
Snap-Dragging in Three Dimension s

Eric A . Bier
Xerox PAR C

3333 Coyote Hill Rd .
Palo Alto, CA 94304
bier .parc@xerox .co m

Abstract : A large portion of the user interface in interactiv e
solid modeling systems is devoted to the problem of placin g
and orienting objects in three dimensions . In particular ,
many operations must be provided for selecting control
points, curves and surfaces, and for translating, rotating an d
scaling scene components into precise relationships wit h
other scene components . By factoring these operation s
carefully, it is possible to provide the desired functionality
so as to reduce both the size of the user interface and the
time that it takes to use it. With snap-dragging, the user
takes advantage of three main elements that work together :
a general-purpose gravity function, alignment objects tha t
can be created many at a time, and smooth-motion affin e
transformations . Scene composition is achieved in a single
perspective view using a mouse and keyboard . With 1 9
mouse commands, 15 keyboard commands, 5 menus o f
numbers, and 1 single-level menu of numerical transforma-
tions, this user interface has fewer commands and require s
fewer keystrokes than the skitters and jacks techniqu e
reported earlier .

CR Categories and Subject Descriptors : 1 .3 .6 [Compute r
Graphics] : Methodology and Techniques — Interaction
techniques

Additional Keywords : Scene composition, interactive
design, geometric construction, constraint system s

1 . Introductio n

High-powered workstations make it possible to significantl y
improve the user interface for composing three-dimension-
al scenes . This paper describes a technique for precisel y

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage ,
the ACM copyright notice and the title of the publication and its date appear ,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
c 1990 ACM 089791-351-5/90/0003/0193$1 .50

placing points and objects in a three-dimensional scene .
This technique, an extension of snap-dragging to thre e
dimensions, greatly reduces the number and complexity o f
commands that are needed to position scene objects
precisely. It requires no input devices other than a
keyboard and mouse and is compatible with two-dimen-
sional snap-dragging, so users can quickly go back and fort h
between editing two-dimensional shapes, such as curves t o
be extruded, and true three-dimensional shapes . Snap-
dragging can be used to compose and shape polyhedra ,
quadrics, spline patches, and any other surface type that ca n
be defined in terms of control points .

Snap-dragging is the combination of three interactiv e
techniques that work well together : gravity, alignmen t
objects and interactive transformations [Bier86a, Bier88] .
The gravity function enables a three-dimensional cursor,
called the snap-dragging skitter, to snap to points, curves ,
and surfaces in the scene . A set of alignment objects (lines ,
planes, and spheres) can be constructed at object vertice s
and control points, providing ruler-and-compass styl e
constructions in three dimensions. The skitter can b e
snapped to these alignment objects and their points an d
curves of intersection as well as to scene objects . Finally ,
interactive transformations (translation, rotation . and
scaling) track the motion of the skitter, which continues t o
snap to objects during transformations allowing precis e
transformations to be applied to scene objects .

All of the components of snap-dragging—gravity, align-
ment objects, and smooth motion transformations--hav e
appeared in previous systems (see section 2) . Snap-drag-
ging improves on these techniques individually an d
provides a new way to factor the user interface to reduce
both interface complexity and the average time required t o
perform a construction . In particular, snap-dragging makes
these improvements :

(1) Other systems have a picking mode that snaps t o
vertices, another mode that snaps to edges, and a
third mode that snaps to faces . This makes i t
essential to switch modes frequently in the course of
normal operation . Snap-dragging also has three

193

http://crossmark.crossref.org/dialog/?doi=10.1145%2F91385.91446&domain=pdf&date_stamp=1990-02-01

modes, but the functionality is distributed different-
ly so that one mode can be used most of the time ,
with the other modes being used only when the firs t
mode fails.

(2) A single menu selection can result in the creation of
many alignment objects, both immediately and i n
response to future construction operators. Because
several of these objects may be useful for a given
construction the user needs less than one mous e
click on average per useful alignment object created .

(3) All of the smooth-motion transformations follow th e
skitter and can be given precise end conditions usin g
gravity .

Snap-dragging achieves its economy of user interface b y
taking advantage of real-time feedback and by performing
some computations, such as computing alignment objects
and their intersections, automatically . As a result, the user
can often achieve a construction by choosing (e .g ., pointing
to an intersection point) rather than by describing (e .g. ,
asking for the intersection of two shapes to be computed) .

A prototype three-dimensional snap-dragging system ,
Gargoyle3D, has been implemented in the Cedar pro-
gramming language [Swinehart86], on the Dorado persona l
workstation [Pier83] . On the Dorado, smooth motion ca n
only be achieved with small scenes displayed as wireframes .
The author looks forward to the improved performanc e
that will be available from current hardware .

The remainder of this paper describes the background, use r
interface, and implementation of snap-dragging as follows :
Section 2 describes previous work . Sections 3, 4, and 5
describe the snap-dragging gravity functions, alignment s
objects and interactive transformations, giving examples to
show how they are used . Section 6 lists all of the snap -
dragging commands and describes those that are not de -
scribed elsewhere . Section 7 presents some performanc e
measurements . Section 8 presents my conclusions an d
plans for future work .

2. Previous Work

Many previous systems have addressed the problem o f
providing a user interface for scene composition that is eas y
to use . Constraint-based approaches achieve both precis e
affine transformations and precise point placement b y
solving simultaneously non-linear equations . Direct
manipulation approaches have combined techniques such
as gravity, alignment objects, and smooth motion transfor-
mations to make local changes to the picture . These direct
manipulation systems differ in how this functionality i s
factored into primitives .

2 .1 Constraint-Based Approache s

A wide variety of surface types can be shaped by contro l
points, including polygons, quadric surfaces and splin e
patches (see Lin's paper on variational geometry [Lin81] fo r
a description of point-parameterized solid models) . One

intriguing approach to positioning control points is to
represent relationships as a set of constraint equations .
Early two-dimensional constraint-based systems includ e
Sketchpad and ThingLab [Sutherland63, Borning79] .

