
Distributing Display Lists on a Multicomputer '

David Ellsworth, Howard Good, and Brice Tebb s

Department of Computer Scienc e
University of North Carolina, Chapel Hil l

Abstract

We have developed techniques for distributing a hierarchica l
display list from a PHIGS-like library across a multicomputer .
By storing a portion of the database at each processor, inter -
processor communication is reduced . This reduction promises
traversal of the display list at rates supporting rendering speed s
of one million polygons/second or more, as we hope to achiev e
on our new machine, Pixel-Planes 5 (under construction) . Ou r
distribution techniques support order-dependent primitives
and allow general display list editing .

CR Categories and Subject Descriptors : C . 1 .2 [Processor Archi -
tectures] Multiprocessors–MIMD processors ; C .2 .4 [Computer-Com -
munication Networks] Distributed Systems—Distributed applica-
tions ; I .3 .2 [Computer Graphics] Graphics Systems—Distribute d
Graphics ; I .3 .4 [Computer Graphics] Graphics Utilities—Graphic s
Packages ; P1-IIGS ; I .3 .5 [Computer Graphics] Computational Ge-
ometry and Object Modeling—Hierarchy and geometric transforma -
tions .
Additional Key Words and Phrases : display list, structure net -
work, multicomputer, order dependent primitive .

'This work was supported by the Defense Advanced Research Proj-
ects Agency, DARPA ISTO Order No . 6090, the National Scienc e
Foundation, Grant No . DCI-8601152, and the Office of Nava l
Research, Contract No . N0014-86-K-0680 .

I . Introductio n

Most of the work in parallelizing graphics systems has concentrate d
on the rasterization, or back-end, part of the traditional graphics
pipeline [Fuchs 77, Parke 80] . Considerably less attention has been
given to parallelizing the traversal and transformation, or front-end ,
part of the pipeline . Increasingly sophisticated methods of distribut -
ing front-end calculations over multiple processors will be needed a s
the desired real-time speeds of graphics machines increase from th e
current 100-200 thousand triangles/second to 1 million triangles /
second and beyond .

Current designs for multiprocessor front-ends include vector proces -
sor [Apgar 88], pipeline [Akeley 89], shared memory [Borden 89] ,
and MIMD [Torborg 87] architectures . While these architecture s
achieve high performance, they all have limitations in their ability t o

Permission to copy without fee all or part of this material is granted provide d
that the copies are not made or distributed for direct commercial advantage ,
the ACM copyright notice and the title of the publication and its date appear ,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fe e
and/or specific permission .
© 1990 ACM 089791-351-5/90/0003/0147$1 .50

scale to larger numbers of processors . Vector processors with longe r
vector lengths achieve little speedup on display lists with arbitrar y
sized elements . Pipelined multiprocessor architectures are difficul t
to scale because their performance is limited by the slowest stage o f
the pipeline, and partitioning tasks evenly on pipelines with man y
processors is very difficult .

A more important limitation is that all of these architectures perform
a single-threaded, or serial, traversal of the database . Serial traversa l
at rates high enough to sustain 1 million polygons per second i s
difficult, and would today likely require specialized traversal hard -
ware, limiting possible graphics algorithms [Foley 90] . Storing the
entire database in a single memory subsystem for a serial traversa l
would require extremely high bandwidth from the memory to th e
parallel transformation units . As performance levels increase to 1 0
million polygons per second, we believe serial traversal will n o
longer be practical .

One solution to the scalability problem is to use a distributed -
memory MIMD, or multicomputer, architecture [Athas 88] . Such a
system could perform both traversal and transformation in parallel .
The system will scale well as long as required interprocessor commu -
nication bandwidth is kept at a reasonable level . This solution doe s
not require specialized hardware, as traversal and transformation ca n
be done on the same general-purpose processors .

1,1 Pixel-Planes 5

Pixel-Planes 5, a high performance graphics system being being buil t
at UNC, is a heterogeneous multicomputer [Fuchs 89] . The Pixel -
Planes 5 system consists of a host workstation, nominally 16 Inte l
i860-based Graphics Processors (GPs), nominally 16 SIMD proces -
sor arrays called Renderers, and a frame buffer, all of which are

Figure 1 . Pixel-Planes 5 Block Diagra m

147

http://crossmark.crossref.org/dialog/?doi=10.1145%2F91394.91437&domain=pdf&date_stamp=1990-02-01

mounted on a high bandwidth (640 MByte/sec) ring network (se e
Figure 1) . The host computer provides standard UNIX syste m
services such as file I/O . Each Graphics Processor is a general -
purpose floating-point processor with its own memory . The Render -
ers perform rasterization by using using their 128x 128 array of 1-bi t
processors and a quadratic expression evaluator tree .

