Check for
Updates

Snap-Dragging in Three Dimensions

Eric A. Bier
Xerox PARC
3333 Coyote Hill Rd.
Palo Alto, CA 94304
bier.parc@xerox.com

Abstract: A large portion of the user interface in interactive
solid modeling systems is devoted to the problem of placing
and orienting objects in three dimensions. In particular,
many operations must be provided for selecting control
points, curves and surfaces, and for translating, rotating and
scaling scene components into precise relationships with
other scene components, By factoring these operations
carefully, it is possible to provide the desired functionality
so as to reduce both the size of the user interface and the
time that it takes to use it. With snap-dragging, the user
takes advantage of three main elements that work together:
a general-purpose gravity function, alignment objects that
can be created many at a time, and smooth-motion affine
transformations. Scene composition is achieved in a single
perspective view using a mouse and keyboard. With 19
mouse commands, 15 keyboard commands, 5 menus of
numbers, and 1 single-level menu of numerical transforma-
tions, this user interface has fewer commands and requires
fewer keystrokes than the skitters and jacks technique
reported earlier.

CR Categories and Subject Descriptors; 1.3.6 [Computer
Graphics]: Methodology and Techniques — Interaction
techniques

Additional Keywords: Scenc composition, interactive
design, geometric construction, constraint systems

1. Introduction

High-powered workstations make it possible to significantly
improve the user interface for composing three-dimension-
al scenes. This paper describes a technique for precisely

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1990 ACM 089791-351-5/90/0003/0193%1.50

193

placing points and objects in a three-dimensional scene.
This technique, an extension of snap-dragging to three
dimensions, greatly reduces the number and complexity of
commands that are needed to position scene objects
precisely. It requires no input devices other than a
keyboard and mouse and is compatible with two-dimen-
sional snap-dragging, so users can quickly go back and forth
between editing two-dimensional shapes, such as curves to
be extruded, and true three-dimensional shapes. Snap-
dragging can be used to compose and shape polyhedra,
quadrics, spline patches, and any other surface type that can
be defined in terms of control points.

Snap-dragging is the combination of three interactive
techniques that work well together: gravity, alignment
objects and interactive transformations [Bier86a, Bier88).
The gravity function enables a three-dimensional cursor,
called the snap-dragging skitter, to snap to points, curves,
and surfaces in the scene. A set of alignment objects (lines,
planes, and spheres) can be constructed at object vertices
and control points, providing ruler-and-compass style
constructions in three dimensions. The skitter can be
snapped to these alignment objects and their points and
curves of intersection as well as to scene objects. Finally,
interactive transformations (translation, rotation, and
scaling) track the motion of the skitter, which continues to
snap to objects during transformations allowing precise
transformations to be applied to scene objects.

All of the components of snap-dragging — gravity, align-
ment objects, and smooth motion transformations-—- have
appeared in previous systems (see section 2). Snap-drag-
ging improves on these techniques individually and
provides a new way to factor the user interface to reduce
both interface complexity and the average time required to
perform a construction. In particular, snap-dragging makes
these improvements:

(1) Other systems have a picking mode that snaps to
vertices, another mode that snaps to edges, and a
third mode that snaps to faces. This makes it
essential to switch modes frequently in the course of
normal operation. Snap-dragging also has three

http://crossmark.crossref.org/dialog/?doi=10.1145%2F91385.91446&domain=pdf&date_stamp=1990-02-01

modes, but the functionality is distributed different-
ly so that one mode can be used most of the time,
with the other modes being used only when the first
mode fails.

A single menu selection can resuit in the creation of
many alignment objects, both immediately and in
response to future construction operators. Because
several of these objects may be useful for a given
construction the user needs less than one mouse
click on average per useful alignment object created.

All of the smooth-motion transformations follow the
skitter and can be given precise end conditions using
gravity.

@

©)

Snap-dragging achieves its economy of user interface by
taking advantage of real-time feedback and by performing
some computations, such as computing alignment objects
and their intersections, automatically, As a result, the user
can often achieve a construction by choosing (e.g., pointing
to an intersection point) rather than by describing (e.g..
asking for the intersection of two shapes to be computed).

A prototype three-dimensional snap-dragging system,
Gargoyle3D, has been implemented in the Cedar pro-
gramming language [Swinehart86], on the Dorado personal
workstation [Pier83). On the Dorado, smooth motion can
only be achieved with small scenes displayed as wireframes,
The author looks forward to the improved performance
that will be available from current hardware.

The remainder of this paper describes the background, user
interface, and implementation of snap-dragging as follows:
Section 2 describes previous work, Sections 3, 4, and 5
describe the snap-dragging gravity functions, alignments
objects and interactive transformations, giving examples to
show how they are used. Section 6 lists all of the snap-
dragging commands and describes those that are not de-
scribed elsewhere. Section 7 presents some performance
measurements. Section 8 presents my conclusions and
plans for future work.

2. Previous Work

Many previous systems have addressed the problem of
providing a user interface for scene composition that is easy
to use. Constraint-based approaches achieve both precise
affine transformations and precise point placement by
solving simuitaneously non-linear equations. Direct
manipulation approaches have combined techniques such
as gravity, alignment objects, and smooth motion transfor-
mations to make local changes to the picture. These direct
manipulation systems differ in how this functionality is
factored into primitives.

2.1 Constraint-Based Approaches

A wide variety of surface types can be shaped by control
points, including polygons, quadric surfaces and spline
patches (see Lin’s paper on variational geometry [Lin81] for
a description of point-parameterized solid models). One

194

intriguing approach to positioning control points is to
represent relationships as a set of constraint equations,
Early two-dimensional constraint-based systems include
Sketchpad and ThingLab [Sutherland63. Borning79].

An on-going project at the Computer Aided Design
Laboratory of MIT's Mechanical Engineering Department
has used this approach to design families of parameterized
mechanical parts whose shape is determined by specified
forces, torques and other design criteria [Light82,
Serrano84]. Using constraints to position points requires
investing time in creating and verifying a constraint
network, a process that can be like debugging computer
programs. Many constraints are needed; even a simple
cube has 24 degrees of freedom. This investment will pay
off for applications, such as mechanical engineering or
animation, where a debugged constraint network will be
used many times before it needs to be modified. However,
to quickly produce a single solid model, this technique is
too time-consuming.

