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Abstract
We have developed a virtual environment system which
supports multiple simulations, including virtual actors .
These actors exhibit motor behavior in response to activ-
ity in the environment . We present an example actor ,
whose low-level behavior is modeled after physiologica l
analyses of cockroach motor behavior . The sensori-
motor activity of our roach is generated by a hierarchica l
control structure . Coupled oscillators generate basic gai t
patterns, which are modified by reflexes feeding in fro m
the environment . Stepping and stance are executed by ki-
nematic motor programs, which move the legs and body .
The reactive level associates motor behavior with events
in the virtual environment, to simulate perception an d
implement higher level behaviors . The activity of the vir-
tual actor is determined only when it is situated in the en-
vironment, and interacts with the user and other simula-
tions .

1 . Virtual Environments, Virtual Actors and Roaches
Understanding how to represent, control and interact
with autonomous virtual actors is an urgent and timely
problem . For example, in the foreseeable future, robots
operating in hazardous environments -- in space, in dam -
aged nuclear power plants, on the ocean floor -- will no t
be intelligent enough to operate with complete indepen-
dence, but will require operator intervention to perfor m
tasks in changing or unplanned-for circumstances .
Simulator systems will be needed to design and tes t
prototype robotic agents in virtual environments . More -
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over, such simulations will allow operators to train wit h
virtual actors that model the robots that will be
encountered in working situations .

All kinds of animals, as well as human beings, have th e
capacity to move and function in the physical world effi-
ciently, in the face of changing conditions, apparently
without conscious intervention . This is the class o f
routine and stereotypical, perception-driven behaviors —
rather than highly developed cognitive and motor skills ,
such as playing piano or building a chest of drawers —
that our virtual actors are intended to perform .

A major objective of our work, therefore, is to learn ho w
to represent and control the routine behavior o f
graphically simulated actors that coexist with other simu-
lations in a distributed simulation environment .

In these "simulated micro-worlds" or virtual environ-

ments it is important that the user interface be natural an d
robust, and that the activity in the environment be self -
regulating . Within a virtual environment, multiple simu-
lations interact to form the global activity of the system .
Some of these simulations will be virtual actors wit h
repertoires of functional behaviors .

These actors should behave independently when undi-
rected, and respond to high-level user commands . Our
prototype actor? A computational cockroach which use s
an adaptive gait to negotiate cluttered, level terrain . This
hexapod, which we call roach, chooses from a set o f
behaviors based on the activity in the environment . For
example, in its basic behavior, the roach wanders aroun d
on its own, pushing objects out of its way . Activity in th e
environment elicits other behaviors from the roach, Thi s
can be as simple as a direct command from the user, suc h
as "stop walking," or more complex, such as a "grabbin g
hand " which triggers escape behavior . The user, other
simulations, or the roach itself can modify the environ-
ment to produce different behaviors . We chose an insec t
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behavioral model because it is fairly well described i n
the neurophysiological literature .

The roach, or any virtual actor, exists in a dynamic and
sometimes unpredictable vir tual environment governe d
by interacting simulations and the results of user inputs .
Our virtual environment system, bolio [1], uses a general-
ized application interface to allow diverse programs t o
control the behavior of objects in the shared database. A
constraint network in bolio is used to define relationships
among different simulations and user input devices, cre-
ating more complex behaviors from basic skills . User
input devices include the VPL DataGlove and Spatia l
Systems SpaceBall . The roach actor is one of many pro-
cesses which cooperate to determine the overall nature o f
the simulated world . The roach 's behavior in the world i s
expressed by updating the states of its body parts .
Sensory input to the roach is simulated by monitorin g
changes in other objects in the database . By manipulat-
ing the shared objects, other processes, alone or in com-
bination, can direct the roach's behavior . To generate
realistic behavior in this world, the roach mus t
automatically adjust to changing conditions at variou s
levels of control .

Interaction with virtual actors should be performed a t
task-level [t ; 2], meaning that the actors should respond to
high level commands, stated as goals by the user . While
our understanding of the representation and control o f
autonomous behavior is incomplete, we hav e
nevertheless identified critical issues in the organizatio n
and control of behavior [3 ; 4 ; 5] . In our current implemen-
tation we have roughly divided the behavioral hierarch y
of our prototype virtual actor into two levels : sensori-
motor, and reactive . At the sensori-motor level, the roach
uses coupled oscillators and reflexes to coordinate step -
ping, and kinematic motor programs to control move-
ment . At the reactive level, constraint triggers relate vir-
tual world events to sensori-motor level actions, such a s
setting the speed and direction of walking . The
observable behavior of the roach in the virtua l
environment emerges out of the interactions among the
roach, different simulations, and the user through the vir-
tual environment database (see figure 1) .