An on-going project at the Computer Aided Desig n
Laboratory of MIT's Mechanical Engineering Departmen t
has used this approach to design families of parameterize d
mechanical parts whose shape is determined by specifie d
forces, torques and other design criteria [Light82 ,
Serrano84] . Using constraints to position points require s
investing time in creating and verifying a constrain t
network, a process that can be like debugging compute r
programs . Many constraints are needed ; even a simpl e
cube has 24 degrees of freedom . This investment will pa y
off for applications, such as mechanical engineering o r
animation, where a debugged constraint network will b e
used many times before it needs to be modified . However ,
to quickly produce a single solid model, this technique is
too time-consuming .

Rossignac, in his constraint approach from constructive sol-
id geometry gives a complete ordering to the constraints
[Rossignac86] . This makes them easier to understand an d
debug . Other work has focused on reducing the number o f
constraints that must be entered by hand [Congdon82 ,
Lee83, Chyz85]. However, the user must still understan d
and debug the constraint network that results (see [Bier88]
for a more detailed analysis of constraint approaches) . I n
addition, before constraints can be added, th e
unconstrained geometry must be described . A quick
sketching technique, such as snap-dragging, could be usefu l
for this first step .

2.2 Direct Manipulation Approache s

Another way to place points precisely is to extend draftin g
tools, such as ruler, compass, protractor, and T-square into
three dimensions . This is done in the Jessie editor at U C
Berkeley where commands are provided, for instance, to
construct an alignment line given two selected points . Two-
dimensional systems based on drafting techniques includ e
Ellis's layout editor [Ellis83] and CIMUNC's CIMCAD drafting
system. The problem with this approach is that it is tedious ,
It can require several keystrokes and pointing actions t o
create each alignment object.

Many geometric design systems use a gravity function t o
help the user place object points on vertices, edges, surface s
and their intersections . GRIN [Fitzgerald8l], GMSolid
[Boyse82], Jessie [Siegel86], and Sketchpad III [Johnson63]
implement gravity functions that snap the cursor to lines
and curves . Solidviews [Bier83, Bier86b] allows the cursor
to be placed on object surfaces . Most existing gravity
functions only snap the cursor to one type of scene object a t
a time (e .g., vertices or edges but not both), requiring th e
user to invoke mode-switching commands frequently .

Many interactive solid modeling systems provide affin e
transformations that vary smoothly, often in response t o
dials . These systems include Jessie [Siegel86], GRAMP S

194

[O'Donnell8l], and Parent's sculpting technique [Parent77] .
Robertson, Card and Mackinlay point out that whe n
objects move smoothly, it requires less cognitive effort o n
the part of the user to determine which objects have move d
and how [Robertson89] . Dials allow objects to be moved
until they " look right" or until a desired object is visible bu t
are not generally useful for precise motions .

To describe precise translations, rotations, and scalin g
operations, the user must specify the vector to translate by ,
the angle to rotate through, or the factor to scale by . Whil e
these values can be typed, it is often faster and mor e
intuitive to specify them indirectly in terms of points o n
scene objects. For instance, one might translate an objec t
through the displacement vector from a vertex on on e
object to a vertex on another object, or scale by the ratio o f
the lengths of two scene line segments . This idea is used i n
Solidviews [Bier83, Bier86b], GRIN [Fitzgerald8l], and is de -
scribed in Nielson's article on manipulation technique s
[Nielson86] .

If the points that are used to parameterize the transforma-
tions are just different positions of a cursor, then smoot h
dragging, cursor positioning, and transformation operations
are unified . This technique is used in a number of moder n
two-dimensional illustrators including Adobe Illustrator
[Adobe87] and Xerox Pro Illustrator [Xerox88], Snap-drag-
ging extends this idea to three dimensions .
One way to factor the direct manipulation operations is t o
provide a dialog for each operation, The user selects a n
operation (e .g ., rotate) . The system prompts the user for a n
operation sub-type (e .g., rotate about a coordinate axis,
rotate about a line determined by two points, etc .) and the n
prompts the user, in turn, for each of the arguments . This
approach was taken for instance in SCOT [Upstill85] .
Another approach to factoring is skitters and jack s
[Bier86b] . With this approach, all operations involv e
selecting the objects to be transformed, selecting a
coordinate system (called a jack) relative which to translate ,
rotate, or scale, specifying the amount by which to
transform by filling in a form, and clicking a menu butto n
or using a mouse motion to perform the transformation .
Jacks can be placed based at the skitter position. While
skitters and jacks is a relatively compact interface for man y
common transformation operations, it has no uniform wa y
to construct new points in free space, has an impoverishe d
gravity function, does not allow individual control points to
be moved, and, for most transformations, requires movin g
attention away from the scene area to use the menus .

3 . Gravit y

The snap-dragging gravity function must be compute d
several times per second so that the skitter moves smoothly
as the mouse moves . As a result, the gravity functio n
cannot consult the user to disambiguate its operation i n
cluttered scene regions ; it must choose one point at which
to place the skitter . Fortunately, if the gravity functio n
chooses a point other than the desired one, the user ca n
move the cursor until the correct skitter position i s
achieved . In cases where the desired point is obscured or i n
a hopelessly cluttered region, the user can cycle through th e
objects near the cursor line . Thus snap-dragging gravity
computes not only a best point but also an ordered list o f
close points.

From the user's standpoint, the gravity algorithm compare s
distances on the screen rather than in 3-space, The
algorithm determines which object point projects nearest to
the mouse cursor, finds the corresponding point in thre e
dimensions, and places the skitter at that point . It also
determines the orientation of the skitter. The skitter's z axi s
is chosen to be perpendicular to the edge or face (if any)
that the skitter snaps to, and the x axis is chosen to be
tangent to the edge (if any) that the skitter snaps to . If th e
skitter snaps to a vertex, its axes are determined by the faces
and edges that terminate at that vertex . The skitter' s
orientation becomes relevant when it is used to place th e
anchor (see Figure 9), which is in turn used as an axis o f
rotation .

The main gravity mode is points-preferred. In this mode ,
the skitter snaps to a vertex or point of intersection if on e
projects close to the mouse cursor . If not, the skitter wil l
snap to a line or edge if one is close by . If not, the skitte r
will snap to a face if one is under the cursor . If not, the
skitter will snap to a default plane . The other modes, lines-
preferred and faces-preferred, are used when the user needs
to point to an edge near, but not on, a vertex, or to a fac e
near, but not on, an edge, respectively . With points-pre-
ferred and lines-preferred gravity functions, a vertex o r
edge that projects near the cursor is considered by gravit y
even if it is obscured by a face . This allows easy access to
hidden components . Figure 1 shows points-preferred grav-
ity being used to place the skitter on a vertex or a fac e
(Figure 1(a)), and a rear-facing edge (Figure 1(b)) . The
dark circle is the mouse cursor . The shape with thre e
mutually perpendicular axes is the skitter. Its z axis is given
a triangle shape to make it distinctive .

