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1. INTRODUCTION 

Although prototyping has long been touted as a potentially valuable software 
engineering activity [ 141, it has never really fulfilled that potential. In particular, 
prototyping has not achieved widespread use by developers of large-scale, pro- 
duction software. This is probably due in part to the dubious suitability of 
traditional prototyping languages and tools (e.g., LISP or Smalltalk) for use in 
constructing and experimenting with large prototypes. 

Recently there has been a surge of interest in applying prototyping to the 
development of large-scale, production software, and a corresponding increase in 
efforts to create suitable languages and tools for this purpose (e.g., [3]). This is 
a response to the fact that software systems are getting larger, more complex, 
and costlier to build. In addition, the organizations acquiring these systems are 
demanding more, and earlier, involvement in the development process and, 
therefore, need to be “shown” something sooner. Creating appropriate prototyp- 
ing languages and tools for responding to these needs will depend upon achieving 
a better understanding of how to support prototyping. In particular, we see a 
need for techniques that support the development of large, complex prototype 
systems, since prototypes of large, complex systems are likely to be themselves 
large and complex. 

In this paper, we explore techniques aimed at one central aspect of prototyping, 
namely that aspect concerned with the definition of data objects. We seek to 
characterize and compare various techniques that might be useful in defining 
data objects in large prototype systems. Our characterization and evaluation 
address questions such as: how those definitions are made, what form they take, 
where they are located, how they are used, how they are changed, and what can 
be done to control the effects of those changes. Section 2 first discusses some 
distinguishing characteristics of large prototype systems and identifies some 
requirements for object definition techniques that can support such prototyping. 
Section 3 then characterizes a range of object definition techniques that fulfill 
those requirements to a greater or lesser extent. To make the discussion more 
concrete, Section 4 contains descriptions of implementations that we have 
constructed for three techniques that represent different points within the 
characterized range. A single example is used to illustrate and compare those 
implementations and, by extension, the techniques they represent. Section 5 
presents a comparative evaluation of the techniques laid out in Section 3. We 
conclude with a summary of the results presented in this paper, a look at related 
work, and a prospectus of future work. 

We have chosen to focus this paper on large prototypes primarily because that 
was the context in which our work originated and because of the current surge 
of interest in large-scale prototyping. All nontrivial software systems evolve, 
however, and it may well be that the only significant distinction between large 
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prototypes and other large software systems is the rate at which their developers 
expect them to change. Since many of the properties that we discuss here are 
relevant to any evolving software system, we hope that our observations and 
analysis may find even broader applicability. 

2. REQUIREMENTS FOR LARGE PROTOTYPE SYSTEMS 

The motivation for prototyping in software development is the same as in other 
engineering activities: the prospect of gaining information about, and experience 
with, the behavior and structure of a system before that system is actually built. 
The sooner and more thoroughly a prototype can be experimented with, the more 
information and experience it will provide, and the more valuable it will be. Thus, 
there are two fundamental requirements for prototyping of software systems: 

(1) Rapid deuelopment. A first version of a prototype software system should be 
up and running as quickly as possible. In other words, a developer should 
experience minimal delay between conceiving of a system and being able to 
experiment with a first prototype of that system. 

(2) Easy modification. Changes in the prototype, often suggested by the results 
of previous experiments, should be easy to incorporate. In other words, a 
developer should experience minimal delay between experiments. 

Small prototypes of small- to medium-scale programs, constructed and used 
by a single developer, have often been able to meet these goals rather easily. 
Since they have typically consisted of relatively few distinct components that are 
relatively loosely coupled, and since efficiency, in terms of execution speed or 
space consumption, has generally been of little importance, it has been acceptable 
to construct small prototypes using interpreted, weakly typed languages such as 
LISP or Smalltalk. Indeed, the Smalltalk environment was developed, at least in 
part, to provide a language and tools for prototyping, and both it and LISP have 
proven useful in many small- to medium-scale prototyping efforts. 

The development of large prototype software systems seems to require ap- 
proaches qualitatively different from those used for smaller prototypes. In gen- 
eral, large prototypes are distinguished from small prototypes, not only by their 
greater number of modules and lines of code, but also by their higher cost, longer 
lifetimes, and the involvement of multiple developers. Consequently, they seem 
to require more extensive and stricter management. Large prototypes are by 
nature complex and highly interrelated collections of components. In addition, 
partly due to their size and partly because of the kinds of experiments they are 
to be used for, efficiency in both time and space is significant, although not as 
significant as for the final product. 

A good example of a large prototype system, and one that we are currently 
involved in developing with a number of other researchers, is a prototype of a 
software development environment [ 151. A full-fledged software environment 
prototype will consist of a large number of components interacting with one 
another in a variety of complex ways. Those components include tools, such as 
editors, compilers, testing and debugging support systems and the like, and also 
data objects, such as source text, abstract syntax trees, load modules, symbol 
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tables, test data sets, test results and many others. The components are highly 
interrelated in that a typical activity by a user will involve coordinated actions 
by several tools affecting several (typically shared) data objects. Evaluation of 
an environment prototype will entail experimentation with individual compo- 
nents as well as with the integration of those components. Because a software 
environment is intended to be a highly interactive system, evaluation of the 
prototype will be unavoidably affected by performance concerns such as response 
time. 

An important implication of the characteristics of large prototype systems is 
that they are likely to be developed and modified “component-wise”. That is, a 
developer is likely to experiment with one component at a time, by adding one 
or modifying one while leaving the rest of the prototype unchanged. The experi- 
ment itself will not be restricted to assessing the changed component in isolation, 
however. Instead, the developer’s interest will be in how the changes integrate 
with all the other components of the prototype. A developer of a software 
environment prototype might, for example, conceive of a new code-analysis 
capability. Incorporating it might involve adding or modifying one tool and 
making a few minor changes in the definitions of a few shared data objects. 
Experimenting with this new capability will not be limited to use of the new or 
revised tool, but will also address how well the new capability integrates with 
other tools in the environment. While experimentation of this kind should be 
encouraged and facilitated, the characteristics of large prototype systems also 
imply that there must be security against the introduction of inconsistencies into 
the prototype; controlled and disciplined change is vital, especially when dealing 
with a large, complex system composed of highly interrelated components. 

As our experience with prototyping of software environments has demon- 
strated, a central aspect of constructing and experimenting with large prototypes 
is the creation and manipulation of various kinds of data objects used in the 
prototype system (and eventually in the “real” system). Experimentation with a 
prototype will often involve defining new kinds of data objects or modifying 
existing ones, as in the example cited above. Based on our experience with this 
aspect of prototyping, we have identified the following requirements on object 
definition techniques for large prototype systems: 

-Easy definition and redefinition of data objects 

-Easy reuse of object definitions and of clients of object definitions 
-Easy and reliable maintenance of consistency between object definition and 

use 
-Control over the impact of changes to object definitions 

The requirement for easy definition and redefinition of data objects follows 
directly from the primary goals of rapid development and easy modification in 
prototyping. The implications of this requirement range from powerful and 
concise language constructs for object definition to minimizing the effort required 
for effecting a modification to an object’s definition. 

Easy reuse also contributes to both rapid development and easy modification 
of prototypes. Properties such as modularity and understandability clearly affect 
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how easily an object definition can be reused. But properties of various object 
definition techniques also affect how easily other components (i.e., the clients of 
objects) in prototype systems can be reused. For example, certain tools in a 
prototype software environment can be made generic across a broad class of 
loosely similar kinds of objects if the descriptions of objects are available for 
interpret,ation by those tools at run time. 