2 . Related Work
While virtual environments have been implemented b y
other researchers [6 ; 7 ; s] none of these systems provide s
facilities for representing and controlling virtual actors ,
but instead focus on issues relating to realtime renderin g
or telepresence .

Various graphics researchers have concentrated on par-
ticular behaviors, such as walking [9 ; 10 ; 11] and

crawling[12], or group behaviors such as flocking [13] .
Others have focused on particular classes of virtual ac -
tors . E .g ., Badler et al have developed a virtual environ-
ment that is designed to portray the execution of task
protocols by virtual astronauts in space statio n
environments [14] . These systems, however, do not sup -
port distributed simulations, interactions among a variety
of autonomous actors, or gestural interaction .

A fundamental problem of task level simulation is to rep -
resent the perception-driven behaviors of actors in a n
environment . There is thus a strong connection with
work in robotics, which, as Brady has observed, " . . .is the
field concerned with the connection of perception to ac-
tion" [15] . Brooks argues for a process model of robot be-
havior, and has developed robotic insects capable of sim-
ple behaviors, in much the same spirit as the work we re -
port here[16] . Agre and Chapman have developed a reac-
tive planner, PENGI, in which a simple actor reacts t o
events and other, simpler actors in a 2D videogame-typ e
environment [17] .

3. Motion and Reaction
We expect the behaviors exhibited by our actors to b e
modeled approximations to the behaviors seen in thei r
real-world counterparts . Therefore, our selection of th e
control systems employed by our virtual actors has been
motivated by ethological and psychological studies o f
human and animal behavior . Research into the neural
control of motor behavior emphasizes the hierarchica l
organization of functional units [18 ; 19 ; 20] .

figure 1 : Commands are issued by the user by manipulatin g
the environment, Not only the user, but also simulation s
change the environment database . At the reactive level, the
current state of the world triggers motor level responses .
The sensori-motor level controls the low-level skills of the
actor, and outputs its new state (body part positions, operat -
ing parameters) .

	 Virtual Actor

Sensori-motor
Level

Reactiv e
Leve l

Other
Simulation

Virtua l
Environmen t

Database

166



Weiss proposed a hierarchy of biological motor contro l
for producing coordinated activity[21], which we para-
phrase as follows :

Level 6 : The organism
Level 5 : Motor organ system s
Level 4 : Motor organ
Level 3 : Muscle grou p
Level 2 : Muscl e
Level 1 : Motor neurone

Level 1, the motor neurone, represents an individua l
muscle neuron and the attached muscle fiber . Taken indi-
vidually, no useful work can be accomplished by units at
this level . Level 2 represents a large collection of moto r
neurones grouped together as a muscle . When the moto r
neurones in a mass of muscle tissue are fired randomly ,
no organized work is accomplished, although heat i s
generated, and this is the behavior we call "shivering" .
When the neurones are activated in unison, the muscl e
unit can be made to contract, and this is the basis for or-
ganized motor behavior . Level 3 represents a muscle

group which cooperates to control motion at a singl e
joint, e.g ., agonist-antagonist pairs . The motor organ a t
Level 4 represents a motor unit that controls the orga-
nized behavior of multiple muscle groups to generat e
useful motion of a single limb, e .g ., the stepping or sup -
port motions of one leg . The level of the motor organ

system, Level 5, controls the actions of a set of moto r
organs as a complex, coordinated behavior, such as
walking or jumping . The highest level, according to
Weiss, that of the organism, employs the various motor
skills of the lower levels in response to external stimuli
and the internal state of the organism .

In a virtual actor, the motor programs which carry ou t
routine behaviors roughly correspond to the spinal cord
and lower brain centers (of higher animals) or the gan-
glia (of insects) . We have termed this the sensori-motor

level of control, which corresponds to level 5 and below
in the Weiss hierarchy .