Rossignac, in his constraint approach from constructive sol-
id geometry gives a complete ordering to the constraints
[Rossignac86). This makes them easier to understand and
debug. Other work has focused on reducing the number of
constrains that must be entered by hand [Congdon82,
Lee83, Chyz85]. However, the user must still understand
and debug the constraint network that results (see [Bier88]
for a more detailed analysis of constraint approaches). In
addition, before constraints can be added, the
unconstrained geometry must be described. A quick
sketching technique, such as snap-dragging, could be useful
for this first step.

2.2 Direct Manipulation Approaches

Another way to place points precisely is to extend drafting
tools, such as ruler, compass, protractor, and T-square into
three dimensions. This is done in the Jessie editor at UC
Berkeley where commands are provided, for instance, to
construct an alignment line given two selected points. Two-
dimensional systems based on drafting techniques include
Elis’s layout editor [Ellis83] and CIMLING’s CIMCAD drafting
systemn. The problem with this approach is that it is tedious,
It can require several keystrokes and pointing actions to
create each alignment object.

Many geometric design systems use a gravity function to
help the user place object points on vertices, edges, surfaces
and their intersections. GRIN [Fitzgerald®1], GMSolid
[Boyse82], Jessie [Siegel86], and Sketchpad 111 [Johnson63)
implement gravity functions that snap the cursor to lines
and curves. Solidviews [Bier83, Bier86b] allows the cursor
to be placed on object surfaces. Most existing gravity
functions only snap the cursor to one type of scene object at
a time (e.g., vertices or edges but not both), requiring the
user to invoke mode-switching commands frequently,

Many interactive solid modeling systems provide affine
transformations that vary smoothly, often in response to
dials. These systems include Jessie [Siegel86], GRAMPS

[O’Donnell81], and Parent’s sculpting technique [Parent77].
Robertson, Card and Mackinlay point out that when
objects move smoothly, it requires less cognitive effort on
the part of the user to determine which objects have moved
and how {Robertson89], Dials allow objects to be moved
until they "look right™ or until a desired object is visible but
are not generally useful for precise motions.

To describe precise translations, rotations, and scaling
operations, the user must specify the vector to translate by,
the angle to rotate through, or the factor to scale by, While
these values can be typed, it is often faster and more
intuitive to specify them indirectly in terms of points on
scene objects, For instance, one might translate an object
through the displacement vector from a vertex on one
object to a vertex on another object, or scale by the ratio of
the lengths of two scene line segments. This idea is used in
Solidviews [Bier83, Bier86b], GRIN [Fitzgerald81], and is de-
scribed in Nielson’s article on manipulation techniques
[Nielson86).

If the points that are used to parameterize the transforma-
tions are just different positions of a cursor, then smooth
dragging, cursor positioning, and transformation operations
are unified. This technique is used in a number of modern
two-dimensional illustrators including Adobe [liustrator
[Adobe87} and Xerox Pro Illustrator [Xerox88]. Snap-drag-
ging extends this idea to three dimensions.

One way to factor the direct manipulation operations is to
provide a dialog for each operation. The user selects an
operation (e.g., rotate). The system prompts the user for an
operation sub-type (e.g., rotate about a coordinate axis,
rotate about a line determined by two points, etc.) and then
prompts the user, in turn, for each of the arguments, This
approach was taken for instance in scor [Upstill85].
Another approach to factoring is skitters and jacks
[Bier86b]. With this approach, all operations involve
selecting the objects to be transformed, selecting a
coordinate system (called a jack) relative which to translate,
rotate, or scale, specifying the amount by which to
transform by filling in a form, and clicking a menu button
or using a mouse motion to perform the transformation.
Jacks can be placed based at the skitter position. While
skitters and jacks is a relatively compact interface for many
common transformation operations, it has no uniform way
to construct new points in free space, has an impoverished
gravity function, does not allow individual control points to
be moved, and, for most transformations, requires moving
attention away from the scene area to use the menus.

195

3. Gravity

The snap-dragging gravity function must be computed
several times per second so that the skitter moves smoothly
as the mouse moves. As a result, the gravity function
cannot consult the user to disambiguate its operation in
cluttered scene regions; it must choose one point at which
to place the skitter. Fortunately, if the gravity function
chooses a point other than the desired one, the user can
move the cursor until the correct skitter position is
achieved. In cases where the desired point is obscured or in
a hopelessly cluttered region, the user can cycle through the
objects near the cursor line. Thus snap-dragging gravity
computes not only a best point but also an ordered list of
close points.

From the user’s standpoint, the gravity algorithm compares
distances on the screen rather than in 3-space. The
algorithm determines which object point projects nearest to
the mouse cursor, finds the corresponding point in three
dimensions, and places the skitter at that point. It also
determines the orientation of the skitter. The skitter’s z axis
is chosen to be perpendicular to the edge or face (if any)
that the skitter snaps to, and the x axis is chosen to be
tangent to the edge (if any) that the skitter snaps to. If the
skitter snaps to a vertex, its axes are determined by the faces
and edges that terminate at that vertex. The skitter’s
orientation becomes relevant when it is used to place the
anchor (see Figure 9), which is in turn used as an axis of
rotation.

The main gravity mode is points-preferred. In this mode,
the skitter snaps to a vertex or point of intersection if one
projects close to the mouse cursor. If not, the skitter will
snap to a line or edge if one is close by. If not, the skitter
will snap to a face if one is under the cursor. If not, the
skitter will snap to a default plane. The other modes, /ines-
preferred and faces-preferred, are used when the user needs
to point to an edge near, but not on, a vertex, or to a face
near, but not on, an edge, respectively. With points-pre-
ferred and lines-preferred gravity functions, a vertex or
edge that projects near the cursor is considered by gravity
even if it is obscured by a face. This allows easy access to
hidden components. Figure 1 shows points-preferred grav-
ity being used to place the skitter on a vertex or a face
(Figure 1(a)), and a rear-facing edge (Figure 1(b)). The
dark circle is the mouse cursor. The shape with three
mutually perpendicular axes is the skitter. Its z axis is given
a triangle shape to make it distinctive.