The requirement for consistency of object definition and usage, as mentioned 
previously, is extremely important in large prototyping projects. Not only must 
it be possible to establish such consistency when a prototype is first created, but 
it must also be possible to reliably determine and/or enforce the preservation of 
consistency across modifications to the prototype. 

Finally, all of the preceding requirements imply the need for controlling the 
impact of change to a prototype. The implications of this requirement include 
both an ability to clearly identify the parts of a prototype that will be affected 
by some modification and the ability to limit the impact of the change to only 
those parts that actually need to be affected. We have come to describe this in 
terms of limiting the impact of the change to only those components of a 
prototype that are “interested” in the change. 

In our efforts to support the development of large prototype systems, we have 
taken as our starting point the use of a compiled, strongly typed, and statically 
type-checked language, in part because use of such a language generally tends to 
result in fewer errors and better efficiency than interpreted, weakly typed 
languages. Examples of suitable languages include Ada, C++, Modula-2, and 
Trellis/Owl [12]. These languages provide mechanisms for modularizing a pro- 
totype, specifying its data objects and module interfaces, and checking the 
consistency of those objects and interfaces. Thus, these languages clearly have 
the potential to support reuse and consistency management. They also provide a 
basis for controlling the impact of change through their facilities for information 
hiding and separate compilation. 

Unfortunately, despite their apparent potential, use of compiled, strongly 
typed, and statically type-checked languages in the development of large proto- 
type systems can lead to unacceptably slow development and modification. This 
is because such languages do not, in their native form, provide sufficiently 
powerful support for the kinds of reuse, consistency management or control over 
the impact of change that are needed for large prototyping applications. Their 
shortcomings are especially severe with respect to controlling the impact of 
change. Frequently, a small change in a program written in such a language, 
especially if that change involves a system component that is widely used by 
other components, necessitates code regeneration and a complete consistency 
check, which are done through recompi1ation.l This is generally true even if the 
change being made actually affects only a very few components. 

As stated above, we believe that support for large-scale prototyping requires 
the ability to limit the impact of change to only those components of the prototype 
interested in the change. Consider the example mentioned above of experimenting 

‘Although “object oriented” languages such as C++ and Trellis/Owl provide dynamic binding of 
operation bodies to operation calls, they still rely on static, compile-time consistency checking. 
Moreover, the set of possible bindings, from which a particular binding is chosen dynamically, is 
established statically. 
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with a new code-analysis capability in a prototype software environment. Suppose 
that the changes required for this experiment are to add one new tool and to 
introduce one new field into the definition of one data object shared by many of 
the tools already populating the prototype. The new tool and the shared data 
object are the only components of the prototype environment interested in this 
change; the other tools need never be aware that the new field exists in the data 
object. The impact of the change is likely to extend well beyond just the interested 
components, however. When the interface to a data object is modified, most 
language processing systems (typically compilers) for compiled, strongly typed 
and statically type-checked languages will perform widespread rechecking of type 
consistency and regeneration of code. In particular, all tools and objects that 
refer to, or worse, that might possibly refer to, the modified object will typically 
be type-checked again and the code implementing those references will typically 
be regenerated, often entailing a complete recompilation. In contrast, if our goal 
were achieved, at most only the two interested components would be subject to 
type rechecking or code regeneration. Several approaches to achieving this goal 
are discussed in this paper. 

Unfortunately, object definition techniques that are good at controlling the 
impact of change often have diminished capabilities for reuse and consistency 
management. The difficulty here stems from a basic conflict in the amount of 
information that should be contained in an object’s interface. On the one hand, 
the desire to make an object easy to reuse, as well as the desire to check 
consistency, seems to argue for having an information-rich interface-that is, an 
interface that contains a detailed specification of the object. For example, an 
information-rich interface might provide distinct functions to access each of the 
components of an object, thereby revealing the objects’ structure (see Figure 5). 
On the other hand, the desire to limit the impact of change seems to argue for 
an information-poor interface so that the details of the object can change without 
necessarily affecting all clients of the object. For example, an information-poor 
interface might provide a single function to access all the components of an 
object, parameterized by an indication of which component of an object is desired, 
where the possible values of the parameters are not explicitly specified in the 
interface (as illustrated by the use of the string-valued parameter TheAttribute 
to operations GetAttribute and PutAttribute in Figure 3). While the most obvious 
use of the constructs provided by languages such as Ada, C++, Modula-2, and 
Trellis/Owl-that is the programming style implied by the designs of those 
languages and advocated by a variety of texts-seems to favor information-rich 
interfaces, the languages can equally well support information-poor interfaces, 
so there is no answer inherent in the languages themselves. In fact, there is 
probably no one answer that is appropriate for all prototyping situations. What 
is required, therefore, is an understanding of the range of possible techniques for 
object definition and a set of good implementations for those techniques. This 
paper attempts to increase that understanding and also describes some example 
implementations and our experiences with them. 

3. A RANGE OF TECHNIQUES FOR DEFINING OBJECTS 

We are concerned here with the definitional information associated with a data 
object in a large prototype system. As mentioned above, we assume the use of a 
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language like Ada, C++, Modula-2, or Trellis/Owl to describe that information. 
Those languages have within them the concepts of abstract data type, module, 
and separate compilation, all of which are important in prototyping. In Ada, for 
example, packages are modules and consist of a specification part and a body part. 
The specification part defines what is exported from, and imported into, the 
package and can be compiled separately from the body part. The body part 
provides the implementation of the package. The concept of abstract data type 
is captured in the package-that is, packages can be used to specify and imple- 
ment abstract data types. For presentation purposes, we use Ada terminology 
and examples below. 

The most basic questions that can be asked about definitional information are: 
where is it described and how is it accessed? Of course, different choices could 
be made for different portions of an object’s definitional information, but we will 
assume for now that all information for a given object is treated the same. We 
have identified three choices and characterize them as follows: 

-Specification-described. Definitional information about an object is explicitly 
captured in the immutable specification part of a package and can be referred to 
directly by clients of the package. 

-Implementation-described. Definitional information about an object is de- 
scribed in the immutable implementation of a package and is referred to by 
clients through the values of parameters passed to general-purpose access 
routines. 

-Value-described. Definitional information about an object is encoded in the 
values of a mutable data structure. Access to the description and to the object is 
through a general-purpose interface. 

We can further refine this coarse characterization, at least within each of the 
three choices described above (Table I). Under the specification-described ap- 
proach, the definitional information can be presented in either an abstract or a 
nonabstract way. The former usually takes the form of a functional interface, in 
the style advocated by proponents of information hiding and data abstraction. 
The latter usually takes the form of explicit and visible data structure definitions. 
Under the implementation-described approach, the definitional information can 
be captured either as the values of data structure or as actual code. This is 
analogous to the distinction between a table-driven parser (e.g., one generated 
by Yace [6]) and a hard-coded parser. Finally, under the value-described ap- 
proach, the definitional information about an object either can reside in a separate 
structure or it can form a part of the object itself and therefore be self-describing. 

It is important to notice the rather subtle, but nonetheless significant, distinc- 
tion that we draw between the two value-described techniques on the one hand 
and the data-based implementation-described technique on the other, since all 
three are based on the use of data structures. We have found it convenient to 
differentiate the approaches along two dimensions. The first is concerned with 
the mutability of the definitional-information data structure, while the second is 
concerned with where responsibility for interpreting the definitional information 
lies. Under the value-described techniques, as we define them, the definitional 
information is mutable at run time and responsibility for interpreting the 
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Table I. Range of Techniques 

- 677 

Specification-described Implementation-described Value-described 

abstract non-abstract code-based data-based separately-described self-described 

definitional information (e.g., to perform consistency checks) lies with the clients 
of an object. Under the data-based implementation-described technique, the 
definitional information is immutable at run time and responsibility for inter- 
preting the definitional information is given to the package providing the defi- 
nition. The full significance of this distinction becomes evident in the detailed 
evaluation presented in Section 5. 