Pixel-Planes 5 (Pxpl5) is suited to a wide variety of graphic s
algorithms, including volume rendering and CSG [Fuchs 89] . In thi s
paper, however, we concentrate on Pxpl5 in a traditional display lis t
rendering mode . When running in this mode, the application runs o n
the workstation host. Since the host is a conventional UNIX worksta -
tion, it has significantly less computing power and I/O bandwidt h
than the GPs . For this reason we maintain the database on the GP s
to minimize the amount of data that the host must send to the GP s
every frame .

The basic display list rendering process on Pxpl5 proceeds a s
follows : the GPs traverse the database, transform the polygons int o
screen space, and compute coefficients for a set of linear expression s
that are used to scan-convert each polygon . These linear expression s
are evaluated by the SIMD arrays on the Renderer boards . Th e
Renderer boards then compute the image, each handling differen t
regions of the screen . Finally, the screen sub-images are collected i n
the frame buffer and displayed .

1 .2 PPHIG S

We have implemented a variant of the PHIGS+ standard [van Da m
88] in a graphics library called PPHIGS (Pixel-Planes Hierarchica l
Interactive Graphics System) . Like PHIGS+, the PPHIGS databas e
consists of a network of structures . Each structure contains structure
elements that are eithergraphicsprimitives such as lines and polygons ,
attributes such as colors and matrix operations, or executes (calls) t o
instance other structures . PPHIGS implements a subset of the
PHIGS+ collection of attributes and primitives . A sample PPHIGS
structure network is given in Figure 2 .

PPHIGS, like any hierarchical graphics library, puts several con-
straints on any database distribution algorithm : First, in PPHIGS ,
attributes such as colors or matrix operations can be inherited fro m
parent structures . Second, PPHIGS allows the user to perform
general editing of the structure network . Finally, PPHIGS has som e
graphics primitives (particularly 2-D ones) that must be rendered i n
a particular order.

"bicycle "

execute " wheels "
(etc.)

"wheels "

matrix

"wheel "

Figure 2. Sample PPHIGS structure network .

1 .3 Application Mi x

PPHIGS-based applications can be characterized in two ways : 1)
database organization and 2) editing requirements . The database
organization is the arrangement and number of structures in th e
network . The editing requirements are characterized by the fre-
quency and types of changes that must be done to the structur e
network .

We have analyzed applications that run on our current graphic s
system, Pixel-Planes 4, including molecular graphics, architectural
walkthrough, and head-mounted display research . We have foun d
that the majority of the applications have databases with relativel y
few structures, each structure having a large number of polygons, an d
that the database editing that is done each frame usually consists o f
changing only a few transformation matrices . Nearly all of the
current applications are interactive applications .

We expect that our application mix for Pixel-Planes 5 will includ e
similar applications, as well as new ones made possible by th e
increase in performance . When the number of available polygon s
increases with Pap/5, we expect that the number of structures and
transformations will increase more slowly than the number of poly -
gons . This will further increase the number of polygons per structur e
without significantly increasing the amount of editing that must b e
clone each frame .

The rest of the paper describes techniques we have developed fo r
distributing an application's structure networks evenly on a multi -
computer . The techniques presented have been implemented on the
Pixel-Planes 5 system simulator and have been tested on several
different databases . Although the techniques were developed for
Pixel-Planes 5 and PPHIGS, we expect them to be applicable t o
distributing any type of hierarchical display list on any multicom-
puter .

2 . Display List Distributio n

Given the expected application mix for Pxpl5, a display list distribu -
tion method should have the following goals :

• The processors' loads should be balanced : each processo r
should take the same amount of time to transform its portio n
of the display list .

• As the display list and the viewing position is modified, th e
processors' loads should remain balanced without redistri-
bution of the display list . This allows the time to draw a
frame to be consistent, which is important for interactiv e
applications .

• The amount of duplicated work should be minimized, thu s
allowing the system to be scaled .

To meet these goals, we have investigated several different ap-
proaches . The two most promising approaches, distributing by
structure and distributing by primitive, are discussed below .