195

Figure 1 . Points-preferred gravity . Snapping the skitter (a)
to a vertex or to a face, (b) to a (back-facing) edge .

With more effort, the user can also point to obscured faces.
The user points at the desired face point and clicks th e
mouse to initially place the skitter on the nearest face to th e
eye point . A keyboard command is then used to move th e
skitter back through the obscured faces until the desire d
face is reached.

Gravity operates during a variety of operations including
operations to place the skitter, add new line segments, or
apply smooth-motion affine transformations . In Figure 2 ,
points-preferred gravity is used to place the new endpoint s
of a line segment with two mouse button clicks .

Figure 2. Adding a line . (a) Placing the first end on a
vertex . (b) Rubber-banding the line segment to a face point .

The gravity function must compute the distance of th e
mouse cursor from the projections of faces, edges, an d
vertices . In the current implementation, all of these compu-
tations are actually performed in three dimensions to avoi d
projecting scene objects onto the screen . First, rays are cast
from the eye point through the cursor to find all intersecte d
faces . Next, for edges and alignment curves, the closes t
point, p, to the cursor ray and the distance of p to the cursor
ray are computed . This distance is divided by the depth (z
coordinate) of p relative to the eye point to approximate th e
distance of the curve's projection from the cursor . If thi s
division is not performed, the user must place the curso r
very close to the projection of distant objects in order to
snap to them . Finally, the distance of the cursor ray t o
vertices and points of intersection is computed and divided
by their depth . The gravity function combines the result s
of these computations and chooses one best face, edge o r
vertex to snap the skitter to . This choice depends on th e
current gravity mode .

Remarkably, the computation of intersection points that ar e
near the cursor can be done on the fly at almost no cost an d
with a very simple routine : there is no need to precompute
and store the pairwise intersections of curves with curve s
and curves with faces . Instead, these points are computed
as needed in the process of computing the gravity mappin g
for a particular mouse cursor position . The algorithm relie s
on two observations :

(1) The intersection point of two curves will only occu r
close to the cursor ray if both curves pass near th e
cursor ray .

(2) Once an intersection point has been found tha t
projects onto the screen within a distance t of the
cursor, better intersection points can only come fro m
two curves that project within distance t of th e
cursor .

Thus the gravity algorithm first finds the edges that projec t
within a tolerance distance of the cursor. These edges ar e
sorted by increasing distance from the cursor . Intersectio n
computations are performed on the nearest pairs of edge s
first . As soon as an intersection point is found, all edge s
farther from the cursor than the intersection point ar e
removed from further consideration .

The same trick can be used to reduce the number o f
vertices that are considered by the gravity algorithm .
Instead of asking each object that is near the cursor t o
compute the distance from each of its vertices to the cursor ,
we ask only the edges that have been found to be close an d
perform this computation for their endpoints .

In general, snap-dragging spends its time not on vertices
and intersection points, but on edges and faces. Ray -
tracing and hit detection for edges can be computed quickl y
enough to allow several cursor updates per second on m y
Dorado workstation on scenes with a few hundred edges .
Some performance figures appear in section 7 .

4. Alignment Objects

The current implementation of snap-dragging include s
three different types of alignment objects : lines, planes, an d
spheres . The user activates a set of alignment objects b y
choosing from an extensible menu of alignment values .
Three factors make the alignment objects in snap-draggin g
particularly powerful : (1) each alignment value can trigger
the construction of many (identically-shaped) alignmen t
objects at the same time, (2) any combination of alignmen t
values can be activated at once, and (3) intersection curves
and intersection points are computed automatically and are
gravity-active . This section shows how alignment object s
are used and describes some of the details of their imple-
mentation .

The alignment menus are shown in Figure 3 . A desired di-
rection of alignment lines is activated by selecting a n
(azimuth . slope) pair from the row of items labelled "Line" .
Azimuth and slope are both angles in degrees . Likewise, a
desired orientation of alignment planes is activated fro m

196

the "Plane " row, and a desired radius of alignment spher e
from the "Radius" row. The "Line" and "Plane" menu s
initially contain values corresponding to the x, y an d
negative z axes of WORLD . The "Radius" menu initiall y
contains a set of fractions and small integers, where th e
units can be set to inches, centimeters, or any other value .

Azimuth :

	

Add! Delete! 150 135 120 90 60 45 30 10 0
Slope: Add! Delete! 90 60 45 30 0 -30 -45 -60 -9 0
Line : New! Add! Delete! (0 0) (0 90) (10 0) (90 0)
Plane : New! Add! Delete! (0 0) (0 90) (90 0)
Radius : Add! Delete! 1/8 1/4 1/3

	

1/2 2/3 3/4 1 2 3 4

Figure 3. The alignment menus in Gargoyle3D .

The user can extend the "Line" and "Plane" menus usin g
two other menus : "Azimuth" and "Slope" . To add a ne w
(azimuth, slope) pair to the "Line" menu, the user activates
one item from the azimuth menu and one from the slop e
menu and clicks the "New!" button on the "Line" row ,
Pairs may be added to the "Plane" menu in a simila r
fashion . Figure 3 shows the alignment menus after lines o f
azimuth 10 and slope 0 have been added .

All of the alignment menus can also be extended by typin g
new values and by measuring values from the scene . Afte r
each mouse operation, Gargoyle3D measures th e
displacement vector through which the skitter has moved
and reports the length and direction angles of this vector .
Any of these values may be added to the alignment menus .

Adding alignment objects to the scene is accomplished i n
two steps . First, the user selects those scene objects that are
to trigger alignment objects and issues a keyboard coin-
mand to turn all of the selected vertices into alignmen t
triggers, called "hot points ." Hot points are drawn as large
white squares, as shown in Figure 4, Next, the use r
activates a value from the alignment menus . At each hot
point, the system constructs alignment objects of all cur-
rently active values . In Figure 4(a), the user has made al l
three vertices of an equilateral triangle hot and activated
alignment spheres . The system constructs three sphere s
and their circles of intersection . By snapping to vertices
and points of intersection, the user constructs the tetrahe-
dron of Figure 4(b).