This characterization leaves us with six basic techniques from which to choose. 
But these six techniques are really only select points within the range; while they 
serve as convenient touchstones, it is possible to develop hybrid (or enhanced, or 
extended) implementations that lie at other points within the range. In fact, as 
our evaluation clearly demonstrates, it can be highly beneficial to do so. Examples 
of such hybrids appear in the next section, where we illustrate the range of 
techniques by describing three implementations that we have both developed and 
used. 

Before introducing the implementations, we wish to preview the specific criteria 
used in the evaluation so that the reader can gain a feeling for what we consider 
to be most important. Here, we formulate the criteria as questions. 

(1) Ease of Definition and Redefinition 
(a) How easy is it to develop a definition? 
(b) How easy is it to understand a definition? 
(c) How easy is it to modify definitional information? 

i. To locate the part(s) of a definition that need changing? 
ii. To make the change? 

(d) How quickly can a change to definitional information take effect? 
(e) How much code needs to be regenerated? 

(2) Ease of Reuse 
(a) How easy is it to reuse an object (definition)? 

i. To identify a suitable candidate for reuse? 
ii. To make any necessary modifications? 

(b) How easy is it to develop general-purpose clients? That is, is there good 
support for reuse of clients? 

(3) Consistency Management 
(a) How easy is it to check consistency? 
(b) When (how early) can an inconsistency be detected? 
(c) How reliably can inconsistency be detected? 

(4) Controlled Impact of Change 
(a) How well can we limit the impact of a change to “interested” clients? 
(b) How accurately can we determine which clients are “interested”? 

4. THREE IMPLEMENTATIONS OF OBJECT DEFINITION TECHNIQUES 

As part of our work on a prototype software environment [15], we have been 
experimenting with a variety of techniques to facilitate our prototyping activities. 
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On reflection, we have recognized that three of these that we have used most 
extensively represent distinct approaches to supporting the development of large 
prototype systems, essentially based on the three major categories of techniques 
described in the previous section. They are: 

-IRIS, a graph-based scheme (due to Fisher) for representing the semantics of 
software-system descriptions, such as specifications, designs, and programs, 
written in a formal language [ 11; 

-GRAPHITE, a system that generates packages for manipulating directed 
graphs [2]; and 

-PIG, a language framework and analysis technique for precisely describing and 
analyzing module interfaces [17, 181. 

In this section, we describe in detail our implementations for these systems and 
briefly indicate their advantages and disadvantages, leaving a thorough evaluation 
for Section 5. 

Throughout this section, a single example is used to demonstrate some of the 
relevant capabilities of the implementations. The example application is the 
development of an interface to a directed-graph data structure for representing 
program semantics in a software environment. This is a very realistic example, 
since many tools in a software environment would be expected to make use of 
such an interface. Of course, it is also a “common denominator”; while this is a 
characteristic application of IRIS, GRAPHITE can be used for any kind of 
directed graph and PIC can be used for interfaces to any kind of data object or 
module. 

The terminology for graphs used below is as follows. A graph consists of a set 
of nodes, where each node is of some node kind. A set of node kinds is referred 
to as a class; a graph consists of nodes from one or more classes of node kinds. A 
node kind is associated with a set of attributes. Attributes are used to describe 
the properties of the objects represented by the nodes in the graph and each such 
attribute has a type, referred to as an attribute type. An instance of a node kind 
is a set of values, one for each attribute associated with that node’s kind. Some 
of the attribute types are actually node kinds, which makes it possible to connect 
nodes into directed graph structures. In the example given here, node kinds are 
the only interesting attribute types employed. 

To simplify the example, we restrict discussion to the process of developing a 
representation for an if-statement. Definition and redefinition, reuse, consistency 
management, and control over impact of change supported by the three imple- 
mentations are demonstrated by considering what happens when the developer 
of the representation switches from one form to another. The first form, referred 
to below as ifi, is the standard if-then-else construct. The second form, ifi, 
accounts for the appearance of any number of specialized else-if clauses. The 
example is further simplified by assuming that the interface to the representation 
graph is to be in the form of an abstract data type realized as an Ada package, 
which we refer to as an interface package. 

4.1 IRIS 

IRIS, which stands for Internal Representation Including Semantics, is based on 
the use of abstract syntax graphs to capture the semantics of a software-system 
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description in terms of expressions. IRIS represents the elements of a software- 
system description as literals and operators applied to a set of operand expres- 
sions. For example, the expression 2 + 3 is represented as the application of an 
addition operator to the literals 2 and 3. The ifi form of if-statement might be 
represented as the application of an “if” operator to two operands, the first being 
an IRIS graph representing the if-then part of the statement and the second 
being an IRIS graph representing the else part of the statement. Figure 1 shows 
such a representation for the statement 

if X = Y then . else . . . end if 

where if, condition clause, list, and = are operators, X and Y are identifier literals, 
rectangles denote expressions, and circles denote references to literals. 

There are only two node kinds in IRIS; one is used to represent expressions 
and the other is used to represent references to literals. Expression nodes include 
one attribute for referring to the declaration of the operator and an arbitrary 
number of other attributes for referring to the operands. Literal nodes for 
identifiers include an attribute for referring to the declaration of that identifier, 
while literal nodes for numbers and strings include an attribute for holding that 
number or string. 

A key feature of IRIS that distinguishes it from other graph representations 
of semantics (e.g., TCOL [S]) is that the descriptions of all language-defined 
operators are themselves represented as IRIS graphs.’ Each use of an operator is 
represented by a reference to an IRIS graph representing the declaration of that 
operator, which includes such information as the operator’s name, the number 
of operands it takes, and the types of those operands. Thus, in Figure 1, “+ “if “” 
indicates a reference to the IRIS-encoded declaration of the “if” operator, which 
would specify its two operands. There is essentially no difference between the 
declarations for the language-defined operators, such as “if” and “list,” and the 
user-defined procedures and functions that have been translated into IRIS. IRIS 
is therefore a (conceptually) self-describing, general-purpose structure for rep- 
resenting software-system descriptions. To represent the descriptions written in 
a particular language, one must provide declarations for the language-defined 
operators; different sets of these operators would of course yield different 
languages. 

One can consider implementing IRIS in a number of different ways. For 
instance, in our implementation of IRIS [20], we chose to use a self-describing, 
mutable data structure, where interpretation of the definitional information is 
left to clients. Thus, our implementation uses a basic self-described value- 
described technique. 

The Ada interface package used in our implementation of IRIS defines a type 
for nodes and defines the operations that allow manipulation of instances of the 
graph. The operations include those that allow clients to create and delete nodes, 
to get and put attribute values, and to read and write graphs. Nothing in this 
interface package, however, is specific to a particular language (i.e., the language- 
defined operators). Therefore, it would be possible for a client to use this interface 

* Of course, the most primitive semantics of any IRIS description, namely function application and 
operand evalution are not represented in the graphs. 

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 4, October 1990. 



680 l J. C. Wileden et al. 

f7 
“list” 

. 

. 

. 