2 .1 Distribute by Structur e

One method of distributing the display list is to assign instances o f
structures to processors so that the loads are balanced . If the number
of structure instances is less than the number of GPs, the structure s
can be broken up .

Before traversing a structure, a processor must have that structure' s
inherited attributes . One way of computing this is to maintain a

polygon colo r

polygo n

polygo n

polygo n

polygo n

(etc .)

execute "wheel"

execute " wheel"

148

skeleton on each processor of the network from the local structur e
back to the root of the structur e network . The skeleton contains onl y
the attribute elements of the ancestor structures . The inherited
attributes can be computed by traversing the ancestor structures .
This requires some duplication of computation and additional over -
head to manage the network skeleton when the network is altered .
Another way is to maintain a skeleton of the entire structure networ k
on a single processor (perhaps the host), and then pre-calculate the
inherited attributes, sending those to the appropriate processors . Thi s
would require considerable processing during editing to keep the
inherited attributes on the processors up to date .

A more important problem is that the processor workloads do no t
remain balanced when objects are clipped or are added or subtracte d
from the display list . If the load becomes unbalanced, redistributio n
will be necessary to balance the workloads . This would either hol d
up the transformation process, thereby affecting the frame rate, or i t
would require resources dedicated to balancing the workloads .

2 .2 Distribute by Primitiv e

Using this method, the primitives of each structure are divide d
equally among the processors . This division is done primitive-by-
primitive so that successive primitives (polygons, spheres, etc .) are
generally placed on different processors . Attributes are sent to al l
processors to insure that each processor has the correct attribute
values during traversal . All processors are given structure execut e
primitives so each can t r averse the structure network .

This method does a better job of insuring that the load remains closel y
balanced . When a structure is added or removed from the structur e
network, the loads remain balanced because the individual structure' s
load is balanced among the processors . When part of the structure i s
off screen, the load will remain relatively balanced if the clippe d
primitives have been sent to different processors . This should be th e
case since successive primitives in a structure are often near each
other in space .

Unfortunately, duplicating attributes and s tructure executes on each
processor adds work as compared to a single processor traversal . Fo r
many models this is not a serious problem since there are many mor e
primitives than attributes and many primitives in a structure . A
second problem is that an imbalance may be created if small struc-
tures which aren't perfectly balanced are instanced many times .

For example, consider a cube st r ucture, distributed among 8 proces-
sors, that is instanced 100 times . The the distributed structure on th e
first 6 processors would each contain one face of the cube ; the
structure on the last two processors would be empty . The 10 0
instance calls would go to all the processors . The result is that 6
processors would each traverse 100 cube faces while the last 2
processors execute empty structures .

2 .3 Our Implementatio n

We have chosen to implement a variation of the distribute-by-
primitive method . In our implementation we have chosen to keep a
global copy of the entire database, not just a skeleton, on the host .
This simplifies editing, and makes display list inquiry and dis k
archival faster since no communication with the processors is re-
quired . In the rest of Section 2 we describe what we've done to deal
with the simple distribute-by-primitive method's shortcomings .

2 .3.1 Distributing Attributes

The main problem with the simple distribute-by-primitive approach

[Ton matrix b

polygon 5
processor 3

rrep matrix a

	

polygon 4

l

	

5 4poygon

	

processo r

~--polygon 3

	

replace matrix c

	

rep matrix a
1 rep matrix c

	

~~

	

color C

	

con matrix b

color C

	

It., polygon 6

	

color B
- r

polygon 71..4	 	 polygon 7

	

polygon 4-

Figure 3 . Example of distributing a single structure across fou r
processors .

is that each attribute is duplicated on all the processors . This mean s
that some processor cycles and memory space are wasted on redun -
dant attributes . As systems are scaled up to more processors the
problem worsens, because the number of redundant attributes in -
crease at a one-per-processor rate while the number of primitive s
remains constant . We ameliorate the problem by having the hos t
send each attribute only to those processors on which it is required ,
i .e . only to those processors that have primitives affected by tha t
attribute (see Figure 3) .

In order for the host to know all the current attributes and those tha t
have been sent to each processor, it maintains an attribute state for
the global display list and for the display list on each processor. Eac h
attribute state records, for a given point in the display list, the color s
and tr ansformation matrices that would be active for each type o f
primitive during traversal of the display list at that point .