Figure 4. Tetrahedron construction . (a) A new line
segment is stretched to a point where all three spheres meet .
(b) The last two segments are snapped to existing vertices .

To avoid screen clutter, each of the alignment objects i s
drawn as a single thin gray curve, and intersection curve s
are displayed as thin black curves . Each sphere is shown by
its silhouette circle, as shown in Figure 4. Alignment planes
are shown as small gray squares, as shown in Figure 5 . The
black object that resembles a nautical anchor in this figur e
is the anchor, a special object whose center point is alway s
hot . Alignment lines are drawn as thin gray lines (see Fig-
ure 6) . When the user snaps the skitter to an alignmen t
object, it becomes thick and black .

Figure S . Alignment planes triggered by the anchor . (a) A
horizontal alignment plane . (b) Three perpendicular align-
ment planes and their lines of intersection.

When the skitter snaps to an intersection point ,
Gargoyle3D highlights all of the alignment objects and/o r
the hot points that contributed to that intersection point . In
Figure 6, the skitter is snapped to the intersection point o f
two alignment lines, each of which is triggered by two ho t
points . An asterisk is placed at all four hot points . In order
to provide this feedback, Gargoyle3D must notice whe n
two or more hot points generate the same alignment object .
Such an alignment object is called a duplicate.

Figure 6 . Snapping to an intersection point . (The white
squares that indicate hotness are not displayed during inter -
active operations .)

Hidden line elimination is not performed on alignmen t
objects, even when it is performed on scene objects, a s
shown in Figure 6 . So, it is easy to snap to alignmen t
curves, even when they are obscured . This also allows
Gargoyle3D to draw new alignment lines withou t
performing hidden line computations when the use r
activates new alignment values .

Several types of alignment lines can be used
simultaneously . In Figure 7, the user has selected sphere s
of radius 4 inches and three orthogonal alignment planes .

(b)

19 7

A sphere and three planes are constructed, centered on th e
anchor . The system automatically computes the circles o f
intersection where the planes meet the sphere . Using
points-preferred gravity, the user can sketch in a precis e
wireframe octahedron using one or two mouse clicks pe r
line segment (most of the segments can be entere d
consecutively so the second vertex of one segment become s
the first vertex of the next) .

Figure 7 . Constructing an octahedron using three alignmen t
objects and their intersection curves .

By activating a mode, called the automatic rule, the user ca n
request that the stationary control points of an object, some
of whose points are moving, become hot automatically .
This makes it easy to align object points with other points o f
that same object .

While the system is willing to create many alignmen t
objects at once, the user must be careful not to request to o
many . Any combination of alignment values and hot point s
that produces more than, say, 100 alignment lines wil l
create enough screen clutter to be more distracting tha n
helpful . Also, alignment lines should be used in preferenc e
to alignment planes when possible because the intersectio n
of alignment planes with other planes and alignmen t
spheres quickly creates too many curves .

The designer of a snap-dragging system must carefull y
consider which intersection curves and points to compute .
This decision affects both the implementation and the user .
Gargoyle3D currently computes the intersections of align-
ment objects in all pairs, the intersections of straight edge s
with all alignment objects and other straight edges, and th e
intersections of alignment lines with all object surfaces . I t
would be possible to compute other intersections, including
the intersections of all object surfaces with other object
surfaces or of object surfaces with alignment planes (an d
some of these combinations are contemplated for futur e
work) ; however, additional intersections may contribute t o
screen clutter, make skitter motion under gravity more
jerky, and reduce performance . More powerfu l
workstations and better rendering will affect this trade-off
in the future .

The intersection curves of two alignment spheres or o f
alignment spheres with alignment planes are circles. The

gravity algorithm must compute the distance between th e
each circle and the cursor ray . This is equivalent to findin g
what radius torus with its tube centered around the circl e
would be tangent to the cursor line . Rather than solve a
fourth-degree equation for each circle, Gargoyle3 D
approximates the distance as follows : The intersection o f
the cursor ray with the plane of circle is computed and then
the distance of the resulting intersection point to the circl e
is found . This approximation becomes exact when th e
cursor ray hits the circle, so the user can compensate for th e
approximation by pointing more carefully . This
approximation is worst when the circle is viewed edge-on .
The error can be reduced when the circle becomes nearl y
edge-on by replacing, in the first step of the algorithm, the
plane of the circle by the cylinder that passes through the
circle perpendicular to its plane .

Each time the current set of alignment objects changes, i t
may be necessary to calculate new intersection curves, dra w
new alignment objects on the screen, and keep track o f
duplicates . Getting good performance requires makin g
these changes incrementally, The following algorithm ha s
been fully implemented only for two-dimensional snap -
dragging ; I am confident it will work in three dimensions as
well . Call the current set of alignment objects the align bag.
To keep the align bag up to date, one must handle six cases :

(1) More objects are hot or new hot objects are added to
the scene ; the new alignment objects generated b y
these hot points and their intersection points are
added to the align bag ,

(2) More objects are cold or hot objects are deleted fro m
the scene . Step 1 is inverted.

(3) An alignment value is activated . The Cartesian
product of this value with all hot points is computed.
The resulting alignment objects and their intersec-
tions are added to the align bag .

(4) An alignment value is deactivated .

	

Step 3 i s
inverted .

(5) An interactive transformation is beginning. Align-
ment objects triggered by moving hot points ar e
temporarily removed from the trigger bag . If the
automatic rule is on, stationary points of partially-
moving objects are made temporarily hot, and step 1
is invoked .

(6) An interactive transformation ends,

	

Step 5 i s
inverted .

Gargoyle3D currently uses an O(n 2) algorithm for detectin g
duplicate alignment objects . However, it is possible to us e
hashing to improve this algorithm to nearly O(n) . For each
alignment line or plane, compute its distance, d, from th e
origin . For each alignment sphere, compute the distance, d,
from its center to the origin of WORLD coordinates . Use on e
hash table for each alignment value. Use L d / e J as th e
hash table key, k, where e is the farthest apart two align-
ment objects can be and still be considered duplicates .
Each bucket of the hash table is a linked list of alignmen t
objects . Any duplicates of a given alignment object will b e

198

in the buckets whose keys are key-1, key, or key+ 1 . Check
all three buckets before adding the object .

