
Rendering Hierarchical Data

Jarke J. van Wijk, Frank van Ham, and
Huub van de Wetering

Why is my hard disk full?
A question no doubt familiar to many readers, and one that has inspired our research
for several years. Our goal is to provide more insight into large, hierarchical data sets,
commonly known as trees. Hierarchical data sets can be found everywhere. A large
number of items, such as files, products, employees, and stocks, can be handled and
managed much more efficiently when they are grouped into larger entities. Recursive
application of this approach results in a tree structure. A hierarchical file system is a
prime example: The user can organize his disk, and only has to deal with a limited set
of files while fulfilling a task.

But the PC disk of an average user often contains dozens of gigabytes of data, dis-
tributed over hundreds of thousands of files. In this case it becomes difficult to main-
tain an overview, and to determine what is cluttering the disk. Often no single, simple
answer exists. Perhaps another user of the PC has installed some large programs, or
has failed to cleanup after finishing a task in his or her relief at meeting a deadline.
Perhaps multiple copies of the same multimedia file are stored on the disk. How can
we find large files and directories and identify patterns and structures easily in such
large hierarchical data structures? Automatic methods, such as searching for the
largest files, fall short, and standard file browsers, using indented lists, have not been
developed with this problem in mind.

We believe the best way to answer our question is to exploit the unique capabil-
ities of the human visual system, tuned and optimized in the course of millions of
years of evolution to extract information from images [9]. In other words, let us try
to make synthetic images, using a wide variety of visual cues to transfer information
as efficiently and effectively as possible.

Tree Visualization
We are obviously not the first to try to visualize trees. The graphical presentation of
tree structures has long been studied in the graph drawing community [7]. A stan-

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9ve 257

Jarke J. van Wijk (vanwijk@win.tue.nl), full professor, Technische Universiteit Eindhoven, the Netherlands.
Frank van Ham (fvham@win.tue.nl), PhD student, Technische Universiteit Eindhoven, the Netherlands.
Huub van de Wetering (wstahw@win.tue.nl), assistant professor, Technische Universiteit Eindhoven, the
Netherlands.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

© 2003 ACM

dard and widespread representation is the node-link diagram (see Figure 1). Here,
each node in the tree is mapped to an icon, typically a circle or square; each edge is
mapped to a line or an arrow. A standard arrangement is to put the root of the tree
at the top, and to draw the nodes in successive rows, such that each row corresponds
to a layer in the tree. A variation is the use of a radial mapping, where the root node
is placed in the center and nodes are placed on concentric circles. These methods
work well for smaller trees, say up to a hundred nodes, but result in too much clut-
ter in larger trees.

Tree visualization has also been intensively studied within the information visu-
alization community. Whereas graph drawing typically aims at producing static,
black-and-white diagrams, in information visualization more means are applied to
enable a user to gain insight into abstract data. The use of color, multiple views, three-
dimensional representations, and especially interaction enable a user to navigate
through data and to understand it more efficiently. A well-known tree visualization is
the cone tree [5]: a three-dimensional node-link diagram, with many options for
interaction. But cone trees seem to inherit a problem of standard node-link diagrams:
they fall short when it comes to large trees. Treemaps [6] were invented by Shneider-
man to address this particular problem. A treemap is a space-filling display of hierar-
chical data, where the size of elements is mapped to the area of rectangles. Treemaps
can be very effective, but can also lead to abstract images in which it is difficult to
ascertain the structure of the tree.

How can we develop more effective representations of huge hierarchical data
structures? An interesting aspect of information visualization is its interdisciplinary
nature. Our question can be answered from viewpoints including human perception,
cognitive psychology, algorithms, and graphic design. We use computer graphics as
our main inspiration. That computer graphics plays a role in the complexities of visu-
alization may seem trivial, but if we examine many of the current results in informa-
tion visualization, we often find the graphical palette used is poor, often limited to
uniformly shaded 2D geometric shapes. As a result, the images are often almost as
abstract as the corresponding data. Our perceptual system is capable of processing
many more visual cues, such as texture, smooth shading, and depth, so we can expect
a higher information throughput if these graphic means are used to encode the data.
The computer graphics community has devoted much effort to the rendering of
highly realistic images by accurately modeling geometry and illumination. Can we

258 September 2003/Vol. 46, No. 9ve COMMUNICATIONS OF THE ACM

E1

F2

C3

J1

H4

L1

K1

M1 N1

A15

B3 C3 D9

E1 F2 G2 H4 I3

J1 K1 L1 M1 N1

Figure 1. A node-link diagram (left) and the corresponding treemap (right) Figure 1. A node-link diagram (left) and the corresponding treemap (right).

use this knowledge to produce more effective visualizations? Note that we do not con-
sider realism as an aim in itself, but just as a means to get more effective visualizations
by triggering intrinsic human capabilities.

