
Tracing Interactive 3D Graphics Program s

J. Craig Dunwoody and Mark A . Linton
Center for Integrated Systems

Stanford University
Stanford, California 9430 5

Abstract

The two goals of graphics performance analysis are to characteriz e
application workloads and to understand how systems perform
under these workloads. We have developed a set of tools to hel p
achieve these goals . TGEN is a tracing program that intercept s
graphics library calls from an application program and records
them in a file. TPROF is a profiler that interprets a trace file and
computes workload statistics . TBENCH is a portable performance
measurement tool that executes a trace file on a graphics syste m
and measures the resulting update time . In this paper, we describ e
these tools and give examples of their use .

I Introduction

5 . The system under test may exist only as a simulation, makin g
interaction with programs difficult or impossible .

Similarly, a useful amount of workload analysis can be don e
by tracking graphics-library calls using a general-purpose profiler .
More sophisticated analysis, however, requires tools that under -
stand what is going on inside the graphics system .

We have developed a set of tools that is useful for both per-
formance measurement and workload analysis . Our approach, il-
lustrated in Figure 1, is to generate a trace of the graphics library
function calls that a program makes during execution . We can us e
this trace as an application-specific benchmark by executing it o n
other graphics systems and measuring update times . We can also
gain insight into the program's behavior by analyzing the trace
file.

Trace
File

The most accurate way to measure the performance of an interac-
tive 3D graphics system is to apply real workloads . Improving th e
performance of graphics applications and systems requires work -
load analysis . The tasks of measuring and improving performanc e
can be made easier through the development of specialized tools .

Application performance can be measured without special tools ;
one simply executes a program and measures display update time s
d irectly, This approach can be quite inconvenient, however, fo r
the following reasons ;

1 . Building a program for the system under test requires acces s
to source code, which is often difficult to obtain.

App
Program

Analyze

App
Profile

Graphic s
System

Execute

Update
Time

Commands

2. Because most existing programs use proprietary graphics li-
braries, a significant porting effort will usually be necessary .

3. Most interactive programs are not equipped for benchmark-
ing . Such use typically requires program modifications or a n
external scripting facility, which may not work reliably .

4. The data files and user expertise necessary to operate a pro-
gram in a manner representative of typical usage may be
unavailable .

This research has been supported by the Quantum project through a
gift from Digital Equipment Corporation ,

Permission to copy without fee all or part of this material is granted provide d
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear ,
and notice is given that copying is by permission of the Association fo r
Computing Machinery . To copy otherwise, or to republish, requires a fee
and/or specific permission .
© 1990 ACM 089791-351-5/90/0003/0155$1 .50

Figure 1 : Trace-based profiling and benchmarkin g

In order to represent traces in a portable way, we designed a
graphics interface called OR . Each trace is a binary or textual en -
coding of a sequence of GR calls . The GR interface is simple an d
general enough to be implemented efficiently on top of existin g
graphics libraries.

In this paper, we discuss the design of GR and describe how a
trace is generated. We then present our profiling and benchmark-
ing techniques, along with the results that we obtained by applyin g
them to several application programs .

2 The GR Interface

The functionality of a general-purpose interactive 3D graphics sys-
tem is defined by the application-program interfaces (APIs) tha t

155

http://crossmark.crossref.org/dialog/?doi=10.1145%2F91385.91439&domain=pdf&date_stamp=1990-02-01

it provides . Most of these APIs include at least the followin g
features :

o Primitives : polypoint, polyline, polygon, triangle strip, text ,
clear viewpor t

o Transformations : 4x4 floating-point matrix stack

• Shading : coloring (flat/smooth), multiple-source lightin g
(flat/smooth), depth cueing

• Hiding : backface cuffing, Z-buffe r

• Display : double buffering, multiple overlapping window s

Following Akeley[l], we can view the interactive-graphics up -
date process as a six-stage pipeline : input handling, database mod -
ification, database traversal, transformation, rasterization, and dis -
play. As shown in Figure 2, the API may be placed either betwee n
the modification and traversal stages (a "structure" interface) o r
between the traversal and transformation stages (an "immediate "
interface) .

Immediate
API

Traverse
Database T

Disp

	

Rasterize

	

Xform

Figure 2: Update pipelin e

Most systems provide an immediate interface with one or mor e
structure interfaces layered on top . We decided to generate trace s
at the level of the immediate interface, for two reasons . First,
the immediate interface provides a common tracing point for all
applications, whether or not a structure API is used . Second ,
instructions at the immediate interface are simpler, and it is there -
fore easier to analyze traces and interpret them efficiently on top
of existing graphics libraries .

No immediate interface has achieved widespread use across
multiple vendors . APIs with immediate capability include G L
from Silicon Graphics[7], Starbase from Hewlett-Packard[3], On -
Ramp from Tektronix[8], and DorB[4] and XFDI[2] from Stardent .
The PEX[6] standard shows promise, but implementations are not
yet widely available .