Fig. 1. Schematic example of IRIS representation for if,. 

package with any language. Moreover, the interface package would be immune 
to any changes to the operators of a given language. For example, changing from 
the ifi form of if-statement to the if2 form would involve a change to the 
declaration of the “if” operator, but not to the interface package, since the second 
form still uses the same two node kinds. Figure 2 shows the if2 representation for 
the statement 

if X = Y then . . elsif X = Z then . else . . end if 

where the first operand of the “if” operator is evidently now a list of condition 
clauses, the first of which represents the if-then part. Because the interface 
package does not change, clients uninterested in a change will not be affected. 

We are using our implementation of an interface to IRIS in the prototype 
development of several tools, including front-end tools (i.e., internal-represen- 
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ist” 

Fig. 2. Schematic example of IRIS representation for ifi. 

tation generators, as well as lexical, syntactic, and semantic analyzers) for a 
variety of languages. A particularly interesting tool benefiting from the approach 
embodied in IRIS is a generic interpreter, called ARIES, which stands for Arcadia 
Interpretive Execution System [21]. ARIES has been designed with two goals in 
mind: to serve as a general-purpose interpretation engine for any IRIS-described 
language, and to allow the simultaneous interpretation of a program using a 
variety of execution models, such as symbolic execution and dynamic data-flow 
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tracking, as well as conventional actual-value execution. IRIS has not only made 
it easier to build and test the interpreter incrementally, but it contributes to the 
generic nature of ARIES by limiting the impact on interpreter components of 
changes to language semantics. 

There are several advantages to the value-described approach typified by our 
implementation of IRIS. Foremost, it limits the impact of change. The language 
being represented by IRIS can change and, as long as the client tools always 
interpret the definitional information, those tools do not need to be recoded or 
recompiled. This also facilitates reuse of clients, since some of these tools might 
be generic tools (e.g., ARIES) that work on different languages. Of course, there 
is a price for this much flexibility, In particular, no static type checking can be 
done to assure, for example, that only “if” information is put into an “if” node. 
Also, unless adequate external documentation is provided, it may be very difficult 
to understand the information content of the object. This lack of visibility can 
have a negative impact on software reuse. 

4.2 GRAPHITE 

Many of the data objects manipulated by software environment tools are graphs. 
For example, parse trees, abstract syntax trees, control flow graphs, and call 
graphs are all graphs that are likely to be manipulated by tools in an environment; 
IRIS is another such graph. We have therefore placed considerable effort into a 
general design for interfaces to graph objects. 

Figure 3 illustrates the basic form of the interfaces that we have adopted for 
some of our graph objects by showing a skeleton of the interface-package 
specification part for a version of our representation-graph example. As can be 
seen, the interface package implements an abstract data type for classes of node 
kinds by providing a set of general-purpose access routines, such as GetAttribute 
and PutAttribute. These routines are tailored by parameters supplied by the 
clients invoking them, such as a parameter to specify the desired node kind for 
a “create” operation. In most cases, these parameters are character strings that 
must be interpreted in the body of the interface package. If we assume, for 
example, that there are node kinds for representing an if-statement and a 
condition-clause, then character strings such as IfNode and ConditionClauseNode 
might be used to identify them. 

Under Ada’s recompilation rules (as for other compiled, strongly typed, stati- 
cally type-checked languages, such as C++, Modula-2, Trellis/Owl, etc.), recom- 
pilation of the clients of a package is avoided only if the specification part of that 
package does not itself require recompilation after a change has been made. 
Toward this end, the interface-package specification part is nearly devoid of all 
definition- and representation-specific information about the node kinds being 
managed and so insulates clients of that package from most changes in class 
definitions and representations. For example, in the specification part shown in 
Figure 3, there is no mention of particular node kinds, such as If Node and 
ConditionClauseNode. Indirection through access types allows the details of the 
representation of a node to be confined to the body part of a package. Once there, 
those details can be changed without affecting the specification part of the 
package and, by extension, the clients using that package. In Figure 3, the private 
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package Replnterfacc is 
-- node-handle types 

type RepGraph is private; 
NullRepGraph : constant RepGraph; 

. 
-- user-defined attribute types 

-- types for communicating names 
type NodeKindName is new String; 
type AttributeName is new String; 

-- types for listing a node’s attributes 

type AttributeNamePointer is access AttributeName; 

type AttributeNameList is array ( Positive range <> ) of AttributeNamePointer; 

-- operations to manipulate a node 

function Create ( TheNodeKind : NodeKindName ) return RepGraph; 

procedure DeleteNode ( TheNode : in out RepGraph ); 
procedure PutAttribute ( TheNode : RepGraph; TheAttribute : AttributeName; 

TheValue : RepGraph ); 

function GetAttribute ( TheNode : RepGraph; TheAttribute : AttributeName ) 
return RepGraph; 

__ operations to ascertain a node’s definition 

function Kind ( TheNode : RepGraph ) return NodeKindName; 
function NodeKindAttributes ( TheNodeKind : NodeKindName ) return AttributeNameList; 

_- operations to input and output graphs 
procedure ReadGraph ( FileName : String; TheGraph : in out RepGraph ); 
procedure WriteGraph ( FileName : String; TheGraph : in out RepGraph ); 

private 
_- representations; complete declarations given in body part 

type RepGraphRep; 
type RepGraph is access RepGraphRep; 
NullRepGraph : constant RepGraph := null; 

. 

end Replnterface; 

Fig. 3. Skeleton of interface-package specification part for representation-graph example 
(implementation-described technique). 

type RepGraph is shown to be an access type that designates the incomplete type 
RepGraphRep. The full declaration of RepGraphRep, which defines the actual 
data structure for representing nodes, would appear in the body part of package 
Replnterface. 

It is important to point out that although one type (e.g., RepGraph) is used to 
designate nodes of all kinds, the interface package will guarantee at run time 
that a node is used in a manner consistent with its kind. For instance, if a node 
kind has an attribute A whose type is another node kind NK, then only nodes of 
kind NK will be allowed as values of attribute A. 

It should be evident that in implementing the form of interface packages 
discussed here, we have primarily used the implementation-described approach. 
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class RepGraph is 
package Replnterface; 

. 

node ConditionClauseNode is 
Operator : DeclarationNode; 
Condition : ExpressionNode; 

Statements : ListNode; 

end node; 

node IfNode is 
Operator : DeclarationNode; 

ConditionClause : ConditionClauseNode; 

ElsePartStatements : ListNode; 

end node; 

node IdentifierNode is 
Identifier : DeclarationNode; 

end node; 

end RepGraph; 

Fig. 4. Portion of GDL specification for class to 
represent ifi. 

In particular, definitional information is confined to the implementation part of 
an interface package and referred to through the parameters of general-purpose 
access routines. But it should also be evident that there are certain aspects of 
the interface package that are characteristic of the value-described approach, 
which means that our implementation is in fact a hybrid. For instance, there is 
a set of operations provided to allow a client to ascertain, although not alter, the 
kind of a node and its associated attributes, which amounts to a run-time 
interpretation of the definitional information, as can be done under the value- 
described approach. 

As discussed in Section 5, a potential problem with the implementation- 
described approach is the effort involved in developing or modifying definitional 
information. To help alleviate this problem for the interface packages discussed 
above we developed the GRAPHITE system which is similar in some respects to 
IDL [7,13]. GRAPHITE, which stands for GRAPH Interface Tool for Environ- 
ments, accepts specifications of classes of node kinds written in the graph 
description language GDL. Given the GDL specification for a particular class of 
node kinds, GRAPHITE automatically produces an interface package for manip- 
ulating nodes of those kinds. 

A given GDL specification defines a particular class by declaring the node 
kinds, attributes, and attribute types making up the class. Figure 4 shows a 
portion of a GDL specification for some of the graph nodes for representing if1, 
the form of $--statement that cannot contain else-$clauses. In Figure 4, RepGraph 
is the class being defined and Replntetface is the interface package (Figure 3) 
that is to be generated by GRAPHITE. 