We present three methods to visualize trees that illustrate our approach. Cushion
treemaps are a variation of standard treemaps, where cushions are added to visualize
the structure. Beam trees are another variation on treemaps, where a stack of cylin-
drical beams depicts the structure. Finally, we consider the use of botanical trees as a
metaphor, showing that, when done carefully, this technique can lead to useful and
intriguing results.

Cushion treemaps. Each rectangle in a treemap [6], a compact 2D representation
of a tree structure, represents a node of a tree, where the area of the rectangle is pro-
portional to an attribute of the node, such as file size. As an example, Figure 1 illus-
trates a node-link diagram and the corresponding treemap. Each node has a label Xn,
where X is the name and n the size. The size of a non-leaf node is equal to the sum
of the sizes of its children. The treemap is constructed as follows. We start with a
given outer rectangle, which represents the root A of the tree. Next, we subdivide the
rectangle from left to right into three smaller ones, where each subrectangle represents
one of the children B, C, and D. The area allocated to them is proportional to their
size. In the next rounds, we repeat this step recursively. Each rectangle that does not
correspond to a leaf is subdivided, where the direction of subdivision alternates
between horizontal and vertical. As a result, each inner rectangle represents a leaf, and
the structure of the tree can be traced back from the diagram.

Treemaps have been used for many different types of hierarchical data, varying
from directory structures via product catalogs to Usenet groups. Many different
implementations and applications have been realized; for an up-to-date overview see
[7]. Martin Wattenberg has developed a most impressive application of treemaps. His
Map of the Market [10] visualizes the market-share and change of a large number of
stocks, hierarchically organized into market segments. Nevertheless, for large, deep
trees the structure is hard to discern. Another bad case is a balanced tree with leaves
of equal size: Here the treemap degenerates into a regular grid.

Several means can be used to emphasize the structure, such as color, line width,
and the nesting of rectangles. However, these do not provide a natural cue, consume
space, and lead to maze-like diagrams. We considered the use of shaded geometry as
an alternative, which has led to cushion treemaps [11]. A hierarchy of stacked cushions
emphasizes the hierarchical structure of the data. The algorithm is in the spirit of the
original treemap: straightforward. During the subdivision of each rectangle at every
level a bump is added to each new rectangle, with the main direction of the bump
being perpendicular to the direction of subdivision. As a result, each rectangle is pro-
vided with a cushion. Deep valleys between cushions indicate major subdivisions,
whereas shallow valleys separate siblings.

We have used cushion treemaps extensively for the visualization of directory
structures. Examples of both standard and cushion treemaps are shown in Figure 2.
Color was used to indicate file type. Our running example, shown in Figures 2 to 4
is of a PC disk running MS Windows 98, which contained about 32,000 files in
1,800 folders. The main columns from left to right denote the folders Windows and
Program Files, followed by a series of smaller folders. The upper half of the Windows
folder is the Windows\Desktop folder. This folder contains a large number of images

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9ve 259

(red) in separate folders (actually they are separate frames of several animations), as
well as some large video-files (green) and a large archive-file (purple). The Win-
dows\System folder contains a large number of libraries (yellow), the temporary Inter-
net cache contains a large number of small files, including many images. In the lower
left corner we see the file Win386.swp (grey). Documents and help files are shown in
blue. Comparison of the standard and the cushion treemap version reveals that in the
latter the hierarchical structure is much easier to detect.

The method has been embedded in a freeware utility, which we dubbed
SequoiaView. Many options are provided for selection, coloring, and viewing. Most
important is the added interaction: The user can easily find out which file corre-
sponds to which rectangle, navigate through the directory structure, and obtain addi-
tional information. This utility has now been downloaded more than 200,000 times
from www.win.tue.nl/sequoiaview, and many users have reported that it has been a
great help in managing their disks.

Beamtrees. In this section and the next we present two more experimental
approaches to visualize hierarchical data. One problem of standard treemaps is that
the tree structure is not shown explicitly. For instance, non-leaf nodes cannot be
pointed at. How can we visualize the non-leaf nodes? One answer is to use nested rec-
tangles [6], but we found an alternative, which we called beamtrees [1].