Because there was no standard immediate interface to serve a s
the basis for our portable trace format, we chose to design our ow n
simplified immediate interface called GR and implement transla-
tors between GR and existing interfaces . For recording traces, we
have implemented a GL-to-GR translator . For interpreting traces ,
we have implemented GR-to-GL and GR-to-Starbase translators .

2.1 Design Principle s

GR is a RISC graphics instruction set . We based the GR desig n
on the following principles :

1 . Include only functionality that is necessary to represent effi-
ciently the behavior of existing graphics programs . Conve-
nience functions can be layered on top .

2. Make each function do a very small amount of work . Thi s
promotes extensibility and interpretation efficiency, and i t
opens up the possibility of applying an optimizing compiler
to trace files .

3. Keep the amount of state that must be maintained by a n
interpreter to a minimum .

4. Make the interface resolution-independent . Screen coor-
dinates and color values should be given as normalize d
floating-point numbers where it is possible to do so with -
out compromising interpretation efficiency .

5. Avoid unnecessary device dependencies, but do not limi t
functionality to the least common denominator . Every graph-
ics API implements some subset of GR features . Each GR
interpreter reports to its client on the use of unimplemented
features; the client can then decide on the appropriate action .

6. Offer enough flexibility in the interface to insure that trace s
can be interpreted efficiently on a wide range of graphic s
systems . For a given GR feature, there are variations i n
the interface provided by existing graphics libraries . Most
of these variations can be hidden by a GR interpreter with -
out significant performance impact. An important exception
is the formatting of vertex data for primitives, The mos t
efficient format for this information varies among existin g
graphics libraries . GR provides a flexible scheme for spec-
ifying vertex data format. TBENCH automatically filter s
vertex data into the most efficient format before executing a
trace .

7. To make tracing simpler, pass only primitive data types (in-
teger, float, string) across the interface, and refer to resources
using table indices rather than pointers to dynamically allo-
cated objects .

2.2 Function Groups

Table 1 lists the five groups of basic GR functions : display, hid-
ing, transformation, shading, and primitives . The display group
supports the manipulation of multiple independent, overlapping ,
double-buffered windows . There is a fixed table of windows, all
of which are initially unmapped . All GR state is per window,
except the current window index .

The hiding group supports backface culling and Z-buffering .
The Z-buffer may be cleared independently or simultaneously wit h
the color buffers . There is a performance advantage to simultane-
ous clearing on some systems .

The transformation group supports operations on two 4x4 ma-
trices : the modeling matrix, which transforms user coordinate s
into the world space where lighting calculations can be done, an d
the projection matrix, which transforms world coordinates into
normalized screen coordinates .

The shading group supports five types of shading : colored-flat
(per-primitive color), colored-smooth (per-vertex color), lighted -
flat (per-primitive normal), lighted-smooth (per-vertex normal) ,
and lighted-colored-smooth (per-vertex normal with per-verte x
color modulating surface reflectance) . When lighting is enabled ,
shade is determined by the position and color of the light sources ,
the position and surface reflectance of the primitives, and the po-
sition of the viewer . The viewer and each light source may b e
either d irectional (infinite) or positional (local) . Lighting calcula-
tions are more compute-intensive when viewer and light source s
are positional.

Structure
API

Modify
Databas e

--PeInput

156

Group Function Description
Disp winindx

winpo s
winsiz
winmap
winclip
winport
winch-
coldst
colswp

Select window
Set window position
Set window size
Map window to display
Set clip rectangl e
Set viewport
Clear viewport
Enable color buffers
Swap color buffer s

Hide polycull
depthdst

Enable backface cul l
Enable Z-buffe r

Xform mtxind x
mtxl d
mtxmu l
mtxpop
mtxpush

Select matrix (model/proj)
Load matrix
Multiply matri x
Pop matrix stack
Push matrix stack

Shade col
nm l
lteon
lteamb
lteatt
lteloc
ltmam b
ltmdiff
ltmspec
ltmspecex p
ltson
ltsemit
ltspos

Set flat-shade color
Set flat-shade normal
Enable lighting
Set ambient light color
Set light attenuatio n
Set viewer position
Set ambient reflectance
Set diffuse reflectance
Set specular reflectance
Set specular exponent
Enable light sourc e
Set light source color
Set light source position_

Prim vtxbgn
vtxadd
vtxen d
vtx
pntbgn
pntnxt
pnten d
linbg n
linnx t
linen d
polybgn
polynxt
polyen d
tribg n
trinxt
triend

Start vertex definition
Add position/color/normal
Finish vertex definition
Send array of vertice s
Start polypoin t
Finish/start polypoin t
Finish polypoin t
Start polyline
Finish/start polylin e
Finish polylin e
Start polygo n
Finish/start polygo n
Finish polygo n
Start tri-strip
Finish/start tri-stri p
Finish tri-strip