The host initially reads in each structure from the application an d
distributes it element by clement . As each primitive is added and
assigned to a processor, the attribute state of that processor is checke d
to make sure that it is current, i .e . it matches the global one . If not ,
the missing attributes are sent as well as the primitive . As each
attribute is added, the global attribute state is updated, but th e
attribute is not immediately sent to any processor .

Some attributes, such as concatenate-mode t ransformation matrice s
(which concatenate with rather than replace the current tr ansforma-
tion matrix), cannot be dis tr ibuted in this way because they have a
cumulative effect on the structure . These are distributed to al l
processors as soon as encountered, along with any pending replace -
mode matrices .

While this is fairly simple to implement for initially distributing a
structure from start to finish, it is more difficult to implement fo r
arbitrary editing of structures, as discussed in Section 3 .

2 .3 .2 Distributing Primitives

Our implementation improves on the simple method of sending a
primitive at a time to the most lightly loaded processor by sendin g
clusters of primitives rather than single ones . This has the advantag e
that attributes affecting a small number of primitives are sent to fewe r
processors, since the affected primitives will be distributed amon g
fewer processors . Clustering is especially useful for structures wher e
attributes change relatively often, i .e . between every few primitives .
The parameter controlling the amount of clustering allowed is base d
on the number of processors . Note that while clustering allows
sending attributes to fewer processors, it also introduces more spatia l
coherence in each structure on each processor . This could in troduc e

	

original display list

	

processor 2

color A

	

r color A

	

replace matrix a

	

-	 r- rep matrix a

polygon I

	

polygon 2
polygon 2

	

,;i.J con matrix b

	

concat matrix b

	

-	 rep matrix c

color C

polygon 6

149

load imbalances similar to the ones encountered when using th e
distribute-by-structure method .

We plan to break up large primitives such as long triangle strips int o
smaller pieces and distribute them among the processors . This woul d
prevent the loads from becoming seriously unbalanced if such a n
element is deleted or is moved completely off screen .

2 .3 .3 Primitive Structu r e s

To avoid creating a load imbalance when small structures are
instanced multiple times, a graphics system could automatically
detect small, often instanced structures and identify them as primitiv e
st ructures . Primitive structures can be created and edited like struc-
tures but are distributed like primitives . The entire primitive struc-
ture is broadcast to all the processors, but each instance is sent to onl y
one processor . Instances of primitive structures can then be balance d
in the same way as pre-defined primitives . Primitive structures ca n
contain any primitives or attributes and can execute other primitiv e
structures . Primitive structures cannot execute ordinary structures ,
because only a portion of the ordinary structure would be on the sam e
processor as the the primitive structure instance .

We have not implemented automatic detection of primitive struc-
tures, as it is difficult to switch between structure types as a structur e
is edited and the structure size changes . Instead, our system has th e
user designate which structures should be treated as primitive struc-
tures .

2 .3 .4 Weighting Structure Elements

Implicit in the discussion of balancing structure elements amon g
processors is the relative "weight" of each element . Primitive and
attribute weights must be known before an application is run so tha t
databases can be balanced as they are loaded . We have determined
the nominal weight of each element by calculating the usual proces-
sor time required to transform that element . Other criteria, such as
memory usage, could be used for other systems . An element' s
nominal weight is changed only when its usual processing tim e
changes, e .g . when its transformation code is changed .

3. Structure Editin g

Interactive applications need to perform general editing of structures .
All editing tasks must ensure that each attribute is sent to every
processor that requires it and should preserve processor load balanc -
ing . Distributing attributes correctly during editing is straightfor-
ward using the simple distribute by primitive method in which eac h
attribute is distributed to all the processors : the host simply sends th e
attributes to all processors, and sends primitives to the most lightl y
loaded processor . Unfortunately, as previously mentioned, th e
simple method can result in greatly reduced distribution efficienc y
(see Results) .

PPHIGS allows four types of structure editing operations :

modify : Replace structure element with a new one of th e
same type (not standard PHIGS+) .

append : Append element to the end of a structure .
insert : hrsert an element at an arbitrary point in a structure .
delete : Delete an element at an arbitrary point in a structure .

The first two tasks are simple and can be performed very quickly .
Insert and delete, however, require some analysis of the structure t o
determine the current and processor attribute states at the point bein g
edited .