In animals, the choice of motor behavior in response t o
sensory input is carried out in Level 6 (and higher levels )
of the nervous system . We term this the reactive level, i n
which behavioral responses are triggered by environmen-
tal stimuli .

For most mobile organisms, this hierarchy governs wha t
we might call routine or instinctive behavior . In human s
and other "higher" mammals, we can speculate that
Level 6, the reactive level, is augmented by enormousl y
complex and poorly understood cognitive structures ,
such as those discussed by Minsky [221 and other

researchers in artificial intelligence and cognitive sci-
ence .

Sensory input is employed at both the sensori-motor an d
reactive levels of control . Sensation at the sensori-motor
level mostly takes the form of peripheral and
proprioceptive feedback associated with reflex arcs . For
example, during walking, the step reflex increases th e
adaptability of a gait to unpredicted circumstances . Other
stimuli are used as analog signals to low-level control-
lers, such as the turning servo-mechanism described late r
in this text.

At the reactive level, the organism responds to environ-
mental stimuli, and composes behaviors in parallel or i n
sequence to satisfy some behavioral goal . For example ,
when the user forms the "follow" posture with the Data -
Glove, the roach is triggered to engage in its follow be-
havior, in which the position of the moving virtual han d
serves as a target for the lower-level walking skill .

To summarize, at the sensori-motor level we define th e
lower level motor units -- muscle groups, motor organ s
and motor organ systems -- needed to implement the
behavior repertoire of the actor being modeled . At the
reactive level, we need a control structure such that th e
organism can select and sequence useful behaviors in re-
sponse to internal goals as well as environmental stimuli ,
brought about by the user and other actors or
simulations .

4. The Sensori-motor Leve l
The basic behavior of our roach-actor is locomotion . A
hierarchical control mechanism within the sensori-moto r
level produces the movements of the body parts in orde r
to walk with a specified speed and direction. The
sensori-motor level is organized such that a gait control-
ler produces stepping patterns which are then executed
by kinematic motor programs . These programs use
inverse kinematics to compute leg joint angles from th e
positions of the feet as they step or support .

The gait controller, a Level 5 motor organ system, pro-
duces the coordinated activity of stepping and stance .
Each of the activities of stepping and stance involves
coordinated motor organ activity, at level 4 . The motor
programs control Level 3 muscle groups at the joints t o
generate the body and limb motions that move the ani-
mal .

We are also investigating dynamic walking systems i n
which all motion is physically simulated [23], creatin g
very complex and realistic motion . A frame from the
computer animation "Grinning Evil Death" is shown i n
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plate 5 . The large metallic roach is dynamically simulat-
ed, but uses the same gait control mechanisms describe d
below. Presently this system is slower than real time an d
precludes direct interaction .

4.1 . Gait Controller
The coordinated activity of stepping and stance results i n
locomotion . The gait controller creates the pattern o f
stepping activity . Our controller design was motivated b y
the analyses of insect neurologists, such as Wilson [24 ]

and Pearson [25], who determined that the gaits of cock -
roaches (as well as other animals) arise from the interac-
tion of a small network of functional modules .

4 .1 .1 . Coupled Oscillators
In our gait controller (as well as in the biological cock -
roach [25]), each leg has a pacemaker, or oscillator ,
which rhythmically triggers the leg to step . The oscilla-
tors are interconnected and coupled such that they main-
tain certain time and phase relationships . These relation -
ships can be described by simple rules which were ob-
served in the cockroach by Wilson [24] . They are summa-
rized as :

1. A wave of steps runs from rear to head .
2. Adjacent legs across the body step 180° out o f
phase .
3. Stepping time is constant .
4. The frequency with which each leg steps varies .
5. The interval between steps of adjacent legs on the
same side of the body is constant .

Oscillator frequency determines the generated gait, and a
continuous change of frequency results in a smooth gai t
change . Therefore, in order to walk with a certain veloci-
ty, the higher levels of control simply set th e
corresponding oscillator frequency and the gai t
appropriate for that velocity is generated . See figure 2 for
a diagram of the gait controller .

Our oscillator implementation can generate most of the
gaits seen in the cockroach and many insects . At slow
oscillator frequencies, a wave gait results, in which a
wave of steps passes up each side of the body of th e
roach, from rear to head . As the oscillator frequency in -
creases, the waves which are passing up each side of th e
body overlap more and more in time, until the fastest gai t
possible, the tripod gait, results . In the tripod gait, a sta-
ble tripod is formed by three supporting legs, while th e
other three legs step forward .