Table 1 : Basic GR functions

The primitives group supports polypoints, polylines, polygons ,
and triangle strips. Primitives are generated by a sequence of th e
form

<prim>bgn O ; vtx O ; vtx O ; <prim>end O ;

The vertices can be provided collectively in a single call o r
individually in multiple calls, depending on the needs of the ap-
plication . For maximum efficiency, TBENCH always provides all
vertices in a single call . Vertex data format (position with op-
tional color and normal) is defined procedurally by a sequence o f
the form

vtxbgn () ; vtxadd () ; vtxadd O ; vtxend () ;

This scheme has two benefits : traces can be filtered into th e
most efficient format for a given system, and new vertex dat a
components such as texture coordinates can be supported in the
future without changing the interface .

The "next" calls encode the commonly occurring end-begin se-
quence . We define a run as begin-end sequence containing a n
arbitrary number of next and vertex calls and no state-changin g
commands.

3 Trace Generation

TGEN is a shell that executes an interactive graphics program
and writes trace files . We designed TGEN to meet the following
requirements :

1. The traces must consist of a sequence of GR calls .

2. TGEN must provide access to a large body of interactive 3 D
graphics programs .

3. TGEN must be convenient to develop and install . It must
be an ordinary user program and not require any changes t o
system software.

4. TGEN must be convenient to use . It must not require th e
user to recompile or relink the program being traced, becaus e
the program may be a proprietary package for which sourc e
code is not available .

5. TGEN must operate transparently . It must not affect the
behavior of the program being traced .

6. The traces must be as compact as possible, for ease of stor-
age, processing, and transmission .

Since there are no programs that directly issue GR calls, Re-
quirements 1 and 2 mean that TGEN must incorporate a translato r
that converts calls to an existing graphics library into GR calls .
For the initial implementation of TGEN, we chose Silicon Graph-
ics GL.

GL-to-GR
Translator

Traverse
Databas e

Rasterize

	

)(form

Figure 3 : Trace generation

Calls into GL go through a shared-library branch table contain-
ing pointers to GL functions . This made it possible for TGE N
to meet Requirements 3 and 4 . When TGEN starts a graphics
program, it replaces all of these pointers with a pointer to a singl e
tracing function. This tracing function converts each incoming GL
call into the GR equivalent, records the GR call in a trace file, an d
then calls the normal GL function .

Trace -ewe

Input —Ise

Disp amok

TGEN

Modify
Database

—Pe

15 7

If TGEN recorded traces continuously, it would be impossibl e
to meet Requirements 5 and 6 . Some graphics systems can render
hundreds of thousands of primitives per second . At such rates,
continuous tracing would require tens of megabytes per second o f
disk bandwidth, and the size of traces would be unmanageable .

Because continuous tracing is impractical, the TGEN tracing
function is normally disabled . When the user sees a scene h e
would like to capture, he presses the PrintScreen key and TGE N
generates a trace file containing a preamble and a single frame .
The preamble is the sequence of GR calls necessary to bring a
GR interpreter from its default state to the state that existed at th e
beginning of the frame. The frame itself can be generated in one
of two ways :

1. TGEN sends a REDRAW event to each of the applicatio n
program's windows and records all graphics-library calls un-
til the application again asks for input, This method is usefu l
because it captures the complete contents of all of the appli-
cation's windows, and it works even if the application doe s
not use double buffering .

2. TGEN starts recording graphics calls when the applicatio n
performs a buffer swap, and it stops recording when the ap-
plication performs another buffer swap in the same window .
Although it only works for double-buffered applications, thi s
method is more useful for performance analysis because i t
captures just the graphics calls made by the application dur-
ing animation . To improve performance, many application s
render parts of the display such as menus during redraws bu t
not during animation .

In either case, because the TGEN tracing function is enable d
only while a frame is being recorded, the program runs at nearl y
full speed . By pressing the PrintScreen key at several points i n
the execution of the program, the user can generate a set of rep-
resentative single-frame trace files. Since most graphics program s
exhibit a great deal of frame-to-frame coherence, this samplin g
technique is not much less accurate than continuous tracing, an d
it is much more efficient.

TGEN generates trace files in a compact binary format, An -
other tool called 1'NLT can convert traces between binary and a n
equivalent ASCII format that is convenient for editing . All of ou r
tools accept traces in either format .

4 Example Traces

We used TGEN to create 28 traces from various programs running
on a Silicon Graphics 4Dr10GT. We assigned one of the twelve
types defined in Table 2 to each trace, based on the dominant
primitive and shading mode . A brief description of each trace
follows .