As an illustration of how GRAPHITE-generated interface packages can limit 
impact of change, consider what happens as a result of changing from the if1 
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representation to the if2 representation by replacing the definition of node kind 
IfNode in Figure 4 with the following definition: 

node IfNode is 
Operator : DeclarationNode; 
ConditionClauseList : ListNode; --includes “if” and “else-if’s” 
ElsePartStatements : ListNode; 

end node; 

Although the definition of a node kind has changed (the second attribute of 
IfNode has had both its name and attribute type changed), the specification part 
of what would be the new interface package is identical to that of the old one; 
the necessary changes are confined to the body part. Thus, clients uninterested 
in this change need not be affected. 

GRAPHITE actually produces two different kinds of interface pa&ages. One, 
referred to as the development interface, is intended to support experimental 
systems and is the one discussed up to this point. It is designed so that when 
developers modify the definition of a class, there is a minimal effect on other 
components in the system, even on those components that use the modified class. 
The second kind of interface package, called the production interface, is designed 
for efficient manipulation of nodes. When the definition of a class has become 
relatively stable, the second interface package can be easily substituted for the 
first (with virtually no recoding of clients being required) so that a more efficient, 
although less flexible, version of the system can be created. 

The difference between the two kinds of interface packages comes down to the 
balance between definitional information captured using the implementation- 
described approach and that captured using the specification-described approach. 
In particular, shifting from the development interface to the production interface 
means a concomitant shift of some of the definitional information from the body 
part of the interface package into the specification part. This happens, for 
example, to the information about the names of node kinds and attributes; in 
production interface packages, these names are represented as enumeration 
literals defined in the specification part instead of as character strings defined 
by clients and interpreted by the interface package. Placing the information into 
the specification part in an appropriate form makes it possible for the compiler 
to take advantage of that information when performing type checks and gener- 
ating code, resulting in the greater efficiency exhibited by production interface 
packages. Of course, production interface packages also exhibit less flexibility. 

GRAPHITE has been used extensively in the development of the graph data 
structures of several environment tools, including front-end tools for a number 
of languages, a suite of interface analysis tools, a loop analyzer, and even the 
implementation of GRAPHITE itself. One of these tools is Athena, a table- 
driven internal-representation generator, lexical analyzer, and syntactic analyzer 
for Ada. In all, Athena consists of 23 separately compilable units that total over 
750 kilobytes of source code. Compilation of a moderate-size program such as 
this takes a substantial amount of computer time and, perhaps more importantly, 
programmer time. The component of Athena that generates GDL-specified 
program-representation graphs was actually developed incrementally by succes- 
sively handling larger and larger subsets of the Ada language. Growth from one 
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subset to the next often involved changes to the definition of the program- 
representation graph. The only part of the program interested in such changes 
was the set of so-called “actions” that are performed by the tool; these actions 
are embodied in a single compilation unit, called Actions. By using the develop- 
ment interface package generated by GRAPHITE, we were able to minimize the 
recompilation necessitated by changes to the definition of the program-represen- 
tation graph. In particular, only the body part of the interface package (and, of 
course, Actions) had to be recompiled; the other units in the program were 
insulated from such changes. This reduced recompilation time by over half as 
compared to what would have been required if the definition of the program- 
representation graph had been exposed. 

GRAPHITE facilitates development of large prototype systems in several ways. 
Most importantly, the design of the generated development interface package, in 
which definitional information is confined to the body, insulates clients from 
changes in the definition and representation of a class of node kinds. This 
approach sacrifices static checking in favor of minimizing the impact of change. 
It still permits an interface package to enforce the consistency of the specified 
class definition, however, since the body part contains all the information 
necessary to check at run time the legality of node kind and attribute names as 
well as the operations applied to instances. In addition to using the implemen- 
tation-described approach, GRAPHITE provides some other capabilities that 
foster prototyping. Specifically, it facilitates reuse by automating the creation of 
an abstract data type for a user-specified class of node kinds and by providing, 
through GDL, good documentation of the graphs used in a system. 

4.3 PIG 

The previous two implementations primarily illustrate the value-described and 
implementation-described approaches. What remains is to illustrate the specifi- 
cation-described approach, where the definitional information is captured in the 
specification part of a package. As mentioned in Section 2, there is a sense in 
which this is the most “obvious” approach to use in languages like Ada, C++, 
Modula-2, and Trellis/Owl.3 

Figure 5 shows one possible use of the specification-described approach for the 
interface to our representation-graph example. Specifically, it shows a use of the 
abstract-based-interface technique, where each node kind and each attribute used 
in the representation graph has associated with it an appropriate set of subpro- 
grams (i.e., operations), such as to create a node of a particular kind or to get a 
value of a particular attribute in a node. 

As we point out in Section 2, having an information-rich interface means that 
it is easier to reuse an object definition, as well as to statically check appropriate 
use of an object by that object’s clients, but it also means that it severely increases 
the impact of change. We examine these issues fully in Section 5. Here we 
describe an enhancement to the basic technique that can help limit the impact 
of change. The enhancement is based on the use of an interface control mecha- 

3 This is the (controversial) technique used to exemplify interfaces to Diana, an internal representa- 
tion for Ada, that appeared in [4]. 
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package Replnterface is 
type RepGraph is private; 
NullRepGraph : constant RepGraph; 

function CreatelfNode return RepGraph; 
procedure DeletelfNode ( TheNode : in out RepGraph ); 

procedure PutConditionClause ( TheNode : RepGraph; 
TheValue : RepGraph ); 

function GetConditionClause ( TheNode : RepGraph ) 

return RepGraph; 

procedure PutElsePartStatements ( TheNode : RepGraph; 

TheValue : RepGraph ); 
function GetElsePartStatements ( TheNode : RepGraph ) 

return RepGraph; 

. . 

private 

end Replnterface; 

Fig. 5. Portion of interface-package specification part for if, form 
of representation graph (specification-described technique). 

nism that can distinguish between clients interested in a change and clients not 
interested in a change. 

Interface control is concerned with describing and limiting the interactions 
that can occur between the entities in different modules of a software system. 
Entities are named language elements such as objects, types, and subprograms; 
a module serves to group together related entities. The interface control mecha- 
nism of a language is used to specify what (and sometimes how) entities within 
one module can be used by another module. Thus, given a suitably precise 
interface control mechanism-that is one that allows the description of module 
interactions to any desired level of detail-the extent to which a particular 
change to a module affects other modules can be easily determined. Once 
determined, this information can then be used, for example, by a recompilation 
tool to limit the impact of that change. 

PIC, which stands for Precise Interface Control, is a research project aimed at 
improving support for interface control in large software systems. Results from 
this project include the design of a small set of language features for precisely 
specifying module interfaces and a collection of tools for analyzing those speci- 
fications for consistency. Prototypes of the analysis tools have been implemented 
for a family of PIC-oriented languages based on Ada [X3]; the example below is 
given in one of these languages, namely PIG/Ada. 

The conceptual foundation for the PIC language features is provided by a 
general view of interface control that is richer than views based solely on 
traditional entity-visibility concepts of declaration, scope, and binding. This view 
distinguishes two aspects of visibility: 

(1) requisition of access; and 

(2) provision of access. 
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package Clientllnterface is 

request Replnteriace.Getldentifier, . .; 

. . 

end Clientllnterface; 

package Client2lnterface is 
request ReplnterfamGetConditionClause, .; 

end Client2lnterface; 

Fig. 6. Portions of PIG/Ada specification parts of 
interfaces to two clients that use the interface of 
Figure 5. 