The oscillator model is valid for different leg counts ,
also. The model can coordinate an arbitrary number o f
leg pairs ; leg count simply becomes another parameter to
the controller [26] .

Thorax
Head

	

Abdomen

figure 2: Within the gait controller, coupled oscillator s
create a stepping pattern which is modified by reflexe s
feeding in from the environment .

4 .1 .2 . Reflexe s
Reflexes act to modify the basic stepping pattern create d
by the coupled oscillators . A step reflex, load-bearing re -
flex and over-reach reflex serve to increase the robust-
ness of the generated gait . The first two reflexes are
modeled after those found in the biological cockroach,
the latter is used to accommodate for limitations of kine-
matic modeling . In general, the reflexes reinforce th e
basic pattern generated by the oscillators, but increas e
the adaptability of the gait . Reflexes are especially im-
portant during speed changes and turning, which can b e
initiated at unpredictable times from the reactive level .

The step reflex triggers a leg to step if its upper limb seg-
ment rotates beyond a certain angle relative to the body .
In the cockroach, sensory hairs are responsible for thi s
detection [25] . Our model simply examines the angl e
computed by the inverse-kinematics routine. The step re-
flex increases gait stability especially during turning ,
since legs on the outside of the turn are rotated back -
wards at a faster than normal rate . The reflex is also
active during speed changes, which can delay the step o f
a leg . In fact, the step reflex alone can generate a normal
gait sequence, once that gait has been initiated by th e
oscillator mechanism .

The load-bearing reflex inhibits stepping if the leg is
supporting a load . In the exoskeleton of the cockroach,
cuticle stress-receptors measure the leg support . Because
our model is kinematic, weight measurements are not di-
rectly available . We could estimate the weight, based o n
the geometry of supporting legs . Instead, we simulate th e
effect of this mechanism by using a table of stable step -
ping configurations, which allows for rapid execution o f
the reflex . The table is an approximation of the weigh t
measurement, or supporting polygon calculation, and
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figure 3 : turn-to-heading servo-mechanism . To turn to a
specific heading, the roach computes the difference be-

tween its current heading and the desired heading . The dif-
ference is limited to a specified maximum turning angle
(per unit time) . The body is rotated by the compute d
amount, and the new heading feeds back into the servo -
mechanism for the next time step.

basically prevents stepping of adjacent legs (across th e
body or adjacent on the same side) . An additional step -
ping configuration is allowed when both middle leg s
step, and the four remaining legs support . Other, less sta-
ble stepping patterns can be allowed under software con-
trol . One such pattern is when the two middle legs an d
one front leg step together . This reflex is especially use-
ful for adapting to missing limbs .

We have implemented a reflex not found in the biologi-
cal cockroach, which we term the over-reach reflex. Thi s
reflex, useful in our kinematic simulation, is triggere d
when a leg over-reaches its kinematic extent, i .e . as a
supporting foot becomes too far from the body for the
leg to reach. This happens mostly when very tight turns
are executed . A number of motor responses are appropri-
ate when this reflex is triggered. We have chosen to
simply back-up one time step, so that the foot is agai n
within reach. Forward body motion is halted until th e
overextended leg's oscillator again triggers stepping, an d
forward body motion is resumed .

4.2. Motor Contro l
After the stepping pattern has been coordinated by th e
gait controller, the leg and body positions must be updat-
ed appropriately. Kinematic motor programs are used t o
position the end-effectors, and to update the body posi-
tion . Inverse kinematics solve for the position of the legs
from the computed body and foot positions . The inverse -
kinematics solution for the legs is solved directly for th e
simple three degree of freedom legs, resulting in rapid

execution time . General inverse kinematics is availabl e
through bolio if other leg configurations are desired .

The end-effector motor programs are responsible fo r
stepping and stance . During stance, the motor progra m
maintains the foot position in world space, as the bod y
moves forward (and possibly turns) . The stepping motor
program raises, then lowers the foot, and brings it for -
ward in the body local space .

The body-movement motor program translates the bod y
forward with a velocity determined by the oscillato r
speed. The over-reach reflex suspends the action of the
body motor program when a leg has reached its
kinematic limit.