Type 1 (polypoint colored-smooth)

VOXEL : a volume rendering of a cylinder head (data pro-
vided by Vital Images) .

Type 2 (polyline colored-flat)

VASEO: a line rendering of a vase from a surface modelin g
program .

flow lines from a fluid jet hitting a flat plate .

CARO: a line rendering of an automobile (data provide d
by Chrysler Corporation) .

Type

	

Primitive Shadin g

1 Polypoint Colored-Smoot h
2
3
4

Polyline
Polyline
Polyline

Colored-Flat
Colored-Smooth
Lighted-Smooth

5
6
7
8
9

Polygon
Polygon
Polygon
Polygon
Polygon

Colored-Flat
Colored-Smooth
Lighted-Flat
Lighted-Smooth
Lighted-Colored-Smooth

1 0
1 1
12

Tri-stri p
Tri-strip
Tri-strip

Colored-Smooth
Lighted-Smooth
Lighted-Colored-Smooth

Table 2: Trace types

Type 3 (polyline colored-smooth)

RODO: a line rendering of a connecting rod with stres s
values mapped to colors (data provided by Cray Re -
search) .

Type 4 (polyline lighted-smooth)

STICKO : a line rendering of a candlestick .

Type 5 (polygon colored-flat)

COPTER : A helicopter (data provided by SimGraphics En-
gineering) .

Type 6 (polygon colored-smooth)

BARC : a radiosity rendering of a building interior.

Type 7 (polygon lighted-flat)

RAY: a simulation of a ray tracer .

OILRES : subsurface pressures in an oil field .

Type 8 (polygon lighted-smooth)

BALLS : a simulation of bouncing balls with elastic colli-
sions .

LIGHTS : light sources bouncing in a cube .

LATHE: a simulation of metal cutting on a lathe .

VASE1 : a surface-rendered version of VASEO .

STICKl : a surface-rendered version of STICKO.

BARS : stresses in a series of metal bars .

FLIGHT: an out-the-window view from a flight simulator .

VORO : an view from a program for exploring Voronoi sets .

Type 9 (polygon lighted-colored-smooth)

ROD1 : a surface-rendered version of RODO.

Type 10 (tri-strip colored-smooth)

SLICE : two cut planes through a 3D raster data set .

WARP: a sampled image converted into a triangle mes h
and warped .

WELL : seismic data mapped around a series of wells .

Type 11 (tri-strip lighted-smooth)

158

IDEAS: a frame from a flying-logo animation .

SHELLS : isovalue surfaces.

GRID : layers of map data (data provided by Radian Cor-
poration) .

ROTOR : a turbine impeller (data provided by CISI-
GRAPH) .

CARL a surface-rendered version of CARO .

Type 12 (tri-strip lighted-colored-smooth)

PIC3D : 2D seismic image data viewed as a height field .

All of the traces except VOXEL are from double-buffered pro -
grams and were generated with the buffer-swap technique . The
VOXEL trace was generated from a two-window program using
the REDRAW technique, but the extra graphics calls resultin g
from the full redraw are not significant. Plate 1 contains the im-
ages generated by the traces .

5 Trace-based Profilin g

In order to gain a better understanding of the workload presente d
to a graphics system by real application programs, we wrote a
dynamic profiler called TPROF. As shown in Figure 4, TPROF
feeds a trace to a GR profiler module, which tracks state change s
and counts primitives . The profiler forwards GR calls to a varian t
of the GR-to-GL interpreter that operates the graphics pipeline in a
feedback mode, returning primitives after transformation, clipping ,
and culling . The profiler uses this information to compute statistic s
on what is actually sent to the rasterizer .

App
Profile

)(for
m	 J
.-

Figure 4 : Trace-based profilin g

The data generated by TPROF can be divided into three cat-
egories : global, geometry-related, and pixel-related. Table 3
presents the global data for the example traces, which consist s
of the following items :

e The total number of primitives .

e The fraction of primitives passed to the rasterizer after clip -
ping and backface culling .

o The settings of the hidden-surface flags (backface-cull and
Z-buffer) . The value of a flag is recorded as true if it was
turned on at any point in the frame ; this can be misleadin g
if it was only enabled for a small fraction of the primitives .

e The number of directional and positional light sources used,

e The number of windows and the number of times the curren t
window was changed . Since each window change entails a
potentially expensive context switch, unnecessary changes
should be avoided.