; H
i

7
7
7

,
|

s
r
/

(a)

Figure 1. Points-preferred gravity, Snapping the skitter (a)
to a vertex or to a face, (b) to a (back-facing) edge.

With more effort, the user can also point to obscured faces.
The user points at the desired face point and clicks the
mouse to initially place the skitter on the nearest face to the
eye point. A keyboard command is then used to move the
skitter back through the obscured faces until the desired
face is reached.

Gravity operates during a variety of operations including
operations to place the skitter, add new line segments, or
apply smooth-motion affine transformations. In Figure 2,
points-preferred gravity is used to place the new endpoints
of a line segment with two mouse button clicks.

{»;54 /?
x|
) T 'I
/// y /
eV @

Figure 2. Adding a line. (a) Placing the first end on a
vertex. (b) Rubber-banding the line segment to a face point.

The gravity function must compute the distance of the
mouse cursor from the projections of faces, edges, and
vertices. In the current implementation, all of these compu-
tations are actually performed in three dimensions to avoid
projecting scene objects onto the screen. First, rays are cast
from the eye point through the cursor to find all intersected
faces. Next, for edges and alignment curves, the closest
point, p, to the cursor ray and the distance of p to the cursor
ray are computed. This distance is divided by the depth (z
coordinate) of p relative to the eye point to approximate the
distance of the curve’s projection from the cursor. If this
division is not performed, the user must place the cursor
very close to the projection of distant objects in order to
snap to them. Finally, the distance of the cursor ray to
vertices and points of intersection is computed and divided
by their depth. The gravity function combines the results
of these computations and chooses one best face, edge or
vertex to snap the skitter to. This choice depends on the
current gravity mode,

196

Remarkably, the computation of intersection points that are
near the cursor can be done on the fly at almost no cost and
with a very simple routine; there is no need to precompute
and store the pairwise intersections of curves with curves
and curves with faces. Instead, these points are computed
as needed in the process of computing the gravity mapping
for a particular mouse cursor position. The algorithm relies
on two observations:

(1) The intersection point of twa curves will only occur
close to the cursor ray if both curves pass near the
CuIsor ray.

(2) Once an intersection point has been found that

projects onto the screen within a distance ¢ of the
cursor, better intersection points can only come from
two curves that project within distance ¢ of the
cursor.

Thus the gravity algorithm first finds the edges that project
within a tolerance distance of the cursor. These edges are
sorted by increasing distance from the cursor. Intersection
computations are performed on the nearest pairs of edges
first. As soon as an intersection point is found, all edges
farther from the cursor than the intersection point are
removed from further consideration,

The same trick can be used to reduce the number of
vertices that are considered by the gravity algorithm.
Instead of asking each object that is near the cursor to
compute the distance from each of its vertices to the cursor,
we ask only the edges that have been found to be close and
perform this computation for their endpoints.

In general, snap-dragging spends its time not on vertices
and intersection points, but on edges and faces. Ray-
tracing and hit detection for edges can be computed quickly
enough to allow several cursor updates per second on my
Dorado workstation on scenes with a few hundred edges.
Some performance figures appear in section 7.

4. Alignment Objects

The current implementation of snap-dragging includes
three different types of alignment objects: lines, planes, and
spheres. The user activates a set of alignment objects by
choosing from an extensible menu of alignment values.
Three factors make the alignment objects in snap-dragging
particularly powerful: (1) each alignment value can trigger
the construction of many (identically-shaped) alignment
objects at the same time, (2) any combination of alignment
values can be activated at once, and (3) intersection curves
and intersection points are computed automatically and are
gravity-active, This section shows how alignment objects
are used and describes some of the details of their imple-
mentation,

The alignment menus are shown in Figure 3. A desired di-
rection of alignment lines is activated by selecting an
(azimuth. slope) pair from the row of items labelled "Line".
Azimuth and slope are both angles in degrees. Likewise, a
desired orientation of alignment planes is activated from

the "Plane" row, and a desired radius of alignment sphere
from the "Radius" row. The "Line" and "Plane" menus
initially contain values corresponding to the x, y and
negative z axes of worLD. The "Radius” menu initially
contains a set of fractions and small integers, where the
units can be set to inches, centimeters, or any other value,

Azimuth: Add! Delete! 150 135 120 90 60 45 30 100
Slope: Add! Delete! 90 60 45 30 0 -30 -45 -60 -90
Line: New! Add! Delete! (0 0) (0 90) (10 0) (90 0)
Plane: New! Add! Delete! (0 0) (0 90) (900)

Radius: Add! Delete! 1/8 1/4 1/3 1/2 213 3/4 12 3 4

Figure 3, The alignment menus in Gargoyle3D.

The user can extend the "Line" and "Plane" menus using
two other menus; "Azimuth" and "Slope". To add a new
(azimuth, slope) pair to the "Line" menu, the user activates
one item from the azimuth menu and one from the slope
menu and clicks the "New!" button on the "Line" row,
Pairs may be added to the “Plane” menu in a similar
fashion. Figure 3 shows the alignment menus after lines of
azimuth 10 and slope 0 have been added.

All of the alignment menus can also be extended by typing
new values and by measuring values from the scene. After
each mouse operation, Gargoyle3dD measures the
displacement vector through which the skitter has moved
and reports the length and direction angles of this vector,
Any of these values may be added to the alignment menus,

Adding alignment objects to the scene is accomplished in
two steps. First, the user selects those scene objects that are
to trigger alignment objects and issues a keyboard com-
mand to turn all of the selected vertices into alignment
triggers, called "hot points." Hot points are drawn as large
white squares, as shown in Figure 4, Next, the user
activates a value from the alignment menus. At cach hot
point, the system constructs alignment objects of all cur-
rently active values. In Figure 4(a), the user has made all
three vertices of an equilateral triangle hot and activated
alignment spheres, The system constructs three spheres
and their circles of intersection. By snapping to vertices
and points of intersection, the user constructs the tetrahe-
dron of Figure 4(b).