The basic strategy is the same as that of a standard treemap: the initial rectangle
is recursively sliced and diced, but instead of using all the space, we shrink each rec-
tangle perpendicular to the direction of subdivision. Leaf nodes are gathered on one
end of the rectangle, and are shown by subdividing this end. The result of this algo-
rithm is an abstract image. The top left image of Figure 3 shows the result for the
same abstract tree as in Figure 1, and we see that for instance the root A (with leaf C
directly in it) visually falls apart into separate shapes.

Again, we can improve on this by using shaded geometry; here we model the tree
as a stack of tubes, or circular beams. As a result, large rectangles overlapped by
smaller ones are easier to discern, while the spatial ordering reflects the hierarchical
order. The directory shown is the same as in Figure 2, and the same colors were used.

As a result, both leaves and most of the non-leaf nodes are displayed and can be
pointed at. Also the size attribute is visualized properly: In the front view all areas are
proportional to size. The user can select by which factor the beams are shrunk, and
thereby make a trade-off as to how much area is used for leaves with respect to non-
leaf nodes. The price to be paid is a less efficient use of screen-space in comparison to

260 September 2003/Vol. 46, No. 9ve COMMUNICATIONS OF THE ACM

Figure 2. From left to right, standard and cushion treemap of directory structure.

standard treemaps. User tests revealed that size estimation was slightly slower and
harder for beamtrees than for cushion treemaps, but that tasks related to the levels of
leaves (such as establishing the level) were much easier to carry out. Furthermore, the
users had a strong subjective preference for 3D beamtrees.

Botanical Trees. The preceding two methods produce abstract images. Can we
generate natural, 3D models of hierarchical data? The term tree is standard for hier-
archical data. When we observe botanical trees, we find that the leaves, branches, and
their arrangement can often easily be extracted, in spite of their very large numbers.
What would happen if we try to visualize hierarchical data as botanical trees?

Together with our student Ernst Kleiberg, we have answered this question by tak-
ing advantage of research in the graphics community in this field. Many methods
have been developed to generate realistic-looking trees. Of these, we found the strand
model to be the most suitable for our needs. The origin of the strand model goes back
as far as Leonardo da Vinci; we based our method [3] on the strand model of Holton
[2]. The model is based on the vascular structure of organic objects. Each leaf is con-
nected to a strand, which can be traced back to the root. As a consequence, the cross
sectional area of each branch corresponds to the number of leaves that are attached
(directly or indirectly) to it. In Holton’s model, artificial trees are generated by recur-
sively splitting branches, where the number of strands is more or less randomly dis-
tributed over the subbranches. The angles between the subbranches and their
proportions are derived from the number of strands in each.

In our case, the structure of the hierarchical data is given, as well as the size attrib-
ute of the elements. As illustrated in Figure 4, we map non-leaf nodes to branches, to

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9ve 261

H4
E1

F2

C3 J1

L1

K1

M1 N1

H4
E1

F2

C3 J1

L1

K1

M1 N1

A15 A15

D9 D9

H4
E1

F2

C3 J1

L1

K1

M1 N1

H4
E1

F2

C3 J1

L1

K1

M1 N1

J1

L1

K1

M1 N1

H4
E1

F2

C3 J1

L1

K1

M1 N1

H4
E1

F2

C3 J1

L1

K1

M1 N1

J1

L1

K1

M1 N1

A15 A15

D9 D9

Figure 3. Beamtrees: Construction, tubular version, front and oblique view on directory

structure

Figure 3. Beamtrees: construction, tubular version, front and oblique view of directory structure.

which the children are attached as subbranches. The area of the cross section of the
main branch is decreased for each subbranch spawned off. We found that the map-
ping of leaf nodes to botanical leaves with varying sizes gives cluttered and confusing
images. A much better solution is to map sets of sibling nodes to fruit. We depict such
a set as a sphere, where the area of the sphere is proportional to the sum of the sizes
of the leaves. Each individual leaf is mapped to a cone, with size and color denoting
file size and file type. A remaining problem is how to distribute the cones over the
sphere in a balanced way. Again, an answer could be found in the graphics literature
on botanical modeling. Lintermann and Deussen [4] have developed the concept of
phi-balls to generate, among others, artificial sunflowers, pineapples, and cacti. We
found that their compact and surprisingly effective algorithm could be used also to
generate icons for the display of sets of elements with varying size.