Turning towards a given heading is controlled by a
servo-mechanism which rotates the body incrementally
towards the correct heading (see figure 3) . As the body
turns, the stance motor programs keep the supportin g
feet in place on the ground . The resulting motions visual-
ly approximate pushing by the legs .

The turning servo-mechanism can be controlled directly
from the reactive level by setting the desired heading an d
turning radius (which limits the amount the roach ca n
turn each time step) . Alternately, the roach can
coordinate its own turning using a path following con -
troller which plans turns to follow a given path of con-
nected points (see figure 4) . The design of this controller
was motivated not by insect study, but from our desire t o
have the actor remain on the piece-wise linear path as
closely as possible .

4.3 . Implementatio n
The gait oscillators are modeled as sine waves whic h
trigger when they reach the peaks of their cycles . Reflex -
es act as conditional units . Both of these set the state of

figure 4 : path following . Given a set of points which form
a path, the roach plans turns ahead of time in order to re -
main on the linear path segments as closely as possible .
To plan the turn, the roach uses a specified turning radius
which forms a circle, tangent to the two path segments .
The roach begins to turn at the contact point, and uses the
turn-to-heading servo-mechanism to come around to th e
new heading .

Limit SensorRotate
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the kinematic motor programs, which create the actua l
motion . The controlling gait parameters, such as oscilla-
tor frequency, are set with scripting commands at the
reactive level .

An alternate method of modeling the oscillator mecha-
nism has been researched by Beer, Chiel and Sterling,
who employ a heterogeneous neural network to simulate
the stepping patterns exhibited by the cockroach [27 ; 28] .

Their gait generator employs 37 neurons : three moto r
neurons, two sensory neurons, and one pacemake r
neuron for each leg . Walking speed is set by one com-
mand neuron . By varying the firing frequency of tha t
command neuron, a variety of gaits is generated by th e
network. As with our model, wave gaits result for slowe r
walking and the tripod gait results for fast walking . Their
implementation uses only simple two dimensiona l
motion, however.

We can interact with the sensori-motor level of our actor
using a task-level program or script which prescribes a
series of motor goals to satisfy . Between progra m
commands, the sensori-motor level generates the appro-
priate behavior, based on its operating state. Speed, posi-
tion, direction, paths and gait parameters are specified in
a simple ASCII scripting language . The positions o f
body parts and the state of operating parameters are out -
put at the request of other commands .

Because the task-level programming interface makes use
of standard programming protocols, the roach can easil y
be interfaced with other programs, even across a net -
work .

Task-level programming was used to script the anima-
don Cootie Gets Scared (see plates 1 and 2) . The Cooti e
character was given paths and speed commands which it
used to generate gaits and motions . The simulation was
also used to generate MIDI soundtrack corresponding t o
the footfall events . In plate 2, the colored dots on th e
ground form a path that the Cootie follows . The bod y
motion was fed into a dynamic simulator which create d
head and antennae motions in response to gravity, bod y
motions and head-turning actuators . These dynamic ef-
fects can be seen in plate 1 .

In addition to the programming interface, task-leve l
guiding tools have been implemented to control the
sensori-motor level . An X-window panel with sliders al -
lows the user to interactively set the oscillator frequency ,
overall actor "metabolism," and the turning radius to
steer the roach's heading. We have also implemente d
higher level guiding interactions such as using th e
DataGlove to define the target point for path following

behaviors . These interactions are implemented using th e
constraints available at the reactive level, and are de -
scribed more fully in the remaining text .

5 . The Reactive Level
The reactive level of control relates the motor respons e
of the actor to stimuli it receives from the environment .
Currently, we simulate the perception of environmenta l
stimuli as a constraint network which allows us to asso-
ciate events with motor acts .

Virtual actors generate behavior in response to messages,
which serve as stimuli in the virtual environment . Virtu -
al actors are signaled once at the start of a frame at whic h
point they update their component objects in the global
database to reflect their behavior during the current sim-
ulation time step . Other messages to the virtual actor ar e
sent in response to changes in the objects which are t o
influence the actor's behavior . These messages are used
to modify the goal states for behaviors such as objec t
tracking, or to modify the virtual actors ' internal state
when, for example, its own position is changed by user
input .