Figure 4. Tetrahedron construction. (a) A new line
segment is stretched to a point where all three spheres meet,
(b) The last two segments are snapped to existing vertices.

To avoid screen clutter, each of the alignment objects is
drawn as a single thin gray curve, and intersection curves
are displayed as thin black curves. Each sphere is shown by
its silhouette circle, as shown in Figure 4. Alignment planes
are shown as small gray squares, as shown in Figure 5. The
black object that resembles a nautical anchor in this figure
is the anchor, a special object whose center point is always
hot. Alignment lines are drawn as thin gray lines (see Fig-
ure 6). When the user snaps the skitter to an alignment
object, it becomes thick and black.

Figure 5. Alignment planes triggered by the anchor, (a) A
horizontal alignment plane. (b) Three perpendicular align-
ment planes and their lines of intersection.

When the skitter snaps to an intersection point,
Gargoyle3D highlights all of the alignment objects and/or
the hot points that contributed to that intersection point. In
Figure 6, the skitter is snapped to the intersection point of
two alignment lines, each of which is triggered by two hot
points. An asterisk is placed at all four hot points. In order
to provide this feedback, Gargoyle3D must notice when
two or more hot points generate the same alignment object,
Such an alignment object is called a duplicate.

Figure 6. Snapping to an intersection point. (The white
squares that indicate hotness are not displayed during inter-
active operations.)

Hidden line elimination is not performed on alignment
objects, even when it is performed on scene objects, as
shown in Figure 6. So, it is easy to snap to alignment
curves, even when they are obscured. This also allows
Gargoyle3D to draw new alignment lines without
performing hidden line computations when the user
activates new alignment values.

Several types of alignment lines can be used
simultaneously. In Figure 7, the user has selected spheres
of radius 4 inches and three orthogonal alignment planes.

197

A sphere and three planes are constructed, centered on the
anchor. The system automatically computes the circles of
intersection where the planes meet the sphere. Using
points-preferred gravity, the user can sketch in a precise
wireframe octahedron using one or two mouse clicks per
line segment (most of the segments can be entered
consecutively so the second vertex of one segment becomes
the first vertex of the next).

Figure 7. Constructing an octahedron using three alignment
objects and their intersection curves.

By activating a mode, called the automatic rule, the user can
request that the stationary control points of an object, some
of whose points are moving, become hot automatically.
This makes it easy 1o align object points with other points of
that same object.

While the system is willing to create many alignment
objects at once, the user must be careful not to request too
many, Any combination of alignment values and hot points
that produces more than, say, 100 alignment lines will
create enough screen clutter to be more distracting than
helpful. Also, alignment lines should be used in preference
to alignment planes when possible because the intersection
of alignment planes with other planes and alignment
spheres quickly creates t0o many curves.

The designer of a snap-dragging system must carefully
consider which intersection curves and points to compute.
This decision affects both the implementation and the user,
Gargoyle3D currently computes the intersections of align-
ment objects in all pairs, the intersections of straight edges
with all alignment objects and other straight edges, and the
intersections of alignment lines with all object surfaces. It
would be possible to compute other intersections, including
the intersections of all object surfaces with other object
surfaces or of object surfaces with alighment planes (and
some of these combinations are contemplated for future
work); however, additional intersections may contribute to
screen clutter, make skitter motion under gravity more
jerky, and reduce performance, More powerful
workstations and better rendering will affect this trade-off
in the future.

The intersection curves of two alignment spheres or of
alignment spheres with alignment planes are circles. The

gravity algorithm must compute the distance between the
each circle and the cursor ray. This is equivalent to finding
what radius torus with its tube centered around the circle
would be tangent to the cursor line, Rather than solve a
fourth-degree equation for each circle, Gargoyle3D
approximates the distance as follows; The intersection of
the cursor ray with the plane of circle is computed and then
the distance of the resulting intersection point to the circle
is found. This approximation becomes exact when the
cursor ray hits the circle, so the user can compensate for the
approximation by pointing more carefully, This
approximation is worst when the circle is viewed edge-on.
The error can be reduced when the circle becomes nearly
edge-on by replacing, in the first step of the algorithm, the
plane of the circle by the cylinder that passes through the
circle perpendicular to its plane.

Each time the current set of alignment objects changes, it
may be necessary to calculate new intersection curves, draw
new alignment objects on the screen, and keep track of
duplicates. Getting good performance requires making
these changes incrementally, The following algorithm has
been fully implemented only for two-dimensional snap-
dragging; I am confident it will work in three dimensions as
well, Call the current set of alighment objects the afign bag.
To keep the align bag up to date, one must handle six cases:

(1) More objects are hot or new hot objects are added to
the scene; the new alignment objects generated by
these hot points and their intersection points are
added to the align bag.

(2) More objects are cold or hot objects are deleted from
the scene. Step 1 is inverted.

€)] An alignment value is activated. The Cartesian
product of this value with all hot points is computed.
The resulting alignment objects and their intersec-
tions are added to the align bag.

(4) An alignment value is deactivated.
inverted.

Step 3 is

(5) An interactive transformation is beginning. Align-
ment objects triggered by moving hot points are
temporarily removed from the trigger bag. If the
automatic rule is on, stationary points of partially-
moving objects are made temporarily hot, and step 1
is invoked.

(6) An interactive transformation ends.
inverted.

Step S is

Gargoyle3D currently uses an O(n%) algorithm for detecting
duplicate alignment objects, However, it is possible to use
hashing to improve this algorithm to nearly O(n). For each
alignment line or plane, compute its distance, d, from the
origin. For each alignment sphere, compute the distance, d,
from its center to the origin of WORLD coordinates. Use one
hash table for each alignment value. Use Ld / ¢.] as the
hash table key, &, where ¢ is the farthest apart two align-
ment objects can be and still be considered duplicates.
Each bucket of the hash table is a linked list of alignment
objects. Any duplicates of a given alignment object will be

198

in the buckets whose keys are key-1, key, or key+ 1. Check
all three buckets before adding the object,

5. Transformations

All of the snap-dragging transformations smoothly follow
the skitter. Because the skitter continues to snap to scene
objects and alignment objects during transformations,
objects can be placed precisely. This section describes how
translation, scating, rotation about a point, and rotation
about an axis depend on the skitter position and gives an
example of each transformation in use.