3 .1 Modify Operatio n

The modify operation is the simplest editing task, requiring just tha t
the new data be sent to the processor(s) that have the old data . Since
it is assumed that the old element was distributed correctly, n o
analysis of the rest of the structure is required . The modify operatio n
is sufficient for many application tasks such as updating transforma -
tion matrices and colors, and is the most heavily used in our curren t
applications .

3 .2 Append Operatio n

The append operation requires knowing the current global attribute
state as well each processor's attribute state at the end of the edite d
structure . We call the set of these attribute states the total attribute
state . Append requires no structure analysis, since the attribute state s
at the end of each structure are saved with the structure descriptor .
Once the attribute states are known, elements can be appended in th e
same way as when initially distributing a structure (see Sectio n
2 .3 .1) .

3 .3 Insert and Delete Operation s

The insertion and deletion operations also require knowing the tota l
attribute state at an arbitrary point in a structure, and can affec t
distribution of elements both before and after the edit point . Deter-
mining the attribute states and distributing attributes correctly fo r
each insert and delete would make each operation expensive . In -
stead, edits are performed on the host copy of the structure network
and then propagated to the processors when editing in a particula r
region of a structure is completed . Thus, insert and delete editing i s
done in two steps :

Step 1 : A series of insertion and/or deletions is done to the hos t
display list . Insertion of primitives, and deletion o f
attributes and primitives, are propagated to the proces-
sors immediately . Inserted attributes only appear in th e
host display list .

Step 2 : The attribute states are acquired for the first point in th e
structure affected during step 1 . Then the global display
list is traversed from that point until the last poin t
affected and attributes are distributed to those proces-
sors which require them, as is done when appending to
a structure . After the traversal, the attribute state at th e
last affected point is used to send attributes to th e
processors that do not have the current attributes .

3 .4 Calculating the Attr ibute States

For step 2 we must acquire the total attribute state at an arbitrary
reference point . Saving the attribute states at every point in th e
structure where editing operations could take place would take fa r
too much memory . Instead, we determine the entire attribute state s
on the fly by stepping backwards through the structure and examin-
ing elements sent to each processor . This requires looking at at leas t
one attribute of each type sent to each processor and could involv e
stepping back through the entire structure . To reduce the number o f
steps needed, a limited form of caching can be used . It is possibl e
either to save attribute states every n primitives, or to save a set o f
attribute states in a cache to advantage of locality of reference during
editing.

For step 2 we also must propagate the attributes active at the las t
referenced edit point to all processors that have at least one primitiv e
affected by the edit . This could involve stepping forward through th e
rest of the structure to check elements .

150

3,5 Bounding Insert and Delete Operation s

Calculating the attribute states as described above could requir e
checking all the elements in a stnlcture . Instead, we don't explicitl y
calculate the attribute states, but only determine which processor s
have received the current attribute state . This involves steppin g
backwards through the structure as before, but now every time a
primitive is encountered, we flag the attribute state for that processo r
as current, because it was current when the primitive was firs t
distributed .

This method requires us to step back through the structure only unti l
one primitive for each processor is encountered . Using this metho d
and the distribute by primitive algorithm described in Section 2 ,
acquiring the attribute states will require examining 0(n) elements ,
where n is the number of processors . This is because only a certai n
number of primitives can be sent to one processor before its loa d
becomes too heavy and primitives are sent to the next processor . Tha t
number is c 5 (ma.aw/minw), where cis the primitive clustering facto r
and maxw and minw are the maximum and minimum primitiv e
weights . The maximum number of elements that can be examined
without finding one on each of n processors is therefore c'(maxiv/
minw) T (n -1), because at that point n-1 processors are maximally
loaded and the next primitive would have gone to the nth processor .

This method is complicated by the fact that some attributes, such a s
a sphere color, only affect certain types of primitives . Encountering
a primitive of a different type, such as a polygon, in the structur e
would not guarantee that the attribute state at that point was curren t
for all primitive types . In order for the previous bound to hold, w e
distribute attributes as if each attribute affects all succeeding primi -
tives, regardless of their type . This ensures that once any primitiv e
is sent to a processor, the attribute state for that processor is correct
for all primitives . This strategy can save large amounts of structur e
traversal . However, it comes at a cost of sometimes sendin g
unnecessary attributes, adding duplicate work . We expect th e
number of these unnecessary attributes to be very small .