5 . Transformation s

All of the snap-dragging transformations smoothly follo w
the skitter . Because the skitter continues to snap to scen e
objects and alignment objects during transformations,
objects can be placed precisely . This section describes ho w
translation, scaling, rotation about a point, and rotatio n
about an axis depend on the skitter position and gives a n
example of each transformation in use.

During a translation operation, the selected objects ar e
translated by the vector from the initial skitter position t o
the final skitter position . In Figure 8, a selected tetrahedro n
is translated until its corner snaps onto the corner of a n
octahedron . The skitter was placed on the corner of the tet-
rahedron with the "Place Skitter" command . When thi s
command is completed, the cursor moves independently of
the skitter, allowing the user to use the mouse for othe r
applications, or invoke menu functions, without disturbin g
the skitter position . During the "Translate" operation, the
skitter tracks the cursor, bringing any selected objects with
it (Figure 8(a)) . Since the skitter obeys the gravity function ,
the skitter can be snapped onto scene objects, achieving a
precise translation (Figure 8(b)) .

As mentioned in section 3, when there are no objects nea r
enough to the cursor ray to snap the skitter to, the skitte r
moves on a plane, the default plane, that is parallel to th e
screen . The default plane assures that objects mov e
smoothly in the two directions parallel to the screen with a
discontinuity in depth whenever the skitter jumps from an
object to the plane or from the plane to an object . These
small jumps are a standard part of snap-dragging and hel p
the user tell when gravity has drawn the skitter to a ne w
object .

Figure 8 . Translation. (a) The "Translate" comman d

begins . (d) Snapping the polyhedra together .

To reduce clutter, the mouse cursor is omitted in the

remainder of the figures . The reader should remember tha t
the cursor is always involved in placing the skitter .

The anchor, which was introduced in the last section, is
used variously as a center of rotation, an axis of rotation, a
center of scaling, or a gravity-active position that the use r
wishes to remember. When the user invokes the "Dro p
Anchor" command, the anchor takes its position an d
orientation from the skitter, permitting the anchor to b e
placed precisely (Figure 9) . The square in the middle of the
anchor faces in the z direction, and the barbed line seg-
ments lie along the x direction (with an extra arrowhea d
showing the positive x direction) . The anchor is similar i n
function to the jacks of the skitters and jacks technique ,
except that there is only one anchor per scene .

Figure 9. Placing the anchor. (a) The skitter is placed . (b)
The anchor is created . (c) The skitter is removed .

During rotation about a point, the selected objects rotate
about the anchor point . This rotation occurs through th e
angle between the line determined by the anchor and th e
original skitter position, and the line determined by th e
anchor and the final skitter position . The axis of rotation i s
the line that passes through the anchor point and i s
perpendicular to the plane determined by three points—th e
original skitter, the anchor, and the final skitter . Hence, the
final skitter position determines the axis of rotation . This
rotation operation is ideal for rotating two edges to b e
coincident, as shown in Figure 10.

Figure 10 . Rotation about a point . (a) The anchor is place d
at the shared vertex of the two polyhedra . The skitter i s
placed on the tetrahedron edge . (b) The skitter snaps to th e
octahedron .

The scaling operation scales the selected objects by the rati o
of the current skitter-to-anchor distance to the origina l
skitter-to-anchor distance . In Figure 11, the tetrahedron i s
scaled until its edges are congruent to those of th e
octahedron .

X

(b)

199

Figure 11 . Scaling. (a) The skitter is placed on the neares t
vertex of a selected tetrahedron . (b) The tetrahedron i s
scaled until the skitter snaps to a vertex of the octahedron .

During rotation about an axis, the selected objects ar e
rotated about the x axis of the anchor by the angle throug h
which the skitter moves about this axis ; any motion of th e
skitter parallel to the axis is ignored . In Figure 12, w e
rotate the tetrahedron until it shares a face with th e
octahedron . In Figure 12(a), we place the skitter on the top
vertex of the tetrahedron . The anchor already has its x axi s
aligned with the shared edge ; this is one of the benefits o f
having the gravity function align the x axis of the skitte r
with edges and having the anchor take its orientation fro m
the skitter. Throughout the operation, the left face of the
tetrahedron remains coplanar with the skitter, so when th e
skitter is snapped onto the top vertex of the octahedron the
two faces become coplanar (Figure 12(b)) .

Figure 12 . Rotating about an axis . The tetrahedron rotates
about the x axis of the anchor (and hence around the edg e
shared with the octahedron) .

6. The Snap-Dragging Command s

Snap-dragging in three dimensions currently employs 1 9
mouse-based commands, 15 keyboard commands, and a
pop-up menu with 10 commands, for a total of 4 4
commands . This section lists all of the commands an d
briefly describes those that were not covered above .

6 .1 Mouse Command s

Snap-dragging is implemented on a workstation with a
keyboard and a three-button mouse . Using the Control an d
Shift keys on the keyboard in concert with both single an d
double clicks on the mouse buttons, 24 operations can b e
invoked . With this arrangement, all of these 19 mouse -
oriented commands can be accommodated :

Selecting components (6 commands) : Select Vertex, Select
Edge, Select Cluster, Select Polygon, Select Withi n
Rectangle, Extend Selectio n

Deselecting components (5 commands) : Deselect Vertex ,
Deselect Edge, Deselect Cluster, Deselect Polygon ,
Deselect Within Rectangle

Placing the skitter (1 command) : Place Skitte r

Adding geometry to the scene (2 commands) : Add Edge,
Add Bloc k

Transformations (4 commands) : Translate, Rotate Abou t
Point, Rotate About Axis, Scal e

Copying (1 command) : Copy & Translate

The selection and deselection commands are not specific t o
snap-dragging . They allow the user to select vertices, edges ,
polygons, and complete assemblies (called clusters) in an y
combination . Once selected, these objects can b e
transformed, made hot or cold, given new colors and so on .

