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Introduction

Distributed interactive games offer players a three dimensional virtual world 
experience. Within this virtual world, players interact with each other and with their 
environment in real-time. They experience the same events, but from different 
viewpoints.

As interactive games have evolved, they have driven the technologies underlying 
them. The distinguishing feature of any distributed interactive game is the network: 
the medium by which information is exchanged and shared between participants. The 
network impacts not only the design and development of distributed interactive games, 
but also their potential entertainment value.

In this article, four of the fundamental networking issues and their effect on the design 
and operation of distributed interactive games will be discussed. In addition, a 
description of the different communication architectures used in distributed interactive 
games will be provided. Finally, as an illustrative example, these issues will be related 



to Unreal Tournament, a popular distributed interactive game.

The Dawn Of A New Age

In the not too distant past, distributed real-time virtual environments were science 
fiction; novels envisioned a world without rules or boundaries, a so-called 'cyberspace', 
a place where the only limitations were that of the human mind [6]. A significant 

milestone in the history of distributed virtual environments was the Multi User Dungeon 
(MUD), completed by Rob Trubshaw and Richard Bartle at Essex University, in 1978 
[4]. MUD allowed people all over the world to interact with each other, share 

environments, and implement their own environments. More recently, technological 
advances in processing power and graphics capabilities, coupled with the widespread 
availability of the Internet, has led to the diffusion of distributed virtual environments 
within the public domain.

Networked, multi-player games drew mainstream attention with the release of Doom in 
1993 [8][10]. Doom enabled players to compete with each other in both four-player 

local area network (LAN) games and direct head-to-head modem games. In 1996, the 
developers of Doom released Quake [8][10], another milestone in the history of 

networked multi-player games. Quake was a pioneer of the client-server architecture 
widely used in modern online games; it introduced players to a larger type of 
interactive environment than previously available. The popularity networked multi-
player games were receiving prompted the development of more complex distributed 
games [5][9]. There are now numerous online, dedicated gaming services using high-

bandwidth connections that provide server hosting for the most popular games [5].

In this article, we will investigate the networking features that must be considered by 
distributed games developers. We will start by briefly examining the potential network 
architectures and then investigate four issues that affect the maintenance of game-
state fidelity across all participants in a distributed application. We will then investigate 
these issues as they apply to one of the most popular distributed games, Unreal 
Tournament (UT) [3].

Speak Friend And Enter

Game-state fidelity is a measure of the consistency of the game-state among all 
participants within the game. In this context, the game-state refers to a description of 
the shared environment and all dynamic objects within this environment at an instant 



of time. Distributed interactive games require as much information as possible to be 
exchanged and processed in real-time in order to maintain a reasonably consistent 
game-state. One of the issues for game developers to consider is how they want this 
information to be communicated between participants in the game. There are two main 
communication architectures in use today: peer-to-peer architectures (Figure 1) and 

client-server architectures (Figure 2). 

 
Figure 1: Peer-to-peer Networking Architecture. 

With peer-to-peer architectures, communication is sent directly between participants in 
the game. Players wishing to update other players about their activity, must send a 
message to all of the other players so that they can then update their game-state 
information, and hence maintain global game-state fidelity.



 
Figure 2: Client-Server Networking Architecture.

With client-server architectures, one machine is designated as the server and is 
responsible for maintaining the overall game-state and making the game-play 
decisions. In this respect, the server determines the game-state. The rest of the 
machines are designated as clients, and they are responsible for rendering a view of 
the shared virtual world to players and for updating the server with details of any 
actions that the players are performing. If a player wishes to update other players 
about his or her activity, the player sends a message to the server advising of the 
changes, and then the server distributes the information to all of the other clients. 
Communication is never sent directly between clients, it always passes through the 
server.

Peer-to-peer architectures offer theoretically better scalability [12], but in general, 

overall game-state fidelity and player interactions are harder to keep consistent 
because no one player has complete authority over the game-state. In contrast, client-
server architectures offer less scalability, but they implicitly provide the ability to 
maintain accurate game-state fidelity and manage player interactions.

Regardless of the architecture chosen, the network itself raises a number of technical 
issues that are critical to distributed applications. We will now focus our interest on 
these.