Exchange of environmental information is implemented
through bolio, a graphical simulation platform whic h
maintains a global object database and implements mes-
sage passing among distributed processes . This is similar
in spirit to message passing systems such as those
described in [29 ; 301 .

Information about the environment is organized in term s
of the graphical objects used to represent the scene .
Non-graphical information (or attributes) describing th e
state of the virtual actor can be dynamically associate d
with the graphical objects through the underlying objec t
system .

Processes can receive messages, query and modify th e
database of these objects . Processes may either be com-
piled into the bolio executable, in which case they acces s
the database through a function call interface, or the y
may be external programs (possibly executing on other
machines) which are connected to bolio at run time .
These external processes send and receive messages an d
access the database through UNIX pipes and sockets .
Processes in the system include physical simulations ,
actor behavior, and user input devices .

Constraint triggers built into the object system generate
messages as a function of changes in object state . These
messages carry programming commands and data t o
processes . The configuration of constraint triggers de-
fines the information flow through the system, and i s
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called the constraint network . Constraint triggers in the
network can be combined into named constraint sets
which can then be collectively deactivated to inhibi t
message passing in all the constraint triggers in the set .
Constraint triggers can generate messages to activate o r
deactivate constraint sets . This allows construction o f
hierarchies where conditions at the top levels influenc e
the way in which the lower levels respond to events .

An instance of a virtual actor includes the set of object s
defining the actor, a process which implements th e
sensori-motor level activity, and a set of constrain t
triggers . These send sets of sensori-motor level program-
ming commands to the motor skill process when
specified events in the global database occur .

At the beginning of each simulation time step, bolio sig-
nals a start-of-frame event and puts all messages into a
pending message queue . Bolio then enters a loop whic h
sequentially removes the top message from the pendin g
queue and sends it . Upon receipt of a message, a proces s
can query and modify the object database and directly
(or indirectly through constraint triggers) add message s
to the end of the pending message queue . The loop ends
when all messages have been sent, at which point the
graphical objects are rendered . Implications of this ar-
chitecture are discussed in [t ; 31] .

To illustrate the implementation of the reactive level ,
consider an instance of interaction between the roach and
the user through the DataGlove. The process responsible
for the DataGlove converts raw hand measurements int o
the position, orientation, and shape description for the
graphical objects which make up the virtual hand [32; 331 .

The DataGlove process also compares this shape with a
set of recorded postures . If a match is detected, a "pos-
ture" attribute of the virtual hand is set to the posture
name. Constraint triggers associated with that object are
then checked to see if messages should be sent out fo r
that state change. The roach "follow" behavior refers t o
the activity in which the roach is continually instructe d
to walk to the position of the virtual hand using its path -
following mechanism (see figure 4) . This behavior i s
implemented by a constraint trigger which sends new
path messages to the roach for each new position of th e
virtual hand as long as the "posture" attribute remains i n
the "follow" state .

6 . Interaction in the Virtual Environmen t
While the sensori-motor level and the reactive leve l
define how the roach will execute its behaviors, it is no t
until the virtual actor is situated in its environment tha t
what the roach will do is determined . Activity in the en-
vironment stimulates the roach, and activates behaviors .

The constraint triggers at the reactive level direct th e
stimulation to the actor from user input devices or from
other simulations . This technique has been used to
implement a range of behaviors in a prototype
environment which contains the roach actor and a
number of balls and boxes on a level surface (see plat e
3) . A DataGlove, Spaceball, and mouse are available for
direct manipulation of cursor objects in the environment .
Keyboard and X-window interface tools are available for
controlling the bolio system and for sending specifi c
messages to processes .

One of the processes active in the environment is th e
physics process, which performs simple dynami c
simulation of the motion of objects in the scene . The
roach and each of the balls and boxes in the environmen t
have mass and velocity attributes . Each frame, the
physics process evaluates the scene and calculates the
forces to apply to each body, divides the force by th e
body's mass to get acceleration, and integrates by th e
current time step value to get new velocities an d
positions for the objects . Forces which act on the objects
include gravity, elastic collision with other objects, an d
spring-dashpot elements between objects . When the
roach is active, its internal sensori-motor leve l
calculations override the physics process in defining th e
position and orientation of the roach . Even when no t
generating the motion of the roach, the physics proces s
still uses the position of the roach to generate repulsiv e
forces which act on other objects in the scene . This
allows the roach to push objects out of its way rathe r
than just walk through them . The current point mas s
dynamics will soon be replaced by a more complet e
articulated body simulation package [34] .