So that the user can reliably select scene components b y
pointing, Gargoyle3D provides feedback to disambiguat e
selections . In Figure 13, a black square highlights a verte x
that has been selected . By itself, this feedback would b e
ambiguous, because it is impossible to tell which of th e
three blocks the vertex belongs to . To solve this problem ,
Gargoyle3D highlights, with white squares, the non -
selected vertices of the cube whose vertex is selected . By
pointing near the vertex but at different angles around it ,
the user can select the coincident vertices belonging to the
other two cubes. The implementation of these selection
operations uses the snap-dragging gravity routines wit h
parameters to tune them for selection tasks .

Figure 13 . Selection feedbac k

The Place Skitter command uses gravity to place the skitte r
within the scene. The scene is not changed . This comman d
is used before a transformation, before an object is added t o
the scene, and before the anchor is dropped, since all o f
these operations depend on an initial skitter position .

Because edges and blocks are important shapes, the Ad d
Edge and Add Block operations are provided to add them
to the scene with a single button click. Add Edge adds a
new line segment from where the skitter was before thi s
operation began to wherever the skitter is placed by the en d
of the operation . Likewise, Add Block adds a block ,
aligned with the WORLD coordinate axes, whose tw o

200

diagonally opposite corners are these two skitter positions .

The transformations were described in detail in section 5 .
Copy & Translate works just like Translate, except that i t
copies the objects before translating them .

6 .2 Keyboard Commands

By holding down the Control key and an alphabeti c
keyboard key, with or without the Shift key, the user ca n
invoke up to 52 commands . Snap-dragging uses 15 of thes e
keyboard combinations for these common operations :

Anchor placement (2 commands) : Lift Anchor, Drop
Anchor

Selecting components (3 commands) : Select All, Cycle
Selection Forward (Backward)

Changing the gravity function (3 commands) : Cycl e
Forward (Backward) through the Three Gravity
Functions, Toggle Gravity On and Off

Changing hotness (5 commands) : Make Hot, Make Cold ,
Make All Hot, Make All Cold, Toggle th e
Automatic Rule On and Off

Placing the skitter (2 commands) : Cycle Skitter Forward
(Backward)

Lifting and dropping the anchor was described in section 5 .
Select All selects all of the objects in the scene . The Cycle
Selection commands select, in turn, all of the objects tha t
were under the cursor during the most recent selection
operation, This allows obscured objects to be selected .
Cycling though the gravity functions allows the user to
choose from points-preferred, lines-preferred, and faces -
preferred gravity functions . Gravity can be turned on and
off. With gravity off, the skitter always moves on th e
default plane . Make Hot and Make Cold make the
selected objects hot or cold . Make All Hot and Make Al l
Cold make all scene objects hot or cold . The Cycle Skitter
commands allow the skitter to be placed on obscured face s
by placing it, in turn, on all surfaces that were behind th e
cursor the last time the Place Skitter operation wa s
performed .

6 .3 Menu Commands

To specify a transformation numerically the user can invoke
one of these 10 operations, provided in a pop-up menu :

RotateX, RotateY, RotateZ, Scale, Translate and their fiv e
inverses ,

RotateX(Y,Z) rotates the selected objects around the x(y,z)
axis of the anchor by the specified number of degrees .
Scale scales them by the specified factor . Translat e
translates them by a vector, described as three decima l
numbers ; this vector is interpreted relative to the axes o f
the anchor, The user types or selects the numerica l
arguments to these commands .

7 . Performance

Two features of snap-dragging require significant
computation : computing the gravity function multipl e
times per second, and computing the intersection curves o f
alignment objects and scene objects when alignment values
are activated . This section describes some performanc e
tests that were performed on a Dorado 16-bit workstatio n
running the Cedar programming environment . This con -
figuration is roughly comparable in computational speed t o
a SUN 3/160, using Dhrystone as a benchmark .

To test the performance of gravity in Gargoyle3D, I ra n
three tests . The first test performs points-preferred gravity
on a scene consisting of an array of cubes . As most system s
have some capability for pointing to vertices, edges, an d
polygonal faces, this should be a good figure fo r
comparison . I tried different sized arrays of cubes . For
each scene, I moved the cursor so that it remained in fron t
of the cubes and took the average over about 20 curso r
positions, Here were the results for five different array size s
(all times are in milliseconds) :

2x2 (48 edges, 32 vertices) :

	

91 m s
2x4 (96 edges, 64 vertices) :

	

159 m s
4x4 (192 edges, 128 vertices) :

	

199 m s
4x8 (384 edges, 256 vertices) :

	

211 m s
8x8 (768 edges, 512 vertices) :

	

259 m s

The slow growth in time for the larger arrays reflects th e
fact that most of the cubes are culled by quick rejectio n
tests . Profiling reveals that about 10% of this time is ray -
tracing, 48% is finding the distance to edges and computin g
an orientation for the skitter in case a given edge is chosen ,
and 41% is for finding the nearest vertices and computin g
an orientation for the skitter in case a given vertex i s
chosen . Better factoring of this code would probabl y
improve these results by at least a factor of 2 .

Figure 14. A gravity test case with 10 edges, 20 spheres, and
31 intersection circles .

The second test case, shown in Figure 14, is a scene with 20
hot vertices, 20 spheres, and 31 intersection circles . It i s
rare that a user would ask for this many alignment sphere s
at the same time . Even so, gravity can be computed in 4 5
milliseconds on the average for this scene . When th e

201

spheres are made smaller so that they are precisely tangent ,
this time drops to 42 milliseconds . If the spheres are mad e
smaller still so that the do not touch, the time drops to 2 8
milliseconds .

A final case, shown in Figure 15, tests gravity performanc e
in the presence of many alignment lines . The three axes of
a coordinate system were drawn with 10 hot vertices evenl y
spaced along each axis, Three types of alignment lines wer e
activated in the x, y, and z directions . This creates 90 tota l
lines (or 57 lines once duplicates are removed) . For this
scene, the gravity computation takes 43 milliseconds o n
average .

Figure 15 . A scene with 30 hot vertices and three active
alignment values .

None of these gravity times is prohibitive, and times can b e
expected to improve with further tuning of the code an d
faster hardware. Furthermore, the gravity algorithms are
linear in the number of scene curves . Rendering algorithm s
are at best linear in the number of visible curves . Thus, w e
can expect gravity times to grow no faster than th e
complexity of scenes that we are able to render . Keep i n
mind that these times only includes the gravit y
computation . The total time for an operation would als o
include the time to update the screen ; that time, however, i s
much more dependent on the available rendering hardwar e
and software .