The Four Horsemen Of The Apocalypse



The Internet poses a wealth of challenges for games developers. In particular, four 
issues affect data transfer over any network, regardless of the network architecture 
[15].

Network Latency

Network latency is a measure of the time it takes for a packet of information to 
travel from one computer to another across a network.

Network latency arises for a number of reasons. First, a lower limit is imposed by the 
finite speed of light, which results in data traveling at about two thirds the speed of 
light in a vacuum through a fiber optic cable [2]. Second, the endpoint computers 

introduce delays when they process the data [1]. Finally, the network introduces 

delays as the data propagates through network routers before reaching its destination.

Network latency represents one of the greatest challenges to the development of 
distributed interactive games. As the network latency increases, maintaining game-
state fidelity between the game participants becomes more difficult, with each player's 
view of the shared virtual world becoming increasingly different depending on how up-
to-date their information is. Network latency means that game developers must 
assume that all information received by participants is already out-of-date when it 
arrives.

Network Bandwidth

Network bandwidth is the rate at which a network can deliver data from a source 
point to a destination point.

The type of channel used to transport data determines the available bandwidth, and it 
is also limited by the hardware used to transmit the data [16].

The available bandwidth limits the amount of information that can be shared and 
exchanged between participants per unit time. If a player is connected through a low 
bandwidth line, which is often the case for a home connection, they will not be able to 
receive complete information relating to every other participant in the virtual world. As 
a result, it is up to the game developers to allocate the available bandwidth to 
networked players. Given these bandwidth limitations, it is the main goal of a 
distributed interactive game to enable the communication of sufficient game-state 



information to enable players to determine events within a reasonable level of accuracy.

Network Reliability

Network reliability is a measure of how much data is lost by the network during the 
journey from source to destination host.

Network data loss occurs for two main reasons [15]. First, data can be lost as it travels 

along the network transmission channels. This is the most obvious but also least 
frequent cause of data loss. The most frequent cause of data loss is due to the network 
routers that transfer the data. If a network router receives too much data for it to 
handle, it will discard all incoming packets that arrive while the queue is full. This 
policy is known as drop-tail (DT) [13].

In distributed games development, network reliability does not pose as much of a 
problem as one might first assume, provided that the rate of data loss throughout the 
game remains low. The reason for this is because dynamically changing information 
within the game is usually being updated at a very fast rate among participants, so any 
data that is lost is usually replaced quite quickly.

Network Protocol

A network protocol describes the set of 'rules' that two applications use to 
communicate with each other.

A network protocol consists of three components. First, the packet format 
description allows the endpoints of the communication channel to identify the various 
individual parts of data that are contained within the information stream. Second, the 
packet semantics description allows the communication endpoints to understand 
the various individual parts of data. Finally, the error-handling description governs 
how the communication endpoints should respond to various error scenarios that may 
occur during data transmission.

The basic protocol for Internet transmission is the Internet Protocol (IP) [7]. However, 

applications almost never use IP directly. Instead, they use one of the higher-layer 
transport protocols that are built on top of IP. The two most common transport 
protocols used in distributed interactive games are the Transmission Control Protocol 
(TCP) and User Datagram Protocol (UDP) [16].



TCP offers reliable, connection-oriented, stream-based transport of data. It guarantees 
the delivery of all data in the correct order by using a system of positive 
acknowledgement with re-transmission. It can only send data between two directly 
communicating hosts.

In contrast, UDP offers unreliable, connectionless, packet-based transport of data. Data 
can be sent from a single host to any number of different hosts without having to set 
up individual connections, by using either IP broadcasting or multicasting.

Distributed interactive games are real-time systems, and it is this need for real-time 
information exchange and processing that usually influences the choice of 
communication protocol. The reliability and ordering guarantees provided by TCP 
introduce extra overhead. These guarantees are not necessarily required as it is often 
more important for data to be delivered quickly than it is for it to be delivered reliably. 
With UDP, distributed interactive games can send out data as soon as it is generated 
without having to wait to make sure the data is ordered and without having to 
subsequently wait for an acknowledgement to ensure that the data was delivered. In 
addition, the ability to broadcast and/or multicast UDP data packets to multiple sources 
greatly aids the ability for information to be distributed quickly and efficiently.