Type Trace
Pri m
Total

Pas s
Pct

Cull/
Zbuf

Ldir/
Lpos

Went/
Wchg

1 VOXEL 1370 100 0/0

	

_ 0/0 2/3

2 VASEO 785 100 0/0 0/0 4/0
CFD 7483 100 1/1 0/1 2/0

CARO 35700 _100 0/1 0/0 1/0
3 RODO 830 100 0/1 0/0 1/0
4 STICKO 4203 100 0/1 3/0 1/0

	

_
5 COTTER 224 93 0/1 0/0 1/0 _

6 BARC 2677 76 0/1 0/0 1/0
7 RAY 704 100 0/1 0/1 3/2

OILRES 4801 69 1/1 1/0 '7/0
8 BALLS 414 100 0/1 1/0 1/0

LIGHTS 457 100 0/1 0/3 1/0
LATHE 224 100 0/1 1/0 1/0
VASE1 758 100 0/1 1/0 4/0

STICK 1 2102 100 0/1 3/0 1/0
BARS 2879 100 0/1 4/0 1/0

FLIGHT 1673 65 1/1 1/0 1/0
VORO 6823 100 0/ 1 2/0 1/0

9 ROD 1 830 100 0/1 1/0 1/0
10 SLICE 154 100 0/1 0/0 4/0

WARP 326 100 0/1 0/0 1/0
WELL 2518 100 0/1 0/0 4/2

11 IDEAS 355 97 0/1 2/0 1/0
SHELLS 1617 100 0/1 1/0 4/0

GRID 452 100 1/1 1/0 3/0
ROTOR 992 100 0/1 2/0 1/0
CAR1 13675 100 0/0_ 1/0 1/0_

12 PIC3D 137 95 0/0 1/0 3/7

Table 3 : Global profile data

The transformation-time cost of backface culling must be
weighed against the rasterization-time savings . Most of the trace s
relied exclusively on the Z-buffer for hidden-surface elimination .
In two of the four cases where cuffing was used, no benefit wa s
realized. In the OILRES trace the rasterizer load was reduced
considerably, while in the FLIGHT trace the removal of primi-
tives was mostly due to front-plane clipping rather than cuffing .

The majority of the multi-window programs used only a singl e
window during animation . The PIC3D program would perfor m
better on some systems if the number of unnecessary windo w
changes was reduced,

Table 3 presents the geometry-related data for the example
traces, which consists of the following items:

e The number of vertices transformed.

e The average number of vertices in lines, polygons, and tri-
angle strips .

o The average length of runs of lines, polygons, and triangl e
strips .

In most cases, primitives of the dominant type were sent in larg e
batches . These traces should execute efficiently even on system s
for which state changes are slow . In three of the flat-shaded trace s

TPROF

GR
Decode

Trace

GR
Prof

GR
Interp

159

Type Trace
Vtx

Total
LinVtx/

	

PolyVtx/
LinRun

	

PolyRun
TriVtx/
TriRun

1 VOXEL 2.67760 13/1

	

7/1 -
2 VASEO 2351 3/784

	

- -
CFD 15521 2/2

	

5/5 5/8
CARO 139714 4/637

	

- -
3 RODO 3313 4/828

	

- -
4 STICKO 8403 2/4201

	

- -
5 COPTER 814 -

	

4/ 1
6 BARC 10704 4/2676 -
7 RAY 2940 6/1

	

4/1
OILRES 19200 4/1920

	

4/1 -
8 BALLS 1224 2/12

	

3/80 -
LIGHTS 2160 -

	

4/144 18/8
LATHE 1140 -

	

5/1 -
VASE1 3024 -

	

4/756 -
STICK1 8401 -

	

4!2100
BARS 11524 4/1

	

4/99 -
FLIGHT 5802 2/6

	

4/26
VORO 26271 -

	

4/35 -
9 ROD1 3313 -

	

4/828 -
10 SLICE 9797 4/1

	

4/1 98/49
WARP 26568 - 82/324
WELL 60158 2/8

	

- 26/2340
11 IDEAS 6512 19/1

	

8/1 18/ 3
SHELLS 6434 3/3

	

- 4/320
GRID 32025 37/1

	

4/1 172/ 1
ROTOR 42060 2/3

	

- 44/32 1
CARL 95666 - 7/48 8

12 PIC3D 16442 9/1

	

4/1 180/90

Table 4: Geometry-related profile data

Type Trace
Clear
Cnt

Clear
(000)

Pri m
(000)

Lin e
Mean

Pol y
Mean

1 VOXEL 3 734 1074 33 344 1

2 VASEO 1 1233 56 36
CFD 1 1250 179 5 400 6

CARO 2 2485 404 4 -
3 RODO 1 968 68 20
4 STICKO 1 1244 92 21 -
5 COPTER 2 1929 121 - 58 8
6 BARC 1 1244 3518 - 172 5
7 RAY 1 1261 510 65 757

OILRES 1 1245 12145_ 312 878 8
8 BALLS 2 2488 87 320 209

LIGHTS 1 1243 472 - 57 9
LATHE 2 1952 598 - 269 5
VASE1 2 2466 798 - 105 6
STICK1 1 1244 519 - 246
BARS 1 1244 310 702 10 7

FLIGHT 1 1313 1828 62 203 8
VORO 1 1244 1787 262

9 ROD1 1 968 256 - 30 8
10 SLICE 2 1889 374 202 3 8

WARP 2 1486 303 - 12
WELL 4 2460 137 123 2

11 IDEAS 2 2585 1156 3 220
SHELLS 2 2552 1999 487 622

GRID 2 2539 1159 3 58
ROTOR 2 1964 517 511 1 3

CARL 2 2485 538 - 8
12 PIC3D 1 945 1328 35 87

Table 6 : Pixel-related profile data

(CFD, RAY, and OILRES), runs were short due to per-primitive
color or normal changes . The anomaly is LATHE, which contain s
both per-primitive and per-vertex normals .