Three tests were also run of the time taken to compute new
alignment objects and their intersections when the user
activates a new alignment value . The first test reuses the
scene of Figure 14 . When the user activates the sphere
radius value, the system computes the 20 spheres and 31 in-
tersection circles and adds them to the align bag. This takes
80 milliseconds . This time is reduced to 62 milliseconds i f
the spheres are tangent, and 50 milliseconds if the sphere s
do not touch . Profiling reveals that, in the 50 millisecond
case, 50% of the time is spent walking the scene data
structure enumerating hot points . 24% of the time is spen t
computing intersections and 18% is spent checking for

duplicate spheres .

The second test reuses the example of Figure 15 . The thre e
slope line values were turned on one at a time . Each valu e
causes 30 alignment lines to be triggered, 11 of which ar e
duplicates . Adding the first set took 55 milliseconds, th e
second set took 63 milliseconds, and the third set took 6 4
milliseconds . Profiling reveals that, for the first set, 46% o f
the time is spent removing duplicates, 27% is spent walkin g
data structures to enumerate hot points, and 18% is spen t
allocating storage for the resulting alignment lines . The
hashing algorithm described in section 4 should reduce th e
time for removing duplicates to almost zero .

The final test uses the grid of Figure 15, but activates thre e
perpendicular sets of alignment planes instead of alignmen t
lines . The resulting scene has 30 distinct planes and 300 in-
tersection lines . As this configuration nearly paints th e
entire screen black, most users would not create this many
intersecting planes . Nonetheless, adding the first set o f
planes takes only 31 milliseconds, adding the second se t
takes 149 milliseconds, and adding the third set takes 24 5
milliseconds . Profiling reveals that about 78% of the 24 5
millisecond time is spent computing intersections, an d
about 9% is spent removing duplicate planes .

All of the times for updating the align bag are low . Fas t
updates are not particularly important for the times whe n
the user activates a new alignment value because suc h
activations are relatively rare . However, the user will fre-
quently move or delete hot objects . At these times ,
updating the align bag is only a sub-part of the computatio n
and good response depends on rapid updating of the alig n
bag .

8 . Conclusions and Future Wor k

Snap-dragging in three dimensions combines a multi -
purpose gravity function, alignment objects that are
generated from scene hot points by a Cartesian produc t
rule, and smooth-motion affine transformations that ar e
controlled by a 3-space cursor . Snap-dragging combines
these elements to produce a new factoring of the user
interface for precise interactive scene composition . It can
be controlled by a mouse and keyboard . It works with a
single projection and produces distinguishable feedback o n
a bi-level display .

The current implementation of snap-dragging employs 1 9
mouse commands, 15 keyboard commands, five extensibl e
menus (one each for the sphere, line, and plane alignmen t
objects plus the slope and azimuth menus), and a singl e
pop-up menu for numerically-specified transformations .
Together this user interface provides capabilities fo r
selecting and de-selecting objects, placing a cursor and a n
anchor, translating, rotating, and scaling objects, copyin g
objects, creating and deleting alignment objects, an d
changing a gravity function .

Gravity, alignment objects, and interactive transformation s
work well together . The general-purpose gravity functio n

202

allows the user to indicate by pointing whether operation s
begin and end on vertices, control points, alignmen t
objects, edges, or surfaces . The alignment objects allo w
points and objects to be placed at precise directions an d
distances from each other . Because multiple alignmen t
objects are computed at once, many points and objects ca n
be placed precisely with a single setting of the alignmen t
object menus . The interactive transformations work to-
gether with gravity and alignment objects to produc e
precision and smooth motion at the same time .

Snap-dragging is a useful alternative to both constraint -
based systems and to other direct manipulation system. In
cases where the desired result is a single static scene, snap -
dragging provides a fast method of building precise scene s
that does not require creating a constraint network . Snap -
dragging is an improvement over skitters and jacks in both
simplicity and power . Because snap-dragging requires onl y
a single anchor instead of many jacks, there is no need fo r
commands to create, move, select, or delete jacks and the
number of steps needed to transform scene objects i s
reduced from four to three . Furthermore, alignmen t
objects and their intersections provide a significantly richer
set of end conditions for transformations .

Snap-dragging is computationally intensive. It requires
real-time screen updates, gravity computations, and inter -
section computations . However, as a result of these compu-
tations, the user can perform precise interactive scene com-
position using a small number of commands and a smal l
number of keystrokes per session .

Future work plans include completing the implementatio n
described above, integrating the result into a real desig n
tool, and adding symmetry operations . To improve per-
formance, I am working on a complete implementation o f
the algorithms to compute the gravity function and updat e
the align bag . Gargoyle3D will also compute more pairwis e
intersections in the future than it does currently .

Gargoyle3D is currently just a prototype . To make it
interesting for users, it will be necessary to implement a
complete set of surface primitives, to provide a better
renderer both for quick refresh operations and fo r
producing final artwork, and to provide a convenient way
to move the viewpoint around the scene.

Many objects that are designed in practice have a great dea l
of symmetry . I believe that a snap-dragging system that au-
tomatically computes symmetry planes, points, and axes
and makes them gravity-active will be a particularl y
powerful construction tool for many applications .

Acknowledgment s

I would like to thank a number of people and organization s
who have supported and continue to support this work .
Thanks to Andrew Glassner and Polle Zellweger fo r
excellent comments on an early draft of this paper. Thanks
to all of my reviewers for their detailed and very helpfu l
suggestions . Thanks to Carlo Sequin, my thesis advisor at

UC Berkeley, for providing ample resources, encourage-
ment and good advice during my thesis work on snap-drag-
ging . Thanks to Larry Rowe and Alice Agogino, my other
thesis committee members, for listening to these ideas whe n
they were just beginning to gel . Special thanks to Mauree n
Stone for adopting snap-dragging early on, for co-authorin g
my first SIGGRAPH paper, and for lots of encouragement .
Thanks to Michael Plass for thinking of the name "snap -
dragging" one day over lunch .

I gratefully acknowledge support from AT&T Bel l
Laboratories, which provided fellowship support during th e
early stages of this work, and to Xerox PARC for providin g
office space, computers, and financial support throughout .

Reference s

[Adobe87] Adobe Systems Inc . Adobe Illustrator TM User's
Manual. Adobe Systems Inc ., 1870 Embarcadero
Rd ., Palo Alto, CA 94303, 1987 .