4. Order-Dependent Primitives

PPHIGS allows certain primitives, such as 2D polygons, to b e
displayed in the order that they are encountered during the display lis t
traversal . These are called order-dependent primitives, or ODPs .
These primitives are displayed in front of the 3D z-bufferecl primi -
tives to allow for overlays and annotation . A parallel implementation
of PPHIGS could synchronize the output of the transformation pro -
cessors so the rasterization unit receives primitives in the correc t
order, such as done in [Torborg 87] and [Borden 89] . However, thi s
synchronization would add overhead and require a serial step to th e
rendering process, which would reduce the degree of parallel izatio n
in the system .

We preserve the effect of rendering order by using a variant of the z -
buffer algorithm . During the transformation process, priority num-
bers are assigned to each primitive . As each primitive is rendered, w e
use a "priority buffer" to determine which primitive should be visibl e
at each pixel . This allows us to get the effect of a "painter' s
algorithm" by using a z-buffer type approach, To use such a n
approach, the z-buffer must have enough resolution to hold both th e
3D primitives' z values and the order-dependent primitives' priorit y
values . A simple implementation would use one bit of the z-buffe r
to differentiate between the z values used for 3D and order dependen t
primitives .

In a single processor system the priority numbers can be assigned b y
sequentially numbering the ODPs as they are encountered whil e
traversing the display list . Because a single processor in a multicom -
puter has only a part of the distributed display list, it cannot simpl y
number the primitives since it doesn't know how many primitives ar e
on the other processors We solve this problem by recording, for eac h
primitive, a "delta" value : the difference in priority numbers betwee n
that ODP and the previous ODP on the same processor . This delt a
value is one more than the number of "missing" ODPs (those on othe r
processors) between the current and previous ODPs . We also record ,
for each structure, the difference in priority numbers between the las t
ODP and the end of the structure . With this information, a processo r
can independently assign priority numbers to its portion of th e
display list (see Figure 4) . These delta values are calculated whe n
distributing each s tructure . After editing an ODP, some of the delta s
must be updated ; this can be done during the same traversal as whe n
the attributes are distributed to the correct processors (see sectio n
3 .3) .

5 . Display List Rebalancin g

Although we expect that our distribution techniques will keep th e
processors' workloads closely balanced, it is possible for the work -
loads to become imbalanced . We have been investigating the way s
this may occur as well as methods for dynamically re-balancing th e
load . Since we have not characterized how the workloads becom e
imbalanced, this work is preliminary .

We have found two major causes of workload imbalance : imperfec t
distribution and invalidated weights . Each requires different tech-
niques for eliminating the imbalances .

5 .1 Imperfect Distributio n

When distributing each structure across the processors it is almost
always impossible to balance the workload perfectly . These slight
imbalances, randomly dis tr ibuted across the processors, could add
up to a large imbalance when one structure is instanced several times .

To detect the extent of imperfect distribution, each processor trav -
erses its portion of the display list and adds up the nominal weight s
of its structure elements . This computation could be done as part of
a normal traversal . The host uses these sums to detect an imperfec t
distr ibution . To fix the imbalance, the host moves randomly picke d
primitives from heavily loaded to lightly loaded processors usin g
procedures based on the editing sequences described above .

original display lis t
processor I

dzo ., priont}

	

primitive I
primitive 1 j 0

	

0 1a"

	

primitive 2
primitive 4

	

3

	

3

	

primitive 3
primitive 6

	

2

	

5

	

primitive 4
end delta 7 l 12 primitive 5 4

primitive 6 i 5
primitive 7 l 6
primitive 8 1 7

primitive 5

	

4 1 4

	

l imitive9 A ff
primitive 10 5

	

9
1primitive I2' 4

	

l l
end delta

	

I

	

1 2

Figure 4 . Example of assigning priorities to a structure of ODPs .
A primitive's priority number is determined by adding its delta to

the previous primitive's priority .

processor 2
delta priority

primitive I O
primitive 11 l 10

	

wi primitive 11

	

3

	

I O
Ltnmitive 12 1

	

earl delta

	

2 I I 2

pnOnp.
0

processor 3
delta priorit y

	

primitive 2

	

I

	

I

	

primitive 7

	

5

	

6

	

lend
primitive 9

	

2 l 8 I
delta

	

4

	

1 2

processor 4
deli ., priorit y

primitive 3
primitive 8

	

5

	

7

151

5 .2 Invalidated Weight s

The second cause of imbalance is the fact that the nominal weight s
of the structure elements (the ones used for the distribution) are no t
always equal to the actual weight of the elements . For example, this
can happen when a polygon is backface culled, is off screen, or is
clipped to the viewing volume . Because these weight changes hav e
spatial coherence, in general there should only be large imbalance s
when the database is distributed in a spatially coherent fashion .
While this is usually avoided in the primitive by primitive distribu -
tion scheme, it can occur in some cases One example of this is whe n
a 16x16 quadrilateral mesh is distributed across 16 processors : each
processor will have a strip of the mesh .