Access to an entity is the right to make reference to, or use of, that entity in 
declarations or statements. Requisition of access occurs when an entity (implicitly 
or explicitly) requests the right to refer to some set of entities. Provision of access 
occurs when an entity (implicitly or explicitly) offers, to some set of entities, the 
right to refer to that entity. Given this view, an interface control mechanism is 
simply a means for specifying requisition and provision. 

The PIC language features used to capture these two aspects of entity visibility 
are the request clause, for specifying requisition, and the provide clause, for 
specifying provision. They can appear only in the specification parts of modules, 
and therefore these parts act as a sort of “module interconnection language” for 
software systems (cf., [5]). 

Request and provide clauses can be used in a variety of ways to express the 
relationships among modules. In particular, notice that request clauses are akin 
to capabilities in operating systems and, similarly, provide clauses are akin to 
access lists. Just as there are situations where use of capabilities is more 
appropriate than use of access lists, and vice versa, there are situations where 
use of one clause is more appropriate than use of the other. Having both clauses 
available in a language allows extreme flexibility in the description of interface 
relationships. In addition, support for both can result in a redundancy that 
facilitates more rigorous analysis of the interface relationships of a system’s 
components. For example, based on this view it is possible to formulate comple- 
mentary descriptions of exactly how two modules are intended to interact, giving 
one description from the perspective of each of the modules, and then to analyze 
those interactions by checking the two descriptions for consistency. 

Figure 6 shows one possible use of the PIC language features for describing 
the relationship between the representation-graph interface and the clients of 
that interface. Using request clauses in a “capability” style, each client’s specifi- 
cation indicates exactly those parts of the representation interface in which it is 
interested. Thus, it is clear that when the developer alters Replnterface to work 
with if2, Client 2 and not Client 1 is interested in the change. 

Using the basic abstract specification-described approach, but enhancing it 
with the interface control constructs provided by PIC, has several advantages. 
Clearly indicating which modules must be recompiled when a change in a 
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specification occurs makes it possible for “smart” compilers to significantly limit 
the impact of change, recompiling only when a client actually uses the changed 
object. Moreover, meaningful static type checking can be performed. Finally, this 
approach aids reuse by explicitly providing definitional information in the spec- 
ification part of the interface. 

5. COMPARATIVE EVALUATION 

In the preceding sections we have defined a range of object definition techniques 
for large prototype systems and described our implementations of three points 
within that range. We now offer a comparative evaluation of the various 
points within the range, based in part on extrapolations from our experiences in 
designing and using the particular implementations described in Section 4. We 
begin with a detailed evaluation, in which each technique is measured against 
each of the questions listed at the end of Section 3. We then summarize our 
observations, distilling the detailed evaluation into rankings of the various 
techniques against a set of more general properties implied by the list of questions. 
Finally, we consider how extensions or enhanced implementations, like those 
represented by our GRAPHITE system or PIC toolset, can affect the suitability 
of some of the techniques relative to certain of the properties important for large 
prototype systems. 

5.1 Detailed Evaluation 

Table II presents our detailed evaluation of the six basic object definition 
techniques identified in Section 3. The rows correspond to the questions listed 
at the end of that section. The columns correspond to the techniques. The 
numerical entries represent our comparative evaluation of each technique in 
terms of each question. The numerical scores are intended to express relative, 
not absolute, rankings, and hence are not comparable across questions (i.e., 
between rows). A rank of “1” is considered best. 

Definition and redefinition. The easiest way to develop the definition of an 
object is to use the primitive mechanisms provided in the language in which the 
prototype is being programmed. For the class of compiled, strongly typed, 
statically type-checked languages that we have taken as our starting point, this 
would typically mean constructs such as array or record. Developing a more 
abstract definition, with a functional interface, generally requires additional 
effort, such as writing the procedure bodies corresponding to the interface 
functions. Implementation-described or value-described object definitions require 
even more effort to develop, since a general-purpose interface, which includes 
special functions and data structures, must be developed. Hence the one-two- 
three ranking of these techniques in the first row of Table II. 

A virtue of information hiding and data abstraction is that object definitions 
are easier to understand when these methods are used, since irrelevant details of 
implementation are suppressed. Hence, on the ease of understanding, abstract 
specification-described object definition techniques rank above nonabstract. 
Humans generally find interpreting the information in a code-based or a data- 
structure-based object definition much more difficult than understanding either 
of the specification-described techniques. Since understanding descriptions is 
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fundamental to determining where a change should be made during modification 
of an object definition, the same ranking applies both for ease of understanding 
and for this aspect of ease of change. 

On the other hand, changing the values in a data structure is certainly the 
easiest way to actually carry out a modification to an object definition, whether 
that change is made dynamically, by altering values in a running prototype, or 
statically, by changing data initialization statements. Changing a nonabstract 
specification-described definition is next easiest (e.g., simply changing a record 
declaration), while both abstract specification-described and code-based 
implementation-described definitions require code modifications, making them 
the most difficult. 

Value-described object definitions also rank highest for how quickly a change 
to a definition will take effect and how little code must be regenerated as a result 
of a change. In fact, value-described techniques are optimal in these respects, 
since changes can take effect immediately and no code need be regenerated. 
Changing the immutable (during prototype execution) data structures employed 
in data-based implementation-described object definitions simply requires revis- 
ing initialization statements, so this class of techniques approaches the 
optimum. Changes in specification-described or code-based implementation- 
described object definitions all require significantly more code regeneration, and 
hence are the slowest to take effect. 

Reuse. Object-definition techniques affect the reusability of object definitions 
by influencing how easy it is to identify suitable definitions for reuse and how 
easy it is to modify definitions for use in a new context.4 The first of these is 
similar to the ease-of-understanding property considered previously, and hence 
produces similar rankings of the techniques. In particular, specification-described 
techniques make information about the structure and function offered by an 
object clearly and easily visible in the specification, and thus they rank highest 
here. The second is similar to the ease-of-change property considered in connec- 
tion with definition and redefinition. Hence, we distinguish the same two aspects 
of modifying for reuse that we did for ease-of-change, and assign the techniques 
the same rankings for those aspects. 

The value-described object definition techniques offer some unique support for 
reuse of an object definition’s clients, since in some instances a client may be 
reusable with no changes at all, despite a change in the definitional information 
contained in the data structure. Client components of this kind are typically 
general-purpose utilities (e.g., ARIES) that are designed to base their actions on 
the description contained in the data structure. Such components offer the 
ultimate in reuse. Among the six basic object definition techniques, neither the 
implementation-described nor the specification-described techniques offer simi- 
lar support for reuse of general-purpose clients, and hence they rank lower with 
respect to this property. 

Consistency management. Consistency management is stronger in the speci- 
fication-described techniques than in either of the other two. Verifying that uses 

4 We do not consider in this paper how, if at all, the techniques address the difficult problem of 
continuing to use instances of an object definition after that definition has been modified. 
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of a data object are consistent with that object’s definition amounts to type 
checking. In the specification-described techniques, type checking can be static 
and strong, with type errors producing compile-time error notification. From the 
point of view of the developer of the object definition, this provides the easiest 
checking, since it does not require the writing of any consistency checking code. 
It also results in the earliest possible detection, since inconsistencies can be 
detected and reported at compile time. It is the most reliable form of consistency 
checking since it depends on established type checking utilities in the language 
processing system rather than any user-supplied checking code. 