Only six of the traces mixed primitive types and shading mode s
to a significant degree . Table 5 shows the fraction of transforme d
vertices due to each primitive type in these traces .

Type Trace Line Poly Tn

7 RAY
OILRES

0 .12
0 .40

0 .8 8
0 .60

0 .00
0 .00

8 LIGHTS
FLIGHT

0 .00
0 .07

0 .8 0
0 .92

0 .20
0 .00

11 IDEA S
GRID

0 .07
0 .38

0 .0 0
0 .00

0 .9 3
0 .62

Table 5: Fraction of vertices for mixed primitive s

Table 6 presents the pixel-related data for the example traces ,
which consists of the following items :

• The number of clear-viewport commands .

• The number of pixels written during viewport clearing .

• The number of pixels written during primitive rendering.

• The average number of pixels per line segment.

• The average number of pixels per polygon, including triangl e
strips .

Except in the case of the multi-window VOXEL trace, mul-
tiple viewport clears were due to separate clearing of the color
and Z buffers . For the shaded scenes, the ratio of rendered pix-
els to cleared pixels can be used as a rough estimate of depth
complexity[5) . This ratio is notably large for the BARC and OIL-
RES traces, in which most of the pixels generated by the rasterize r
are rejected by the Z-buffer or overwritten. These two application s
would benefit significantly from better database culling.

6 Trace-based Benchmarkin g

Our benchmarking program, TBENCH, is simply a driver pro-
gram for a GR interpreter. It begins by reading a complete trace
into memory . It then runs a compiler over the trace to convert
the vertex formats to the appropriate ones for the target machine .
Next, TBENCH executes the trace's preamble to bring the G R
interpreter to the appropriate initial state . Finally, TBENCH starts
the clock, repeatedly executes the trace's frame for a minimum o f
ten seconds or ten updates, waits for the graphics system to be
idle, and stops the clock . To insure fair comparisons, TBENCH
generates a warning if the GR interpreter reports that the trace ha s
used an unimplemented feature .

To date, we have implemented two GR interpreters . The GR-to -
GL interpreter runs on all Silicon Graphics systems, and the GR -
to-Starbase interpreter runs on the Hewlett-Packard TurboSRX.
We have just completed the Starbase version, and while it is full y

16 0

Update
Time

Disp

Figure 5 : Trace-based benchmarkin g

functional, we have not had enough experience with it to insur e
that it is taking full advantage of the TurboSRX's performanc e
potential . We will therefore present only the results from the G L
version . Table 7 lists the specifications of the Silicon Graphics
systems we tested .

Code Model Line/sec

	

Poly/sec
G 41V/0G 141000

	

400 0
P 4D/25G 90000

	

5000
PT 4D/25TG 200000

	

2000 0
GT 4D/80GT 400000

	

5500 0
GTX 4D/22OGTX 400000

	

100000

Table 7 : Systems tested

Table 8 presents the update time achieved by each system o n
the 28 traces . A useful property of our benchmarking approach i s
that we can trace other benchmark programs . The COPTER trace
is from the GPC picture-level benchmark (PLB) program[9] . We
traced several PLB files and ran both PLB and TBENCH on all of
the Silicon Graphics systems, obtaining identical results . We plan
to use this technique on the TurboSRX to verify the efficiency o f
the GR-to-Starbase interpreter .

Table 9 presents the update-time performance of each system
relative to the least expensive system, which is the 4D/25G . Note
that the performance advantage of the high-end systems over th e
low-end systems varies greatly among the traces. This underscore s
the importance of application-specific performance evaluation.