During a translation operation, the selected objects are
translated by the vector from the initial skitter position to
the final skitter position. In Figure 8, a selected tetrahedron
is translated until its corner snaps onto the corner of an
octahedron. The skitter was placed on the corner of the tet-
rahedron with the "Place Skitter” command. When this
command is completed, the cursor moves independently of
the skitter, allowing the user to use the mouse for other
applications, or invoke menu functions, without disturbing
the skitter position. During the "Translate" operation, the
skitter tracks the cursor, bringing any selected objects with
it (Figure 8(a)). Since the skitter obeys the gravity function,
the skitter can be snapped onto scene objects, achieving a
precige translation (Figure 8(b)).

As mentioned in section 3, when there are no objects near
enough to the cursor ray to snap the skitter to, the skitter
moves on a plane, the default plane, that is parallel to the
screen. The default plane assures that objects move
smoothly in the two directions parallel to the screen with a
discontinuity in depth whenever the skitter jumps from an
object to the plane or from the plane to an object. These
small jumps are a standard part of snap-dragging and help
the user tell when gravity has drawn the skitter to a new
object.

Figure 8. Translation. (a) The "Translate" command
hegins. (d) Snapping the polyhedra together.

To reduce clutter, the mouse cursor is omitted in the

remainder of the figures. The reader should remember that
the cursor is always involved in placing the skitter.

The anchor, which was introduced in the last section, is
used variously as a center of rotation, an axis of rotation, a
center of scaling, or a gravity-active position that the user
wishes to remember. When the user invokes the "Drop
Anchor" command, the anchor takes its position and
orientation from the skitter, permitting the anchor to be
placed precisely (Figure 9). The square in the middle of the
anchor faces in the z direction, and the barbed line seg-
ments lie along the x direction (with an extra arrowhead
showing the positive x direction). The anchor is similar in
function to the jacks of the skitters and jacks technique,
except that there is only one anchor per scene.

2N PRI | PWIN

(a) (b)
Figure 9. Placing the anchor. (a) The skitter is placed. (b)
The anchor is created. (c) The skitter is removed,

(c)

During rotation about a point, the selected objects rotate
about the anchor point, This rotation occurs through the
angle between the line determined by the anchor and the
original skitter position, and the line determined by the
anchor and the final skitter position. The axis of rotation is
the line that passes through the anchor point and is
perpendicular to the plane determined by three points —the
original skitter, the anchor, and the final skitter. Hence, the
final skitter position determines the axis of rotation. This
rotation operation is ideal for rotating two edges to be
coincident, as shown in Figure 10.

Figure 10. Rotation about a point. (a) The anchor is placed
at the shared vertex of the two polyhedra. The skitter is
placed on the tetrahedron edge. (b) The skitter snaps to the
octahedron,

The scaling operation scales the selected objects by the ratio
of the current skitter-to-anchor distance to the original
skitter-to-anchor distance. In Figure 11, the tetrahedron is
scaled until its edges are congruent to those of the
octahedron.

199

Figure 11. Scaling. (a) The skitter is placed on the nearest
vertex of a selected tetrahedron. (b) The tetrahedron is
scaled until the skitter snaps to a vertex of the octahedron.

During rotation about an axis, the selected objects are
rotated about the x axis of the anchor by the angle through
which the skitter moves about this axis; any motion of the
skitter parallel to the axis is ignored. In Figure 12, we
rotate the tetrahedron until it shares a face with the
octahedron. In Figure 12(a), we place the skitter on the top
vertex of the tetrahedron. The anchor already has its x axis
aligned with the shared edge; this is one of the benefits of
having the gravity function align the x axis of the skitter
with edges and having the anchor take its orientation from
the skitter. Throughout the operation, the left face of the
tetrahedron remains coplanar with the skitter, so when the
skitter is snapped onto the top vertex of the octahedron the
two faces become coplanar (Figure 12(b)).

Figure 12. Rotating about an axis, The tetrahedron rotates
about the x axis of the anchor (and hence around the edge
shared with the octahedron).

6. The Snap-Dragging Commands

Snap-dragging in three dimensions currently employs 19
mouse-based commands, 15 keyboard commands, and a
pop-up menu with 10 commands, for a total of 44
commands. This section lists all of the commands and
briefly describes those that were not covered above.

6.1 Mouse Commands

Snap-dragging is implemented on a workstation with a
keyboard and a three-button mouse. Using the Control and
Shift keys on the keyboard in concert with both single and
double clicks on the mouse buttons, 24 operations can be
invoked. With this arrangement, all of these 19 mouse-
oriented commands can be accommodated:

Selecting components (6 commands): Select Vertex, Select
Edge, Select Cluster, Select Polygon, Select Within
Rectangle, Extend Selection

Deselecting components (5 commands): Deselect Vertex,
Deselect Edge, Deselect Cluster, Deselect Polygon,
Deselect Within Rectangle

Placing the skitter (1 command): Place Skitter

Adding geometry to the scene (2 commands): Add Edge,
Add Block

Transformations (4 commands), Translate, Rotate About
Point, Rotate About Axis, Scale

Copying (1 command): Copy & Translate

The selection and deselection commands are not specific to
snap-dragging. They allow the user to select vertices, edges,
polygons, and complete assemblies (called clusters) in any
combination. Once selected, these objects can be
transformed, made hot or cold, given new colors and so on.