Direct manipulation of the objects in the environment i s
implemented through a grabber process . This process is
triggered by the "grabbing" state of a specified curso r
object (e .g . the recorded grab posture of the DataGlov e
or a specified button on the Spaceball) . When triggered ,
the grabber process calculates the distance from th e
cursor object to the set of objects defined as grabbable
for this cursor . The grabber process then sets the
"nearest_object" attribute of the cursor to be the name o f
the nearest object in the grabbable list . If the distance to
this object is less than a specified value, the grabbe r
process sets the "grabbed" attribute of this object to b e
true . While grabbing an object, the grabber process i s
triggered by each movement of the cursor and the
grabbed object is updated to follow that motion . When
the cursor exits the "grabbing" state, the "grabbed" at-
tribute is removed from the released object . Other
processes may then resume controlling its position (i .e . i t
may fall under gravity or crawl away), In effect, th e
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grabber process implements a 3D version of "click an d
drag" . Depth cues, including shadows on the groun d
plane and rubber band lines to the nearest object, hel p
the user track to the desired object .

Constraint sets have been used to build an escape
behavior using the roach, glove, and grabber processes .
The behavior includes a constraint trigger which i s
activated when the virtual hand's "nearest_object"
attribute becomes "roach" (i .e . the roach is in danger o f
being grabbed) . This sends messages to the roach t o
increase its walking speed and to set its goal point to be a
specified safe hiding place . When the virtual han d
"nearest_object" attribute has a value other than "roach "
(i .e . the roach is safe), the walking speed is set back to
normal and the roach resumes normal travel through th e
environment . The escape behavior is something like a
priority interrupt which must be serviced by the roac h
before it returns to its previous activities .

Using the bolio constraint facilities, the camera position
and orientation can be attached to the roach, providing a
"roach's eye view" of the micro world . While "riding th e
roach," the virtual DataGlove is attached to the movin g
camera, and the same "follow" mechanism now allow s
for relative steering, much like a "carrot-on-a-stick . "

Any objects in the environment can be used as the cursor
object which directs the motion of the roach . In the
"heel" behavior, the roach tracks the moving hand of an
animated, walking human character [to] (see plate 4) .

Optionally, any of the walking commands can operat e
with a real-time path planning module [35], which gener-
ates the shortest, unobstructed path through a static
environment

7 . Conclusion
We have created a simulated, walking roach, which act s
independently as well as under user command in a virtu-
al micro-world . At the reactive level, constraint s
translate interactive input to sensori-motor level com-
mand sets . These commands determine the speed, direc-
tion and gait parameters for locomotion. Walking is the n
executed by the sensori-motor level, which uses a bio-
logically-inspired gait controller and kinematic moto r
programs to create motion .

We feel the design of virtual actors should be guided b y
research into the behavior and neural organization of real
animals, a view also shared by workers in robotics [36 ;
[37], In this paper, we have described our translation of a
neurophysiological description of cockroach behavio r
into an animated model for study and play . We have

also presented our paradigm for interaction with virtua l
actors in which coordinated behavior is triggered b y
changes in the environment . The user is able to modify
the state of the environment through input devices which
monitor the same information channels the user would
use to communicate with real animals .

The reactive level of behavior is the most complex an d
least understood of the levels of control, since i t
incorporates goal directed autonomous actions, up to an d
including intelligent behavior . The scheme we present
here allows for the definition of stereotyped behavio r
patterns . We are currently implementing a mechanis m
for controlling behavior— the expectation lattice [41 —
based on ethological principles [20] .
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Plate h (top left) The Coo- 
de uses walking motor 
skills to follow paths speci- 
fied by the animator. Dy- 
namic simulation creates 
bending of the antennae. 

Plate 2: (top right) The 
Cootie's path is marked by 
colored dots. 

Plate 3: (middle left) Path- 
planning software creates a 
collision-free path around 
the objects, from the roach 
to the virtual DataGlove. 

Plate 4: (middle right) The 
"heel" behavior causes the 
roach to follow the hand of 
an animated biped. 

Plate 5: (bottom left) Gait 
controlling mechanisms co- 
ordinate the stepping of this 
physically-simulated roach. 
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