[Bier83] Eric A . Bier . Solidviews : an interactive three-di-
mensional illustrator . Master's Thesis, MIT EECS ,
May 1983 .

[Bier86a] Eric A . Bier and Maureen C. Stone . Snap-drag-
ging . SIGGRAPH'86 proceedings, Computer
Graphics, Vol . 20, No . 4, 1986, pp . 233-240 .

[Bier86b] Eric A . Bier . Skitters and jacks : interactive 3D
positioning tools . In Proceedings of the 1986
Workshop on Interactive 3D Graphics (Chapel Hill ,
NC, October 23-24, 1986), ACM, New York, 1987 ,
pp . 183-196 .

[Bier88] Eric A . Bier, Snap-Dragging: Interactive Geometric
Design in Two and Three Dimensions . Report No .
UCB/CSD 88/416, April 28, 1988, Computer Scienc e
Division, Department of EECS, UC Berkeley, C A
94720 . Also available as Xerox PARC repor t
EDL-89-2 .

[Borning79] Alan Borning . Thinglab -- A Constraint -
Oriented Simulation Laboratory . Report SSL-79-3 ,
Xerox PARC, Palo Alto, CA 94304, July 1979 .
Stanford CS Dept Report STAN-CS-79-746 .

[Boyse82] John W . Boyse and Jack E . Gilchrist . GMSolid :
Interactive modeling for design and analysis of solids .
IEEE Computer Graphics and Applications, pp . 27-41 ,
March 1982 .

[Chyz85] George W . Chyz . Constraint management fo r
constructive geometry . Master's thesis, MIT Mechan-
ical Engineering, 1985 .

[Congdon82] Robert M . Congdon . Graphic input of solid
models . Master's thesis, MIT Mechanica l
Engineering, 1982 .

[Ellis83] Andrew E. Ellis. An advanced user interface fo r
the layout phase of design . Master's thesis, MIT Me-
chanical Engineering, November 1983 .

203

[Fitzgerald]] William Fitzgerald, Franklin Gracer, Rober t
Wolfe . GRIN: Interactive graphics for modelin g
solids . IBM Journal of Research and Development ,
Vol . 25, No. 4, July 1981, pp . 281-294 .

[Johnson63] Timothy E . Johnson . Sketchpad III, A
computer program for drawing in three dimensions .
In Tutorial and Selected Readings in Interactiv e
Computer Graphics, ed . Herbert Freeman, IEEE
Computer Society, Silver Spring, MD, 1984, pp .
20-26, reprinted from AFIPS 1963 .

[Lee83] Kunwoo Lee . Shape Optimization of Assemblie s
Using Geometric Properties. Ph .D. thesis, MIT Me-
chanical Engineering, December 1983 .

[Light82] R . A . Light . Symbolic dimensioning in
computer-aided design . Master's thesis, MIT Me-
chanical Engineering, February 1980 .

[Lin8l] V . C . Lin, D . C. Gossard, and R . A. Light .
Variational geometry in computer-aided design .
SIGGRAPH'81 proceedings, Computer Graphics ,
Vol . 15, No . 3, August 1981, pp . 171-177 .

[Nielson86] Gregory M . Nielson and Dan R . Olsen Jr .
Direct manipulation techniques for 3d objects usin g
2d locator devices . In Proceedings of the 198 6
Workshop on Interactive 3D Graphics (Chapel Hill ,
NC, October 23-24, 1986), ACM, New York, 1987 ,
pp . 175-182.

[O'Donnell8l] T. J . O'Donnell and Arthur J . Olson ,
"GRAMPS -- A Graphics Language Interpreter fo r
Real-Time Interactive Three Dimensional Picture
Editing and Animation," SIGGRAPH'8 1
Proceedings, vol . 15, no . 3, pp . 133-142, August 1981 .

[Parent77] Richard E . Parent . A system for sculpting 3- d
data . SIGGRAPH'77 proceedings, Computer
Graphics, Vol . 11, No. 2, 1977, pp . 138-147 .

[Pier83] Kenneth A . Pier . A retrospective on the Dorado, a
high-performance personal computer . Proceedings of
the 10th Symposium on Computer Architecture,
SIGARCH/IEEE, Stockholm, June 1983, pp .
252-269 .

[Robertson89] George G . Robertson, Stuart K . Card, Joc k
D. Mackinlay . The cognitive coprocessor architecture
for interactive user interfaces . Proceedings of the AC M

SIGGRAPH Symposium on User Interface Software an d
Technology, November 1989 .

[Rossignac86] Jaroslaw R . Rossignac . Constraints i n
constructive solid geometry . In Proceedings of the
1986 Workshop on Interactive 3D Graphics (Chapel
Hill, NC, October 23-24, 1986), ACM, New York,
1987, pp . 93-110 .

[Serrano84] MATHPAK : An Interactive Preliminary
Design System . Master's thesis, MIT Mechanica l
Engineering, 1984 .

[Siegel86] H . B . Siegel . Jessie : An interactive editor fo r
unigrafix . U.C. Berkeley Electrical Engineering an d
Computer Science Department, Computer Scienc e
Division Report No . UCB/CSD 86/279, 1986 .

[Sutherland63] Ivan E. Sutherland, "Sketchpad, A Man -
Machine Graphical Communication System," i n
Tutorial and selected readings in Interactiv e
Computer Graphics, ed . Herbert Freeman, pp . 2-19 ,
IEEE Computer Society, Silver Spring, MD, 1984,
reprinted from AFIPS 1963 .

[Swinehart86] D . Swinehart, P . Zellweger, R . Beach, and R .
Hagmann . A structural view of the Cedar program-
ming environment, ACM Transactions on Program-
ming Languages and Systems, Vol . 8, No . 4, 1986, pp .
419-490.

[Upstill85] Steve Upstill, Tony DeRose, and John Gross .
SCOT : Scene Composition Tool, CS-Technica l
Report, U .C . Berkeley Computer Science Division ,
December 1985 .

[Xerox88] Xerox Corp . Xerox Pro Illustrator Reference
Manual. Xerox Document Systems Business Unit ,
475 Oakmead Parkway, Sunnyvale, CA 94086, 1988 .
(In preparation)

204