So that the user can reliably select scene components by
pointing, Gargoyle3D provides feedback to disambiguate
selections. In Figure 13, a black square highlights a vertex
that has been selected. By itself, this feedback would be
ambiguous, because it is impossible to tell which of the
three blocks the vertex belongs to. To solve this problem,
Gargoyle3D highlights, with white squares, the non-
selected vertices of the cube whose vertex is selected. By
pointing near the vertex but at different angles around it,
the user can select the coincident vertices belonging to the
other two cubes. The implementation of these selection
operations uses the snap-dragging gravity routines with
parameters to tune them for selection tasks.

Figure 13. Selection feedback

The Place Skitter command uses gravity to place the skitter
within the scene. The scene is not changed. This command
is used before a transformation, before an object is added to
the scene, and before the anchor is dropped, since all of
these operations depend on an initial skitter position.

Because edges and blocks are important shapes, the Add
Edge and Add Block operations are provided to add them
to the scene with a single button click, Add Edge adds a
new line segment from where the skitter was before this
operation began to wherever the skitter is placed by the end
of the operation. Likewise, Add Block adds a block,
aligned with the WORLD coordinate axes, whose two

200

diagonally opposite corners are these two skitter positions.

The transformations were described in detail in section 5.
Copy & Translate works just like Translate, except that it
copies the objects before translating them.

6.2 Keyboard Commands

By holding down the Control key and an alphabetic
keyboard key, with or without the Shift key, the user can
invoke up to 52 commands. Snap-dragging uses 15 of these
keyboard combinations for these common operations:

Anchor placement (2 commands): Lift Anchor, Drop
Anchor

Selecting components (3 commands): Select All, Cycle
Selection Forward (Backward)

Changing the gravity function (3 commands): Cycle
Forward (Backward) through the Three Gravity
Functions, Toggle Gravity On and Off

Changing hotness (5 commands): Make Hot, Make Cold,
Make All Hot, Make All Cold, Toggle the
Automatic Rule On and Off

Placing the skitter (2 commands); Cycle Skitter Forward
(Backward)

Lifting and dropping the anchor was described in section 5.
Select All selects all of the objects in the scene. The Cycle
Selection commands select, in turn, all of the objects that
were under the cursor during the most recent selection
operation, This allows obscured objects to be selected.
Cycling though the gravity functions allows the user to
choose from points-preferred, lines-preferred, and faces-
preferred gravity functions, Gravity can be turned on and
off. With gravity off, the skitter always moves on the
default plane. Make Hot and Make Cold make the
selected objects hot or cold. Make All Hot and Make All
Cold make all scene objects hot or cold. The Cycle Skitter
commands allow the skitter to be placed on obscured faces
by placing it, in turn, on all surfaces that were behind the
cursor the last time the Place Skitter operation was
performed.

6.3 Menu Commands

To specify a transformation numerically the user can invoke
one of these 10 operations, provided in a pop-up menu:

RotateX, RotateY, RotateZ, Scale, Translate and their five
inverses,

RotateX(Y,Z) rotates the selected objects around the x(y,z)
axis of the anchor by the specified number of degrees.
Scale scales them by the specified factor. Translate
translates them by a vector, described as three decimal
numbers; this vector is interpreted relative to the axes of
the anchor. The user types or selects the numerical
arguments to these commands.

7. Performance

Two features of snap-dragging require significant
computation; computing the gravity function multiple
times per second, and computing the intersection curves of
alignment objects and scene objects when alignment values
are activated. This section describes some performance
tests that were performed on a Dorado 16-bit workstation
running the Cedar programming environment. This con-
figuration is roughly comparable in computational speed to
a SUN 3/160, using Dhrystone as a benchmark,

To test the performance of gravity in Gargoyle3D, I ran
three tests. The first test performs points-preferred gravity
on a scene consisting of an array of cubes. As most systems
have some capability for pointing to vertices, edges, and
polygonal faces, this should be a good figure for
comparison. [tried different sized arrays of cubes. For
each scene, [moved the cursor so that it remained in front
of the cubes and took the average over about 20 cursor
positions, Here were the results for five different array sizes
(all times are in milliseconds);

2x2 (48 edges, 32 vertices): 91 ms

2x4 (96 edges, 64 vertices): 159 ms
4x4 (192 edges, 128 vertices): 199 ms
4x8 (384 edges, 256 vertices): 211 ms
8x8 (768 edges, 512 vertices): 259 ms

The slow growth in time for the larger arrays reflects the
fact that most of the cubes are culled by quick rejection
tests. Profiling reveals that about 10% of this time is ray-
tracing, 48% is finding the distance to edges and computing
an orientation for the skitter in case a given edge is chosen,
and 41% is for finding the nearest vertices and computing
an orientation for the skitter in case a given vertex is
chosen. Better factoring of this code would probably
improve these results by at least a factor of 2.

Figure 14, A gravity test case with 10 edges, 20 spheres, and
31 intersection circles.

The second test case, shown in Figure 14, is a scene with 20
hot vertices, 20 spheres, and 31 intersection circles. It is
rare that a user would ask for this many alignment spheres
at the same time. Even so, gravity can be computed in 45
milliseconds on the average for this scene. When the

201

spheres are made smaller so that they are precisely tangent,
this time drops to 42 milliseconds. [f the spheres are made
smaller still so that the do not touch, the time drops to 28
milliseconds.

A final case, shown in Figure 15, tests gravity performance
in the presence of many alignment lines, The three axes of
a coordinate system were drawn with 10 hot vertices evenly
spaced along each axis, Three types of alignment lines were
activated in the x, y, and z directions. This creates 90 total
lines (or 57 lines once duplicates are removed). For this
scene, the gravity computation takes 43 milliseconds on
average.

Al
4 f i
Figure 15. A scene with 30 hot vertices and three active
alignment values.

E—

None of these gravity times is prohibitive, and times can be
expected to improve with further tuning of the code and
faster hardware. Furthermore, the gravity algorithms are
linear in the number of scene curves, Rendering algorithms
are at best linear in the number of visible curves. Thus, we
can expect gravity times to grow no faster than the
complexity of scenes that we are able to render. Keep in
mind that these times only includes the gravity
computation. The total time for an operation would also
include the time to update the screen; that time, however, is
much more dependent on the available rendering hardware
and software.