This cause of imbalance can be distinguished from imperfect distri -
bution when the imperfect distribution test described above indicates
that the database is distributed correctly according to the nominal
weights . To correct the imbalance, the host must request that the
processors traverse their display lists and find primitives with actual
weights different from the nominal weights . The overloaded proces -
sors find primitives with actual weights larger than nominal weights ,
and lightly loaded processors find primitives with actual weights les s
than the nominal weights . Then, the host exchanges primitives on
different processors that have the same nominal weights but that hav e
actual weights that balance the processor load .

Both redistribution methods should only be used when the imbalanc e
is significant (say >10% of the total transformation time) and remain s
for several frames . If this is not clone, then the rebalancing algorith m
will make fairly expensive adjustments every frame to correct th e
normal slight imbalance . For the same reason, and also to avoid a
`hiccup' when the database is rebalanced, a limited amount of th e
total imbalance should be corrected each frame . The amount t o
redistribute per frame should be chosen so that it can be done withi n
the current frame time .

6 . Results

We have simulated the two distribute-by-primitive algorithms : the
simple one described in section 2 .2 and the more complex one
described in section 2 .3 . We have calculated their distributio n
efficiency and load balancing for four hierarchical databases . The
distribution efficiency is the percentage of non-redundant wor k
performed by the processors, assuming perfect load balancing . The
processor utilization percentages show the quality of the load balanc -
ing . The formulas used are :

1, processor tim e
processors

number processors

	

MAX processor tim e
processor s

distribution efficiency = single processor time
processor tim e

processors

The overall speedup is given by the number of processors multiplie d
by both percentages . The databases are illustrated in figures 6-8 .

The space station database is the simplest case, namely a large
number of primitives with no hierarchy . The building lobby is
similar, but 55% of the primitives are off-screen and thus hav e
invalidated weights, as the time to transform each such polygon is a
fraction of the time indicated by its nominal weight . However, th e
processor utilization remains high because our method distributes

the on-screen polygons evenly across the processors . The floc k
consists of 144 "boids" (bird-oids) [Reynolds 87] in flight about th e
Old Well . The boids are defined by a primitive structure containin g
5 polygons and 4 colors . A separate flock structure instances th e
primitive structure 144 times, with a different transformation matri x
each time . The dramatic increase in distribution efficiency for th e
complex algorithm reflects both the use of primitive structures an d
the breakdown of the simple attribute distribution method . Finally ,
the human figures are two structures with deep hierarchies (8 level s
of nesting), which are balanced well, but which require a consider -
able amount of redundant work among the processors . The poo r
distribution efficiency occurs because the individual structures contai n
few polygons : extra work results from flushing the attribute state t o
all the processors before each new structure is instanced . We are
exploring ways to efficiently analyze paths through the hierarchy s o
that only necessary attributes are propagated at each structure in -
stance .

All results are from the Pixel-Planes 5 software simulator, where
each processor, SIMD rasterizer, or device is simulated with as an
separate Unix process . While the simulator accurately simulates th e
effect of C code running on the host and Graphics Processors, it doe s
not give timing information about the transformation process for th e
i860-based GPs . All element transformation values for Pixel-Plane s
5 are estimated based on performance of the Pixel-Planes 4 system .

7. Conclusion s

As front-end computing power requirements continue to Increase ,
multicomputer graphic systems will become more common since th e
architecture can be expanded without requiring higher memory
system performance or extensive communication . We have devel-
oped an initial solution to distributing hierarchical display lists acros s
a multicomputer that handles many databases with reasonable effi-
ciency and load balancing . While we feel that our solution will be
effective for most interactive situations, there is still more work to b e
done, particularly in finding an algorithm that satisfies our distribu-
tion goals without requiring a complicated editing procedure .