Under the code-described approach, consistency management is not static but 
dynamic. Thus consistency checking code must be created as part of the object 
definition, making consistency management both more difficult and less reliable. 
Because consistency checking is dynamic, type errors will lead to run-time 
exceptions, rather than compile-time error notifications, and hence will not be 
detected as early as with a specification-described technique. Since type checking 
can be centralized in the code that implements the object’s definition (or that 
interprets the data structure describing the object’s definition), consistency 
management is stronger than in the value-described approach. The fact that 
specifications are static, and hence cannot change during prototype execution, 
precludes the possibility that objects may become inconsistent with the definition 
and with each other during execution.5 

Under the value-described approach, consistency management on uses of a 
data object is again not static but dynamic. Thus, as with the code-described 
techniques, type errors will lead to run-time exceptions, rather than compile- 
time error notifications, and hence will not be detected as early as with a 
specification-described technique. Moreover, since type checking is typically 
decentralized in this approach, being left to each individual client of a given data 
object, consistency management may be nonexistent in some cases. Although 
some checking can be built into an object’s interface, in general only a client 
component can ensure that it is making correct use of an object, through 
interpretation of the definitional-information data structure. The fact that defi- 
nitional information is dynamic and may change during prototype execution 
introduces the possibility that objects may become inconsistent with the defini- 
tion and with each other during execution, further complicating consistency 
management. Hence, both ease of checking and reliability of detection rank lower 
for the value-described techniques than for any of the others. 

Controlling impact of change. The specification-described techniques are least 
successful at limiting the impact of a change in an object’s definition to only 
those components of a prototype system that are interested in the change. This 
is because when the specification of a data object is modified, most language 
processing systems (typically compilers) for compiled, strongly typed and stati- 
cally type-checked languages will require that all tools and objects that refer to, 
or worse, that might possibly refer to, the modified object be type-checked again, 

’ Note again that we are discussing instance/definition consistency within a given prototype execution, 
not consistency of instances created during one execution with definitions that are in use during 
some subsequent execution. 
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which usually means recompiled. Of course, for nonabstract specification de- 
scribed techniques, a change to the representation of an object, even if that 
change does not otherwise alter the object’s definition, will have this effect. 
Hence the nonabstract techniques receive an even lower rating than the abstract 
techniques here. On the other hand, determination can be made of what compo- 
nents are interested in a change to the object’s definition (e.g., deletion of an 
information field in a data object) via a cross-reference analysis, so determining 
which ones are interested is straightforward. 

The code-described approach limits the impact of change by encapsulating 
changes within the code bodies that implement the object’s definitional infor- 
mation (or interpret the data structures describing the object’s definitional 
information). The assumption is that only interested components will invoke 
these code bodies and hence that impact of a change will be limited to interested 
components. Determination of what components are interested in a change to 
the kind of information contained in the data object (e.g., deletion of an infor- 
mation field) only requires inspection of the calls to the relevant code bodies and 
the values of the parameters to those calls. Although not always trivial, this is 
simpler than the corresponding analysis for value-described data objects. In sum, 
impact of change is limited to only those components interested in the change, 
i.e., those who call the relevant code bodies with relevant parameter values, but 
determining which ones are interested may be somewhat complicated. 

The value-described approach limits the impact of change by encapsulating all 
information about the change within the mutable data structure containing 
definitional information. The assumption is that only those components inter- 
ested in the change will interpret the relevant section of this data structure, and 
hence the impact of the change will be restricted to interested components, as 
desired. Determination of what components are interested in a change to the 
definitional information concerning the data object (e.g., deletion of an infor- 
mation field) may require an interpretive trace of component behaviors to find 
which ones refer to the relevant part of the data structure. Thus, although impact 
of change is limited to only those components interested in the change, deter- 
mining which ones are interested is extremely complicated. 

5.2 Summary of Comparative Evaluation 

Table III represents a summary of the detailed comparative evaluation that we 
have just presented. Here we have restricted our attention to the coarse charac- 
terization of object definition techniques as either specification-, implementation- 
or value-described. We also cluster the properties described by the fifteen ques- 
tions of our detailed evaluation into three, more abstract properties. Once again 
we have used numerical scores that express only relative rankings within a row, 
not absolute rankings in any sense. 

The first row, labeled Development and Reuse Effort, summarizes the prop- 
erties concerning development and reuse except for those that involve modifying 
an object’s definition. Thus, this row ranks the various techniques according to 
their ease of development, ease of understanding, ease of identifying candidates 
for reuse, and ease of identifying what needs to be changed, whether in the 
context of prototype modification or object reuse. The only result from our 
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Table III. Summary of Evaluation 

Specification-described Implementation-descrrbed Value-described 

Development d Reuse Effort 1 2 2 

Turnaround Time 3 2 1 

Consistency Management 1 2 3 tl 

detailed evaluation that does not fit with the summary presented in this row is 
the ranking on reuse of general-purpose clients, an issue that we address below. 

The second row, labeled Turnaround Time, summarizes the properties con- 
cerning modifications to object definitions. Thus, this row ranks the various 
techniques according to the ease of actually making a change, how quickly changes 
take effect, how much code must be regenerated due to a change and how well 
the impact of change can be controlled. One aspect of controlling the impact of 
change, namely the ease of determining which other components of a prototype 
are interested in a change, is not accurately reflected in the summary presented 
in this row, however. While this discrepancy is worth noting, we do not feel that 
it is significant enough to alter the overall ranking of the techniques with respect 
to turnaround time. 

The third row, labeled Consistency Management, ranks the various techniques 
according to how easily consistency can be checked, how early inconsistency can 
be detected and how reliable consistency checking can be. 

The conclusions that can be drawn from this summary seem to be the following: 

(1) The implementation-described and value-described techniques would be more 
valuable for large prototyping efforts if they could be augmented to make 
development of object definitions easier. 

(2) The specification-described and implementation-described techniques would 
be more valuable for large prototyping efforts if the turnaround time associ- 
ated with them could be reduced. 

(3) The implementation-described and value-described techniques would be more 
valuable for large prototyping efforts if their support for consistency man- 
agement could be improved. 

We now consider the extent to which extensions or enhanced implementations 
can alter the relative rankings of these various object definition techniques. 

5.3 Effect of Extensions and Implementations 

Table IV represents the potential effects of extensions and enhanced implemen- 
tations on the summarized comparative evaluations presented in Table III. Again, 
we have restricted our attention to the coarse characterization of object definition 
techniques as either specification-, implementation- or value-described and clus- 
tered the properties described by the fifteen questions of our detailed evaluation 
into three, more abstract properties. And again, we have used numerical scores 
that express only relative rankings within a row, not absolute rankings in any 
sense. 

The greatest potential effect of extensions and enhanced implementations is 
on the properties that we have summarized in the row labeled Development and 
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Table IV. Potential Effects of Extensions and Enhanced Implementations 

Specificafion-described Implementation-described Value-described 

Development 0 Reuse Effort 1 1 1 

Turnaround Time 2 2 1 

Consistency Management 1 2 3 

Reuse Effort. As noted in our detailed evaluation, the implementation-described 
and the value-described techniques do not automatically provide a clear, easily 
visible specification of an object’s definition. Such information can only be 
obtained by interpreting the code and/or data structures that embody the object 
definition. Appropriate support tools can circumvent this shortcoming, however, 
making development and reuse of implementation-described and value-described 
object definitions as easy as that for specification-described object definitions. 
Our GRAPHITE system, for example, is a realization of the implementation- 
described technique augmented to provide automatic creation of object definition 
implementations (interface packages) from a human-readable form of the defi- 
nitional information, namely GDL. Thus, GRAPHITE overcomes several aspects 
of the implementation-described techniques that could impede development and 
inhibit reuse. The fact that our current implementation of IRIS does not provide 
similar support for human-readable versions of object definitions or for generat- 
ing the value-described representations has proven an impediment to both 
development and reuse of object definitions in our large prototyping efforts. It is 
clear, however, that such support could be implemented, in a manner similar to 
facilities provided in our GRAPHITE implementation. Hence we conclude that 
the properties summarized under the heading Development and Reuse Effort 
need not influence a choice between object definition techniques for large pro- 
totype systems. 