Three tests were also run of the time taken to compute new
alignment objects and their intersections when the user
activates a new alignment value. The first test reuses the
scene of Figure 14, When the user activates the sphere
radius value, the system computes the 20 spheres and 31 in-
tersection circles and adds them to the align bag. This takes
80 milliseconds. This time is reduced to 62 milliseconds if
the spheres are tangent, and 50 milliseconds if the spheres
do not touch. Profiling reveals that, in the 50 millisecond
case, 50% of the time is spent walking the scene data
structure enumerating hot points, 24% of the time is spent
computing intersections and 18% is spent checking for

202

duplicate spheres.

The second test reuses the example of Figure 15, The three
slope line values were turned on one at a time. Each value
causes 30 alignment lines to be triggered, 11 of which are
duplicates. Adding the first set took 55 milliseconds, the
second set took 63 milliseconds, and the third set took 64
milliseconds. Profiling reveals that, for the first set, 46% of
the time is spent removing duplicates, 27% is spent walking
data structures to enumerate hot points, and 18% is spent
allocating storage for the resulting alignment lines. The
hashing algorithm described in section 4 should reduce the
time for removing duplicates to almost zero.

The final test uses the grid of Figure 15, but activates three
perpendicular sets of alignment planes instead of alignment
lines. The resulting scene has 30 distinct planes and 300 in-
tersection lines. As this configuration nearly paints the
entire screen black, most users would not create this many
intersecting planes. Nonetheless, adding the first set of
planes takes only 31 milliseconds, adding the second set
takes 149 milliseconds, and adding the third set takes 245
milliseconds. Profiling reveals that about 78% of the 245
millisecond time is spent computing intersections, and
about 9% is spent removing duplicate planes.

All of the times for updating the align bag are low. Fast
updates are not particularly important for the times when
the user activates a new alignment value because such
activations are relatively rare. However, the user will fre-
quently move or delete hot objects, At these times,
updating the align bag is only a sub-part of the computation
and good response depends on rapid updating of the align
bag.

8. Conclusions and Future Work

Snap-dragging in three dimensions combines a multi-
purpose gravity function, alignment objects that are
generated from scene hot points by a Cartesian product
rule, and smooth-motion affine transformations that are
controlled by a 3-space cursor. Snap-dragging combines
these elements to produce a new factoring of the user
interface for precise interactive scene composition, It can
be controlled by a mouse and keyboard. It works with a
single projection and produces distinguishable feedback on
a bi-level display.

The current implementation of snap-dragging employs 19
mouse commands, 15 keyboard commands, five extensible
menus (one each for the sphere, line, and plane alignment
objects plus the slope and azimuth menus), and a single
pop-up menu for numerically-specified transformations.
Together this user interface provides capabilities for
selecting and de-selecting objects, placing a cursor and an
anchor, translating, rotating, and scaling objects, copying
objects, creating and deleting alignment objects, and
changing a gravity function.

Gravity, alignment objects, and interactive transformations
work well together, The general-purpose gravity function

allows the user to indicate by pointing whether operations
begin and end on vertices, control points, alignment
objects, edges, or surfaces. The alignment objects allow
points and objects to be placed at precise directions and
distances from each other. Because multiple alignment
objects are computed at once, many points and objects can
be placed precisely with a single setting of the alignment
object menus. The interactive transformations work to-
gether with gravity and alignment objects to produce
precision and smooth motion at the same time.

Snap-dragging is a useful alternative to both constraint-
based systems and to other direct manipulation system. In
cases where the desired result is a single static scene, snap-
dragging provides a fast method of building precise scenes
that does not require creating a constraint network. Snap-
dragging is an improvement over skitters and jacks in both
simplicity and power. Because snap-dragging requires only
a single anchor instead of many jacks, there is no need for
commands to create, move, select, or delete jacks and the
number of steps needed to transform scene objects is
reduced from four to three. Furthermore, alignment
objects and their intersections provide a significantly richer
set of end conditions for transformations,

Snap-dragging is computationally intensive. It requires
real-time screen updates, gravity computations, and inter-
section computations. However, as a result of these compu-
tations, the user can perform precise interactive scene com-
position using a small number of commands and a small
number of keystrokes per session.

Future work plans include completing the implementation
described above, integrating the result into a real design
tool, and adding symmetry operations. To improve per-
formance, I am working on a complete implementation of
the algorithms to compute the gravity function and update
the align bag. Gargoyle3D will also compute more pairwise
intersections in the future than it does currently.

Gargoyle3D is currently just a prototype. To make it
interesting for users, it will be necessary to implement a
complete set of surface primitives, to provide a better
renderer both for quick refresh operations and for
producing final artwork, and to provide a convenient way
to move the viewpoint around the scene.

Many objects that are designed in practice have a great deal
of symmetry. I believe that a snap-dragging system that au-
tomatically computes symmetry planes, points, and axes
and makes them gravity-active will be a particularly
powerful construction tool for many applications,

Acknowledgments

I would like to thank a number of people and organizations
who have supported and continue to support this work.,
Thanks to Andrew Glassner and Polle Zellweger for
excellent comments on an early draft of this paper. Thanks
to all of my reviewers for their detailed and very helpful
suggestions. Thanks to Carlo Séquin, my thesis advisor at

UC Berkeley, for providing ample resources, encourage-
ment and good advice during my thesis work on snap-drag-
ging. Thanks to Larry Rowe and Alice Agogino, my other
thesis committee members, for listening to these ideas when
they were just beginning to gel. Special thanks to Maureen
Stone for adopting snap-dragging early on, for co-authoring
my first sIGGRAPH paper, and for lots of encouragement.
Thanks to Michael Plass for thinking of the name "snap-
dragging" one day over lunch.

[gratefully acknowledge support from AT&T Bell
Laboratories, which provided fellowship support during the
early stages of this work, and to Xerox PARC for providing
office space, computers, and financial support throughout.

References

[Adobe87] Adobe Systers Inc. Adobe [llustrator™ User's
Manual. Adobe Systems Inc., 1870 Embarcadero
Rd., Palo Alto, CA 94303, 1987.