Ultimately, the choice of protocol depends on the specific requirements of the 
distributed interactive game. Recently, developers have been using multiple protocols 
together to provide different levels of service for data transport, with the choice of 
protocol being determined by the measure of how crucial the data is in maintaining 
overall game-state fidelity.

So, Just Who Is In Charge?

Distributed interactive games target real-time interactivity between participants and 
between participants and their environment. This interactivity highlights an interesting 
problem: who determines what events happen, how the events occur, and what the 
final outcomes of those events are? This is directly related to the problem of 
maintaining game-state fidelity between participants. Due to out-of-date or incorrect 
game-state information, it is entirely possible that one or more players will incorrectly 
conclude that an interaction of some sort took place, when in fact it may not have. This 
can lead to participants disagreeing about whether an interaction actually occurred. 
Furthermore, even if all the participants agree that an interaction did take place, they 



may not all agree about the specific details of the interaction.

The distributed interactive game must manage these interactions and provide accurate 
detection and resolution of collisions among participants. Examples of such collisions 
may include direct player-to-player contact, player-to-environment contact, or perhaps 
weapon fire/damage. Usually a client-server architecture is adopted, so that the server 
is in charge, and it alone determines the true game state. In classical peer-to-peer 
architectures, no one client can be considered in charge as each client communicates 
with all other clients, so game-states are determined individually.

Let us now turn our attention to Unreal Tournament (UT) and discover how they have 
dealt with the four networking issues we have described previously.

Totally Unreal

Unreal Tournament's design architecture essentially consists of two parts [18]. First, 

there is the underlying game engine itself. This engine provides most of the game 
mechanics and the graphics capabilities. It also provides the generalized network code. 
Secondly, in Unreal Tournament "the 'game state' is self-described by an extensible, 
object-oriented scripting language which fully decouples the game logic from the 
network code. The network code is generalized in such a way that it can coordinate any 
game which can be described by the language" [18]. This scripting language is known 

as UnrealScript, and it provides developers with a built-in, fully object-oriented 
language with which to program events into the game. UnrealScript is based on a C++/
Java variant and contains similarities to both languages. The power and usefulness of 
UnrealScript lies in its implicit support for game-specific paradigms, such as concepts 
of time and state within the game environment. Ninety percent of the code that 
governs game-state dynamics in UT was written in UnrealScript [14].

UT's Communication Architecture

UT uses a permissible-client-server architecture to maintain game-state fidelity. This is 
a standard client-server architecture with one notable exception: whenever a player 
wishes to perform an action, he/she must first ask permission from the server. Clients 
cannot perform an action, such as firing a weapon, without getting permission from the 
server to do so (the one exception to this is movement, which is predicted by each 
client - this is detailed further below). This ensures that no disagreements can arise 
between clients as to whether an interaction takes place or not. All events are, 



ultimately, determined by the server.

The server is completely authoritative over the flow of play, and in addition gameplay 
logic (code that evolves the game-state) should only be carried out on the server. This 
means that the server's game-state can always be regarded as the only true game-
state, and the game-states that exist on client machines are approximations to the 
server's state.

The main advantage of UT's permissible client-server architecture is that it provides a 
means of minimizing the effect of game-state inconsistency among clients. This is 
because the server is kept aware of all activities being performed.

The main disadvantage of this architecture is that it introduces extra lag, or delay, in 
the response time of the game to various client events. For instance, if a player fires a 
weapon, there will be a noticeable delay between when the player presses the fire 
button and when the weapon actually fires onscreen. This is because the client 
machine is waiting for permission from the server before it can fire the weapon. This 
lag is compounded by the fact that if the player is playing over a connection that has a 
high latency time the noticeable delay between firing will be increased.

UT's Network Protocols

UT employs a network driver that is layered on top of the UDP protocol. This network 
driver provides some of the services of TCP by handling point-to-point connections and 
positive acknowledgements. Hence it replicates at the application layer TCP's 
mechanisms when reliability is requested, but always sends UDP packets over the 
network. By utilizing both types of transport protocol, UT gets the best of both worlds. 
It can send and receive unreliable, packet-based data as well as being able to set up 
TCP connections and send reliable, stream based data. Data that is critical to 
maintaining game-state fidelity between participants in the game is sent reliably, to 
ensure that it is delivered to the destination. Data that is not so critical, and hence can 
reasonably afford to be lost, is sent unreliably, with no guarantees of receipt at the 
intended destination.