Table 10 presents the relative performance of the systems a s
specified by the manufacturer. The differences in rendering spee d
between the systems tend to be diluted in real applications by th e
presence of viewport clears, buffer swaps, and window contex t
switches ,

7 Other Use s

Our GR traces are a very convenient, compact, resolution -
independent way to package a single frame of 3D graphics, an d
they have proven useful in areas other than performance analysis :

• User-interface experimentation : We have implemented a uni-
versal viewing program called TVIEW that reads a trace in
binary or ASCII form and allows the user to "fly" through
the scene . TVIEW provides a convenient, consistent way to

Type Trace

	

G P PT GT GTX

1 VOXEL 5956 5097 3177 1213 78 8
2 VASEO 52 50 50 34 34

CFD 427 309 286 182 102

_et
CARO 1744 2453 1333 769 41 7
RODO 153 100 100 50 3 33

4 STICKO 648 385 254 118 11 8
5 COPTER 133 117 94 33 34
6 BARC 2300 1167 939 182 167
7 RAY 448 412 267 67 8 3

OILRES 6775_ 4689 _ 3895 714 723
8 BALLS 153 177 70 34 34

LIGHTS 303 270 151 51 5 1
LATHE 719 250 200 51 62
VASE1 618 467 351 68 68
STICK1 865 1136 384 116 11 6
BARS 937 839 217 137 11 6

FLIGHT 793 555 360 215 178
_ VORO 2963 2272 1067 366 327

9 ROD1 566 301 266 51 3 4
10 SLICE 1525 1117 301 133 13 2

WARP 3788 2002 517 250 25 0
WELL 7325 3622 1034 467 47 6

11 IDEAS 1431 700 401 149 152
SHELLS 1750 973 646 149 149

GRID 5325 3269 1653 333 30 1
ROTOR 7569 4434 1684 400 39 9

CARL 10588 6480 1836 750 603
12 PIC3D 10713 2869 - 263 250

Table 8 : Update times in millisecond s

test a system's "feel" using real data . When experimenting
with new general-purpose user-interface devices and tech-
niques, it is much easier to generate traces and work with
TVIEW than it is to modify the original application pro -
grams . TVIEW supports a mouse-operated virtual trackball ,
the SpaceBall six-axis input device, and stereo viewing .

e Debugging : TVIEW's ability to directly read ASCII trac e
files makes it a convenient debugging tool. It is often helpful
to capture a trace from a buggy program and use a text edito r
to modify the trace until TVIEW produces correct results .
YVIEW has a reread-file feature that reduces turnaround tim e
to one or two seconds, which is usually much faster than
changing, recompiling, and relinking the original program ,

o High-quality rendering : Using an iterative tiling technique ,
TVIEW can use a system's graphics hardware to render a
trace to an image file at an arbitrary multiple of screen res-
olution . The combination of TGEN and TVMW provides
an easy way to generate publication-quality images from an
arbitrary interactive 3D graphics program . We used TVIEW
to generate the images in Plate 1 .

• Testing : A library of traces can be used as a repeatable ,
realistic workload when doing software regression testing o r
production-line testing . We have implemented a progra m
that executes a trace, computes a signature function on th e
resulting image, and compares this signature with a known -
correct value,

Trace
File TBENC H

GR
Decoder

GR
Interpreter

161

1 VOXEL 0 .86 1 .00 1 .60 4 .20 6 .47
2 VASEO 0 .96 1 .00 1 .00 1 .47 1 .4 7

CFD 0 .62 1 .00 1 .08 1 .70 3 .0 3
CARO 1 .41 1 .00 1 .84 3 .19 5 .8 8

© RODO 0 .65 1 .00 1 .00 2 .00 3 .3 3
4 STTCKO 0 .59 1 .00 1 .52 3 .26 3 .2 6
5 COPTER 0 .88 1 .00 1 .24 3 .55 3 .44
6 BARC 0,51 1 .00 1 .24 6 .41 6.9 9
7 RAY 0 .92 1 .00 1 .54 6 .15 4 .9 6

OILRES 0 .69 1 .00 1 .20 6 .57 6 .4 9
8 BALLS 1 .16 1 .00 2.53 5 .21 5 .2 1

LIGHTS 0 .89 1 .00 1 .79 5 .29 5 .2 9
LATHE 0.35 1 .00 1 .25 4 .90 4 .03
VASE1 0 .76 1 .00 1 .33 6 .87 6 .8 7
STICKI 1 .31 1 .00 2 .96 9 .79 9 .79
BARS 0.90 1 .00 3 .87 6 .12 7 .23

FLIGHT 0 .70 1 .00 1 .54 2 .58 3 .1 2
VORO 0.77 1 .00 2 .13 6 .21 6 .95

9 ROD 1 0 .53 1 .00 1 .13 5 .90 8 .8 5
10 SLICE 0 .73 1 .00 3,71 8 .40 8 .46

WARP 0 .53 1 .00 3 .87 8 .01 8 .0 1
WELL 0.49 1 .00 3 .50 7 .76 7 .6 1

11 IDEAS 0.49 1 .00 1 .75 4 .70 4 .6 1
SHELLS 0 .56 1 .00 1 .51 6 .53 6 .5 3
GRID 0.61 1 .00 1 .98 9 .82 10 .8 6

ROTOR 0 .59 1 .00 2 .63 11 .09 11 .1 1
CAR1 0 .61 1 .00 3 .53 8,64 10 .7 5

12 PIC3D 0.27 1 .00 10 .91 11 .4 8

Table 9: Relative performance

Prim G P PT GT GTX
Line 1 .57 1 .00 2 .22 4 .44 4.44
Poly 0.80 1 .00 4 .00 11 .00 20 .00

Table 10: Specified relative performanc e

• Simulation : We implemented a program that uses a trace t o
drive a simulator for a new piece of graphics hardware . Thi s
enabled microcode developers to verify the correct execu-
don of real application programs before actual hardware wa s
available .