As noted above, the ranking on reuse of general-purpose clients presented in 
our detailed evaluation was not accurately reflected in the summary represented 
by Table III. In particular, this was the one property under the Development and 
Reuse Effort heading that favored the value-described techniques over the others. 
This discrepancy disappears when we consider potential extensions and enhanced 
implementations, however. For example, our GRAPHITE implementation is 
augmented with definitional information that a client component may choose to 
interpret, and hence does support reuse of general-purpose utilities that are 
designed to base their actions on such a description. Similarly, a specification- 
described object definition could certainly be extended to provide functions that 
returned definitional information in a form that a client could interpret. In other 
words, it is entirely possible to simulate this feature of a value-described object 
definition in any of the other object definition techniques. Hence this property, 
like the others collected under the heading Development and Reuse Effort, need 
not influence a choice between object definition techniques for large prototype 
systems. 

The other area in which extensions and enhanced implementations can have 
an effect is turnaround time. Changes to code, or to the definitions of immutable 
data structures that are interpreted by the code implementing an object definition, 
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will necessarily induce some type-rechecking and code-regeneration delays that 
simply modifying a mutable data structure will not. Hence, the value-described 
techniques retain the top ranking for how easily a change can be made, how 
quickly it can take effect and how little code regeneration it causes. Enhanced 
implementations of the specification-described techniques, however, can make 
their performance in these areas essentially as good as that of the implementa- 
tion-described techniques, tying them for second place. 

In particular, the main reason that the specification-described techniques rank 
lower in turnaround time than the implementation-described techniques is that 
they are not as good at limiting the impact of change. This can be overcome 
through “smarter” compilation tools that only recheck type consistency and 
regenerate code for those clients actually affected by a modification to an object 
definition rather than, as is currently standard, all clients potentially affected. 
Fundamentally, this requires that the compilation tools have access to more 
detailed information about how objects and their clients interact. In keeping with 
our terminology from Section 4.3, we refer to such information as interface control 
information. Given that compilation tools have available and can exploit more 
detailed interface control information, developers of large prototypes can limit 
the impact of change by restricting the set of clients affected by a change to only 
those that are actually interested in that change. 

We distinguish two different approaches to providing the more detailed inter- 
face control information. One is the explicit approach, represented by our PIC 
language constructs and tools or by Inscape [lo]. The other is the implicit 
approach, as employed, for example, by Tichy in his work on “smart recompila- 
tion” [16]. As shown in Section 4.3, the explicit approach allows the developer to 
indicate intended interactions among the components of a prototype. This 
information can then be analyzed (e.g., by the PIC analysis tools) for such 
properties as consistency, and can also be used by an appropriately “smart” 
compiler to restrict rechecking of type consistency and regeneration of code 
during a recompilation. The implicit approach is based on a very detailed cross- 
reference analysis that determines such things as which aspects of an object’s 
definition are being referenced and how, in addition to determining what system 
components are making those references. The results of this analysis can then 
be used, just as the explicit information could, by an appropriately “smart” 
compiler to restrict rechecking of type consistency and regeneration of code 
during a recompilation. While we favor the greater control over impact of change, 
and added error detection opportunities, offered by the explicit approach, ob- 
viously both provide the same substantial improvement in turnaround time. 

It must be noted, however, that while these enhanced implementations of the 
specification-described techniques can equal the implementation-described tech- 
niques at limiting the impact of change, they will still lag slightly in terms of 
how quickly a change can take effect. This is because they will still involve more 
compile-time overhead, due in part to the more extensive type checking made 
possible by their information-rich interfaces and in part to the analysis involved 
in creating the interface control information. Of course, the compile-time over- 
head is still very much less than would accrue in the absence of that information, 
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and should be only marginally more than the implementation-described tech- 
niques will require. 

The differences in the row labeled Consistency Management seem to be 
inherent properties of the techniques and hence are not susceptible to modifica- 
tion through extensions or enhanced implementations. Dynamic consistency 
checking is necessitated by both the implementation-described and the value- 
described techniques. As a result, both must detect consistency errors at run time 
and hence cannot equal the early detection of the specification-described tech- 
niques. The value-described techniques must ultimately depend on decentralized 
consistency checking, performed by the clients themselves, and must also cope 
with the possibility of object definitions changing during prototype execution. 
Both of these factors make consistency checking more difficult and less reliable. 

6. SUMMARY AND CONCLUSIONS 

In this paper, we have discussed some distinguishing features of large prototype 
software systems, identified some requirements for object definition techniques 
for such prototypes, and characterized and compared a range of potentially 
suitable techniques. We have outlined our implementations of and our experi- 
ences with three such techniques to illustrate the range of possibilities and to 
support our evaluation. 

Our comparative evaluation does not suggest that any of the techniques we 
have considered is clearly preferable to any other. A choice among them must 
depend upon the relative importance assigned to the various properties against 
which we compared them (and possibly some others that we did not include but 
are of special importance for some specific prototyping application). For example, 
those who consider turnaround time to be of overriding importance might find 
the value-described techniques irresistible. 

For our particular prototyping applications, we find the level of consistency 
checking available with the value-described techniques to be unacceptable. On 
the other hand, we consider the level of consistency checking available with the 
implementation-described techniques to be a reasonable tradeoff for an improve- 
ment in turnaround time. Finally, we do not have available the enhanced 
implementation necessary to achieve a comparable turnaround time for specifi- 
cation-described techniques (e.g., a “smart” Ada compiler that could exploit our 
PIG/Ada interface control information). Therefore, we are currently relying 
primarily on an implementation-described technique, delivered through an en- 
hanced implementation that provides good support for development and reuse, 
namely GRAPHITE. Clearly, however, the availability of a different set of options 
(e.g., a sufficiently “smart” Ada compiler) could lead us to a different choice. 

Many languages and tools have been implemented and used to support proto- 
typing. Examples include such standards as LISP, Smalltalk, PROLOG, and 
YACC, as well as more recent efforts such as the Cornell Synthesizer Gene- 
rator [ 111, the SARA Interface Specification System [19], DOSE [6], and others. 
Many of these have included one or more object definition techniques. For 
instance, the structure editor generator DOSE essentially uses a value-described 
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technique, for representing abstract syntax trees, as a means to support its in- 
terpretive/interactive style of editor development. Our goal in this paper has 
not been to present or argue for specific implementations of techniques. Rather, 
it has been to offer a basis on which such techniques can be compared and 
evaluated. We hope that this will provide a foundation for improved understand- 
ing and more informed choices among both current and future techniques 
considered for inclusion in languages or tools intended to support prototyping. 

Naturally, there are other dimensions to prototyping languages and tools 
besides their object definition techniques. An example is Notkin and Griswold’s 
work on a software extension mechanism [9]. The thrust of their research is to 
support the incremental addition of functionality to programs written in a 
compiled language, thus attaining some of the benefits of interpreted languages 
with much less performance overhead. Their mechanism can be viewed as an 
approach to limiting the impact of adding procedures to a prototype system, 
where our work has focused on limiting the impact of change to objects in 
prototype systems. The two are thus complementary components of an emerging 
trend toward support of large-scale prototyping activities. 
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