8. Acknowledgement s

We wish to thank the Pixel-Planes project principle investigators
Henry Fuchs and John Poulton for their many helpful comments, an d
our colleagues on the Pixel-Planes 5 software team, Michael Bajura ,
Andrew Bell, Jonathan Leech, Ulrich Neumann, John Rhoades, an d
Greg Turk, for helping design and implement the Pxpl5 simulator .
We would like to thank the members of the Walkthrough projec t
[NSF Grant #CCR-8609588], Frederick P . Brooks Jr .-principa l
investigator, John Airey, Randy Brown, Penny Rheingans, and Dan a
Smith for the lobby database. We would also like to thank to Don E .
Eyles for the space station database, Andy Skinner for the floc k
simulator database, and Young Harvill of VPL Research for th e
human figures database which he made using Paracomp 's Swivel 3 D
modeling package .

processor utilization =

152

Database

Hierarchyy
Depth /

Structure
Count

Averageeg
Polygon s

pe r
Structure

Polygon /
Attribut e

Ratio

Distribution Efficiency Processor
Utilization

Overall Speedu p
(complex distribution

algorithm)Simple Algorithm Complex Algorith m
--

(complex distributio n
algorithm)

4 GPs 16 GPs 4 GPs

	

I
16 GPs 4 GPs 16 GPs 4 GPs

	

i

	

16 GPs

space station 1/1 3388 21 .6 98 .3%

J

92 .2% 99 .5% 98 .8% 99 .9% 99 .1% 3 .97

	

15 .66

building lobby 1/1 3923 7 .8 93 .1% 73 .0% 98 .3% 96 .2 %
--

98 .3% 93 .4% 3 .86

	

14 .3 7

flock and old well 2/147 10 .1 1 .8 67 .9% 29 .8% 98 .4% I

	

94 .8% 99 .3% 96 .4% 3 .91

	

I

	

14 .6 2

two human figures 9/91 72 .1 36 .1 83 .1% 49 .7% 85 .8%
J
I

	

57 .8% 85 .8% 90 .1% 2 .94

	

8 .33

Figure 4 . Space station database . Figure 6 . Flock and old well database .

Figure 5 . Building lobby database . Figure 7 . Human figures database .

15 3

9 . Reference s

[Akeley 89] Akeley, Kurt, "The Silicon Graphics 4D/
240GTX Superworkstation", IEEE Computer
Graphics and Applications, 9(7), July 1989, pp
71-83 .

[Apgar 88] Apgar, Brian, Bret Bersack and Abraha m
Mammen, "A Display System for the StellarTA1
Graphics Supercomputer Model GS 1000TH"
Computer Graphics, 22(4), (Proceedings of
SIGGRAPH '88), pp 255-262 .

[Athas 88] Athas, William and Charles Seitz, "Multicom-
puters : Message Passing Concurren t
Computers," Computer 21(8), August 1988, p p
9-24.

[Borden 89] Borden, Bruce, "Graphics Processing on a Graph-
ics Supercomputer", IEEE Computer Graphic s
and Applications, 9(7), July 1989, pp 56-62 .

[Foley 90] Foley, James, Andries van Dam, Steven Feiner ,
and John Hughes, Fundamentals of Interactiv e
Computer Graphics, 2nd Edition, Addison
Wesley, Reading, Massachusetts, 1990 (in prepa -
ration), sections 18 .5 and 18 .6 .

[Fuchs 89] Fuchs, Henty, John Poulton, John Eyles, Tre y
Greer, Jack Goldfeather, David Ellsworth, Stev e
Molnar, Greg Turk, Brice Tebbs, and Laur a
Israel, "Pixel-Planes 5 : A Heterogeneous Multi -
processor Graphics System Using Processor -
Enhanced Memories", Computer Graphics ,
23(3), (Proceedings of SIGGRAPH '89), pp 79 -
88 .

[Reynolds 87] Reynolds, Craig, "Flocks, Herds, and Schools :
A Distributed Behavior Model", Compute r
Graphics, 21(4), (Proceedings of SIGGRAPH
'87), pp 25-34 .

[Torborg 87] Torborg, John, "A Parallel Processor Architec-
ture for Graphics Arithmetic Operations" ,
Computer Graphics, 21(4), (Proceedings of
SIGGRAPH '87), pp 197-204 .

[Van Dam 88] Van Dam, Andries, ed . "PHIGS+ Functional
Description Revision 3 .0",Computer Graphics ,
22(3), July 1988, pp 125-218 .

154