UT and Network Latency

If UT used the permissible client-server architecture for every action that the player 
can take, then player movement would be very slow and sluggish. For instance, if the 



player was playing on a network connection that had a 200ms round trip time between 
itself and the server (100ms each way), then after the user pressed the movement key 
they would not see themselves move onscreen until 200ms later. This would be 
extremely frustrating and would reduce the enjoyment of the experience for the 
participant.

To eliminate the above client-movement lag caused by network latency, UT uses a 
form of client prediction or dead reckoning [17] that can best be described as a "lock-

step predictor/corrector algorithm " [18] (this high-level feature is actually 

implemented in the UnrealScript language rather then the engine's generalized 
network code). When a player performs a movement and requests permission from the 
server to do so, the client machine actually predicts where the player will move to 
while it is waiting for permission from the server to move. As a result, both the client 
and the server execute the same move for the player. However, the server has the last 
say, so that when it is finished executing the requested movement, it sends the result 
back to the client. In the meantime the player is viewing the client prediction on 
screen. If this position differs from the server's player position, the client must correct 
the player's position. It does so by using convergence algorithms to smoothly converge 
to the true game-state position.

At any point in time, the UT client is predicting ahead of what the server has told it, by 
an amount of time equal to half it's round-trip latency value. As a result the local 
player movement doesn't appear to lag. The client movement prediction usually 
mirrors the client movement determined by the server. Only in rare cases (such as 
when a player is getting hit by a weapon or bumping into another player) does the 
player's location need to be corrected by the client.

UT and Network Bandwidth

Bandwidth limitations impose restrictions on the amount of information that can be 
transmitted between the server and the client. In order for UT to allocate bandwidth 
resources efficiently and effectively, it utilizes a load-balancing technique that 
prioritizes actors. Actors are objects capable of interacting with any other objects in the 
game. Players, software opponents (a.k.a. BOTs), and movable environment objects 
are all actors. Each actor is assigned a network priority value, indicating how important 
it is for maintaining game-state fidelity between participants. The available bandwidth 
is then allocated based on the ratio of network priorities. If, for example, an actor has 
a priority value that is twice the priority of another actor, it will get updated twice as 



often. With this system, the most important information, such as player movements 
and weapons fire, will be updated more frequently and given higher bandwidth 
preference than information that is not very important, such as world objects that have 
little or no effect on game-play.

In order to complement the above-mentioned load-balancing technique, UT also 
utilizes a technique known as relevant sets. At any one time, a player will only ever be 
interacting with a small subset of all actors within a game environment. In addition to 
prioritizing each individual game actor based on how important they are to game-play, 
UT also prioritizes actors based on how important they are to individual players. The 
server calculates the set of actors that it deems are relevant to or capable of affecting 
each client and stores them in a relevant set. Using this system, clients will not receive 
redundant information from the server about actors that are of no consequence or 
relevance to it. This is a form of relevance filtering [15].

UT and Network Reliability

As already stated above, UT uses both the UDP transport protocol and a form of the 
TCP transport protocol provided for by it's own network driver. The decision as to which 
game-state information should be sent reliably and which information should be sent 
unreliably is left to the sole discretion of the game developers through the high-level 
UnrealScript scripting language. By providing both types of protocol, UT ensures that 
the influence of network reliability on the game-state fidelity is kept to a minimum. 
Critical information is sent reliably, ensuring that if the information is lost it will be re-
transmitted.

Conclusion

This article has explored some of the more important networking issues that relate to 
the development of distributed interactive games, and it has provided descriptions of 
how they may affect the operation of such games. For the interested reader, an 
additional case study is available detailing the development of a game called X-Wing 
vs. Tie-fighter, and how the designers of that game coped with the networking issues 
described above [11]. Developing distributed real-time games for use over the 

Internet is difficult. Bandwidth, latency and reliability vary tremendously in such a 
heterogeneous network. Game developers have absolutely no direct control over the 
limitations imposed by the Internet. All they can do is react to these limitations and 
work to provide the best software solution possible. It is a testament to their talent, 
creativity, and ingenuity that games such as Unreal Tournament exist.
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