adding it
to the reconstruction are independent of the number of samples.
The computation of 2D Voronoi diagram can takeO(n log n) time
during each iteration. The overall time for sample computation is
O(n2 log n). This can be easily improved by using dynamic point
insertion Voronoi computation algorithms.

6.1.2 ITDM construction algorithm

The two most asymptotically expensive parts of ITDM construction
are building the dependency tree and identifying redundant sam-
ples. We build the dependency tree on a complete graph overn
samples havingO(n2) edges. The minimum spanning tree for such
a graphG = (V, E) can be computed inO(E + V log V ) time for
a total cost ofO(n2) time in the number of samples. In the worst
case, the spanning tree has depthn. In this case, redundant sample
identification in a sample may have to examine allO(n) ances-
tor samples. Performing this step onn samples gives a worst-case
complexity ofO(n2). In practice, the redundancy tests usually exit
after only 1 or 2 comparisons. The mesh simplification and merge
tree computation takes aboutO(m log m) steps, wherem is the
number of primitives in the dense mesh.

6.2 Voronoi-Based Sampling

The Voronoi-based sampling generates image-based simplifications
of distant primitives for a navigable region. Its performance is gov-
erned by the underlying objective function and incremental sample
computation.

The performance of our algorithm on two complex environ-
ments suggests that the solid angle subtended by the void surface
can be a reasonable, conservative measure of visibility error. This
measure does not require comparing two images to detect differ-
ences, and thus does not suffer from the limitations of numeric
techniques used to comparing the visual similarity of two different
images. Moreover, the void surface can be constructed using only
information present in a set of samples: it does not require access
to the original primitives in the environment.

The angle subtended by the void surface can over-estimate the
severity of artifacts in two ways. First, as an aggregate measure
it has no notion of the individual errors in a view. One thousand
single-pixel errors scattered through an image are counted just as
severely as a large 1000-pixel block. Second, there is no notion of
minimum perceptible error. Artifacts that interpolate between two
surfaces of identical color and depth will be counted as severely as
errors that involve radical changes in color or occlusion. In spite
of these shortcomings, we find that in practice the visibility of the
void surface guides us toward regions of high error.

6.2.1 Good Scenarios for Incremental Sampling
In general, environments where the potentially visible set changes
slowly and smoothly when traversing the navigable region will be
well captured by Voronoi-based sampling. Such situations occur
when most objects in the environment are far from the navigable
region or when there are a few visibility events between such ob-
jects over the region. Environments with complex geometry in the
distance are often handled well: the farther away an object is from
the camera, the less horizontal parallax it will display as the cam-
era moves, which in turn reduces the potential visibility of any void
volume behind it.

6.2.2 Bad Scenarios for Incremental Sampling
The presence of complex, interacting occluders close to the view
volume can result in rapid and abrupt changes in the potentially
visible set. Situations such as a view through a closely spaced set
of parallel pipes can be difficult because of the lack of overlap in the
the space seen through the pipes even for nearby viewpoints. En-
vironments with surfaces parallel to the camera view axis can also
pose problems: in some cases, parts of these surfaces will be erro-
neously classified as skins. Such configurations are usually easily
resolved by the addition of a single sample that sees such surfaces
at a different angle of incidence.

6.3 Incremental Textured Depth Meshes
We build a set of incremental textured depth meshes from the
panoramic samples. We use the adjacency information computed
during sampling to avoid introducing skins into ITDMs and mini-
mize cracks by using additional ITDMs.

6.3.1 Benefits of Incremental TDMs
The identification and removal of redundant data considerably re-
duces the costs of preprocessing, storing, and rendering multiple
TDMs. Since a set of ITDMs is created from multiple samples, it
provides a more faithful reconstruction of distant primitives than
standard TDMs that can only render one mesh built from one sam-
ple at any given time. As a result, the reconstruction of the far field
provided by ITDMs remains usable over a much larger region than
with traditional, single-source TDMs.

6.3.2 Difficult Situations for Incremental TDMs
Incremental textured depth meshes perform best in situations with
fewer visibility events and high spatial coherence. They can per-
form poorly in the following two situations:
1. Rapidly Changing Visibility Between Viewpoints: Redundant
sample removal depends on the assumption that visibility changes
smoothly. This will perform poorly in situations where this assump-
tion is incorrect. One example of such a situation is when large
occluders are interposed between the viewpoint of a child scan and
its ancestor scan. Fortunately, such situations are rare due to the re-
quirement that the the region containing the viewpoints for the orig-
inal panoramic samples of the environment be free from geometry.
If such geometry exists, it is removed during impostor generation
and handled separately at runtime.
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2. Complex Silhouettes in the Depth Buffer: In order to make
the borders of one ITDM line up neatly with another, we preserve
mesh boundaries and silhouette edges with sub-pixel accuracy. This
decision can cause problems in configurations with complex silhou-
ettes by creating meshes with many more polygons than we would
like to render and is the chief cause of high polygon counts in IT-
DMs. Since we only require that the borders of different meshes
line up exactly, we could conceivably modify complex boundaries
to be straight lines instead of the stair-step shapes created by remov-
ing redundant pixels. We could also fuse boundaries across meshes
using a method similar to the one described for range images in
[Curless and Levoy 1996].
6.3.3 Errors Introduced by Use of Delta Cubes
The process of redundant sample removal is a lossy simplification
scheme that introduces two kinds of error. First, discarded points
sometimes contain information about surface texture that is not
present elsewhere. By discarding this information, we limit tex-
ture quality in a sample to whatever is present in that sample alone.
In practice, the user will rarely approach ITDMs closely enough
for this to be a problem. Second, removing redundant samples can
cause seams to become visible where surfaces in one scan cube
meet surfaces in another. If no samples were removed (i.e. all scan
cubes are intra scans), these seams could be filled in when a single
surface is rendered in two or more scan cubes. This solution would
bring with it higher preprocessing, storage, and rendering costs for
those polygons belonging to duplicated surfaces.

7 Conclusions and Future Work
We have presented a new approach for computing image-based
simplifications of a large environment. Our approach includes a
Voronoi-based sampling algorithm as well as an incremental TDM
representation. It has been applied to two complex environments.
Our preliminary results are encouraging: we are able to render the
complex13 million powerplant model at more than20 frames a
second on a single PC with very few visual artifacts (as shown in
the video). The large arrays of pipes in this model are a challenge
for any rendering acceleration algorithm and highlight the potential
of our approach.

There are many directions for future work. The Voronoi-based
sampling algorithm is currently limited to a two-dimensional nav-
igable region. The extension to three dimensions is relatively
straightforward: since the objective function is defined at all points,
we would need to compute candidate points using the 3D Voronoi
diagram of existing sample locations instead of the 2D version.
Moreover, we would need to acquire the initial samples from within
a 3D space of viewpoints. We would also like to incorporate a qual-
ity measure into the objective function that accounts for parameters
such as sampling density, standoff distance, and angle of incidence.

At present, incremental TDMs are limited to showing surface
texture and diffuse lighting present in the original sample. Real-
time programmable shading offers far more flexibility. For exam-
ple, if we were to capture color and normal information in the sam-
ple instead of simply color, we could change the illumination in
ITDMs dynamically, including specular highlights. We would also
like to optimize ITDM construction so that it can be performed dy-
namically instead of as a preprocess. Furthermore, we want to in-
vestigate automatic region decomposition techniques for large en-
vironments. Finally, we would like to apply these ideas to represent
and render range images of real world scenes.
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