8 Future Work

Now that we have a reasonable way to measure how a system
performs, we are concerned with how to find out why it perform s
the way it does . We are currently building a trace-driven graphics-
performance simulator called TSIM. TSIM is a GR interpreter tha t
simulates the performance of three stages of a graphics pipeline :
traversal, transformation, and rasterization . The output of TSIM i s
an update-time prediction and a utilization factor for each pipelin e
stage (an indication of where the application-specific bottlenec k
is) .

TSIM is intended to be general enough to simulate accuratel y
the performance of a reasonably wide range of real graphics sys-
tems . To this end, it takes as a parameter a "system profile", whic h
is a vector of numbers that tells each simulated pipeline stage how

fast to be . We are implementing another program called SPGEN
that generates a system profile for a real system . SPGEN is a
portable, application-independent benchmark program that mea-
sures the performance of a system's graphics-pipeline stages b y
executing and timing small sequences of GR calls ,

We plan to use these programs to conduct the following exper-
iment:

1. Use TGEN to generate traces of real application programs .

2. Use SPGEN to generate profiles of real systems .

3. Plug the traces and system profiles into TSIM and generat e
stage utilization factors and an update-time prediction .

4. Test the accuracy of the update-time prediction by measuring
the actual update time with TBENCH .

If TSIM generates accurate results, it will be a useful tool fo r
understanding how graphics systems behave under real workloads.
Our goal is to be able to answer questions such as, "If I make
transformations twenty percent faster, which applications will se e
a reduction in update time? "

9 Summary

We have developed a convenient method for measuring how
general-purpose interactive 3D graphics systems perform under
real workloads . The method involves generating a trace file o f
rendering commands during the execution of an application pro -
gram . The trace generator is convenient to use because it doe s
not require any changes to user or system software and it doe s
not affect the behavior of the program being traced . Traces are
compact because they contain only a single graphics frame .

We have developed several tools that make use of the traces, in -
cluding a dynamic profiler, an update-time measurement program ,
and a viewer. All of the tools are portable because they are buil t
on top of a simplified immediate-mode graphics interface calle d
GR. It is relatively easy to build an efficient GR interpreter on to p
of existing graphics libraries .

10 Acknowledgements

We would like to thank Jim Winget, Forest Baskett, and Pau l
Haeberli of Silicon Graphics for their good advice and generous
support. We would also like to thank Susan Spach and Fred Kitson
of Hewlett-Packard for helping us with the TurboSRX port.

References

[1] Kurt Akeley . The Silicon Graphics 4D-240GTX Superwork-
station . IEEE Computer Graphics and Applications, 9(4) :71-
84, July 1989 .

[2] Brian Apgar, B . Bersack, and Abraham Mammen. A Dis-
play System for the Stellar Graphics Supercomputer Mode l
GS1000 . Computer Graphics, 22(4) :255-262, August 1988 .

Hewlett-Packard Company . Starbase Reference, 1988 .

Ardent Computer Corporation . Dore technical overview, Apri l
1988 .

G P PTTrace GT GTXType

[3]

[4]

16 2

[5] Nader Gharachorloo, Satish Gupta, Robert F . Sproull, an d
Ivan E. Sutherland . A characterization of ten rasterizatio n
techniques. Computer Graphics, 23(3) :233-368, July 1989 .

[6] Randi J. Rost, Jeffrey D . Friedberg, and Peter L . Nishimoto .
PEX: A Network-Transparent 3D Graphics System . IEEE
Computer Graphics and Applications, 9(4) :71-84, July 1989 .

[7] Silicon Graphics, Inc . GL Reference Manual, 1988 .

[8] Tektronix . OnRamp Function List, June 1989 .

[9] S . Tice, M. Fusco, and P. Straley . The Picture-Level Bench -
mark . Computer Graphics World, July 1988 .

Color images for this paper can be found in the colo r
plate section .

163

Dunwoody and Linton, "Tracing Interactive 3D Graphics Programs".

VOXEL CFD COPTER BARC

f

RAY OILRES BALLS LATHE

VASE1 STICK1 BARS FLIGHT

VORO ROD1 SLICE WARP

WELL LIGHTS IDEAS SHELLS

GRID ROTOR CAR1 PIC3D

267