This method produces intriguing models. Figure 4 shows again the same direc-
tory as the previous figures. A picture does not show the full strength: such complex
three-dimensional objects have to be viewed in a setting where the user can inspect
the object interactively. The reactions of users on this method are mixed so far. All
agree that the images are nice, that large objects (spheres and branches) can easily be
detected, and that the phi-balls provide a readable cue on the contents of a directory.
However, for practical application most preferred treemaps. For us, the most impor-
tant result was the discovery of yet another rich source of methods and techniques to
translate abstract data into geometry. The phi-ball is a great example in this respect:
a simple and elegant method to visualize a list of elements via a compact 3D icon.

Conclusion
We have presented three alternative ways to visualize hierarchical data. In all cases we
used geometry and shading, aiming at visual representations that convey more
insight. Have we succeeded? Only for the beamtrees we have undertaken a controlled
experiment, in order to compare its usability with treemaps. However, the release of
SequoiaView can also be considered as an experiment. We got many positive reac-
tions, and from these we conclude that our cushion treemap method is effective in

262 September 2003/Vol. 46, No. 9ve COMMUNICATIONS OF THE ACM

F

M

N
L

J
K

E

C

H

A

D

B

I

G

F

M

N
L

J
K

E

C

H

A

D

B

I

G

Figure 4. Botanically inspired visualization: Construction and application Figure 4. Botanically inspired visualization: construction and application.

the real world to manage large hard disks. A strong point is the scalibility of the
method: users reported that they scanned and analyzed 2.5 TB file systems effectively.
Our other methods have not yet escaped from the lab yet, but we intend to develop
downloadable versions, since we found the feedback from the real-world user com-
munity to be highly interesting and stimulating.

Encouraged by the results, we believe that the use of 3D computer graphics meth-
ods for information visualization can lead to much more insight, and we will pursue
this path further. For many problems in information visualization, only limited solu-
tions are available, which often do not scale up well for large quantities of data. Two
challenging and important problems are the visualization of multivariate data and the
visualization of networks. Our future research will aim at the development of new
methods for these, and we hope that the use of methods from computer graphics will
again lead to new, intriguing, and insightful visualizations.

References
1. Ham, F.J.J. van, Wijk, J.J. van. Beamtrees: Compact Visualization of Large Hierarchies. In
Wong, P.C. and Andrews, K. (eds.) In Proceedings 2002 IEEE Symposium on Information Visu-
alization (2002), 93–100.

2. Holton, M. Strands, gravity and botanical tree imagery. Computer Graphics Forum 13, 1
(March 1994), 57–67.

3. Kleiberg, E., Wetering, H. van de, and Wijk, J.J. van. Botanical visualization of huge hier-
archies. In Andrews, K., Roth, S.F., and Wong, P.C. (eds.) In Proceedings 2001 IEEE Sym-
posium on Information Visualization (2001), 87–94.

4. Lintermann, B. and Deussen, O. Interactive modeling of plants. IEEE Computer Graphics
and Applications 19, 1 (Jan./Feb. 1999), 56–65.

5. Robertson, G.G., Mackinlay, J.D., and Card, S.K. Cone trees: animated 3D visualizations
of hierarchical information. In Proceedings of the Conference on Human Factors in Computing
Systems (1991), 189–194.

6. Shneiderman, B. Tree visualization with tree-maps: A 2-D space-filling approach. ACM
Transactions on Graphics 11, 2 (Jan. 1992), 92–99.

7. Shneiderman, B. (2002). Treemaps for space-constrained visualization of hierarchies;
www.cs.umd.edu/hcil/treemaps-history.

8. Tollis, I.G., Di Battista, G., Eades, P., and Tamassia, R. Graph Drawing: Algorithms For the
Visualization of Graphs. Prentice Hall, 1999.

9. Ware, C. Information Visualization: Perception for Design. Morgan-Kaufmann, 2000.

10. Wattenberg, M. Map of the Market (1998). http://www.smartmoney.com/marketmap.

11. Wijk, J.J. van, and Wetering, H. van de. Cushion Treemaps: visualization of hierarchical
information. Wills, G. and Keim. D. (eds.). In Proceedings 1999 IEEE Symposium on Infor-
mation Visualization (1999), 73–78.

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9ve 263