[Bier83] Eric A. Bier. Solidviews: an interactive three-di-
mensional illustrator. Master’s Thesis, MIT EECS,
May 1983,

[Bier86a] Eric A. Bier and Maureen C. Stone. Snap-drag-
ging. SIGGRAPH'86 proceedings, Computer
Graphics, Vol, 20, No. 4, 1986, pp. 233-240.

[Bier86b] Eric A. Bier. Skitters and jacks: interactive 3D
positioning tools. In Proceedings of the 1986
Workshop on Interactive 3D Graphics (Chapel Hill,
NC, October 23-24, 1986), ACM, New York, 1987,
pp. 183-196.

[Bier88] Eric A. Bier. Snap-Dragging: Interactive Geometric
Design in Two and Three Dimensions. Report No,
UCB/CSD 88/416, April 28, 1988, Computer Science
Division, Department of EECS, UC Berkeley, CA
94720. Also available as Xerox PARC report
EDL-89-2,

[Borning79] Alan Borning. Thinglab -~ A Consiraint-
Oriented Simulation Laboratory. Report SSL-79-3,
Xerox PARC, Palo Alto, CA 94304, July 1979.
Stanford CS Dept Report STAN-CS-79-746.

[Boyse82] John W. Boyse and Jack E. Gilchrist. GMSolid:
Interactive modeling for design and analysis of solids.
1EEE Computer Graphics and Applications, pp. 27-41,
March 1982,

[Chyz85] George W. Chyz. Constraint management for
constructive geometry, Master’s thesis, MIT Mechan-
ical Engineering, 1985,

[Congdon82] Robert M. Congdon, Graphic input of solid
models. Master’s thesis, MIT Mechanical
Engineering, 1982.

[Ellis83] Andrew E. Ellis. An advanced user interface for
the layout phase of design. Master’s thesis, MIT Me-
chanical Engineering, November 1983.

203

[Fitzgerald81] William Fitzgerald, Franklin Gracer, Robert
Wolfe. GRIN: Interactive graphics for modeling
solids. 7BM Journal of Research and Development,
Vol. 25, No. 4, July 1981, pp. 281-294.

[Johnson63] Timothy E. Johnson. Sketchpad 111, A
computer program for drawing in three dimensions.
In Tutorial and Selected Readings in [nteractive
Computer Graphics, ed. Herbert Freeman, IEEE
Computer Society, Silver Spring, MD, 1984, pp.
20-26, reprinted from AFIPS 1963,

[Lee83] Kunwoo Lee. Shape Optimization of Assemblies
Using Geometric Properties. Ph.D. thesis, MIT Me-
chanical Engineering, December 1983.

[Light82] R, A. Light. Symbolic dimensioning in
computer-aided design. Master’s thesis, MIT Me-
chanical Engineering, February 1980.

[Lin81] V. C, Lin, D. C. Gossard, and R. A. Light.
Variational geometry in computer-aided design.
SIGGRAPH81 proceedings, Computer Graphics,
Vol. 15, No. 3, August 1981, pp. 171-177.

[Nielson86] Gregory M. Nielson and Dan R. Olsen Ir,
Direct manipulation techniques for 3d objects using
2d locator devices. In Proceedings of the 1986
Workshop on Interactive 3D Graphics (Chapel Hill,
NC, October 23-24, 1986), ACM, New York, 1987,
pp. 175-182.

[O’Donnell81] T. J. O’'Donnell and Arthur J. Olson,
"GRAMPS -- A Graphics Language Interpreter for
Real-Time Interactive Three Dimensional Picture
Editing and Animation,” SIGGRAPH’81
Proceedings, vol. 15, no. 3, pp. 133-142, August 1981.

[Parent77] Richard E. Parent. A system for sculpting 3-d
data. SIGGRAPH'77 proceedings, Computer
Graphics, Vol. 11, No. 2, 1977, pp. 138-147.

[Pier83] Kenneth A, Pier. A retrospective on the Dorado, a
high-performance personal computer. Proceedings of
the 10th Symposium on Computer Architecture,
SIGARCH/IEEE, Stockholm, June 1983, pp.
252-269.

[Robertson89] George G. Robertson, Stuart K. Card, Jock
D. Mackinlay. The cognitive coprocessor architecture
for interactive user interfaces. Proceedings of the AcM
SIGGRAPH Symposium on User Interface Software and
Technology, November 1989.

[Rossignac86] Jaroslaw R. Rossignac. Constraints in
constructive solid geometry. In Proceedings of the
1986 Workshop on Interactive 3D Graphics (Chapel
Hill, NC, October 23-24, 1986), ACM, New York,
1987, pp. 93-110.

[Serrano84] MATHPAK: An Interactive Preliminary
Design System, Master’s thesis, MIT Mechanical
Engineering, 1984.

204

[Siegel86] H. B. Siegel. Jessie: An interactive editor for
unigrafix. U.C. Berkeley Electrical Engineering and
Computer Science Department, Computer Science
Division Report No. UCB/CSD 86/279, 1986.

[Sutherland63] Ivan E. Sutherland, "Sketchpad, A Man-
Machine Graphical Communication System," in
Tutorial and selected readings in Interactive
Computer Graphics, ed, Herbert Freeman, pp. 2-19,
IEEE Computer Society, Silver Spring, MD, 1984,
reprinted from AFIPS 1963,

[Swinehart86] D. Swinehart, P. Zellweger, R. Beach, and R.
Hagmann. A structural view of the Cedar program-
ming environment. ACM Transactions on Program-
ming Languages and Systems, Vol, 8, No. 4, 1986, pp.
419-490.

[Upstill85] Steve Upstill, Tony DeRose, and John Gross.
scoT: Scene Composition Tool, CS-Technical
Report, U.C. Berkeley Computer Science Division,
December 1985.

[Xerox88] Xerox Corp. Xerox Pro Hllustrator Reference
Manual. Xerox Document Systems Business Unit,
475 Oakmead Parkway, Sunnyvale, CA 94086, 1938.
(In preparation)

