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Abstract 

We have built a novel and efficient replay debugger for our 
Standard ML compiler. Debugging facilities are provided 
by instrumenting the user’s source code; this approach, 
made feasible by ML’s safety property, is machine- 
independent and back-end independent. Replay is practical 
because ML is normally used functionally, and our com- 
piler uses continuation-passing style; thus most of the 
program’s state can be checkpointed quickly and com- 
pactly using call-with-current-continuation. Together, 
instrumentation and replay support a simple and elegant 
debugger featuring full variable display, polymorphic type 
resolution, stack trace-back, breakpointing, and reverse 
execution, even though our compiler is very highly optim- 
izing and has no run-time stack. 

1. Introduction 

Traditional “source-level” debuggers do their real work at 
machine level. They rely on detailed information about the 
underlying machine model, compiler back end, and run- 
time system. Although debuggers typically have access to 
the original source text and some symbol table data, coor- 
dinating source and object at run time requires extensive 
“reverse engineering,” which is difficult. As a result, 
source-level debuggers are typically characterized by lim- 
ited functionality, poor portability, and considerable inter- 
nal complexity [Bruegge85]. These problems are greatly 
exacerbated by the presence of compiler optimization, 
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which often makes the task of mapping the machine code 
back to the original source essentially impossible 
[Hennessy82,Zellwegger84]. 

Standard ML of New Jersey @ML-NJ) [Appe187a] is a 
very highly optimizing compiler for the Standard ML 
language [Milner90]. In fact, it completely transforms the 
code several times: first into lambda-calculus, then into 
continuation passing style, and then through several global 
optimization phases. It would be difficult or impossible to 
write a traditional debugger that could deal with the result- 
ing machine code. Moreover, the standard approach of 
turning off optimization would not work here; the 
compiler’s whole methodology is based on code tmnsfor- 
mation. 

Faced with the task of getting a program to run without a 
debugger, programmers commonly instrument their code at 
key points to print the values of variables or trace the flow 
of control. In one respect, this works unusually well for 
ML, because the language is safe; that is, compile-time 
type checking guarantees that there are no run-time insecu- 
rities (“core is never dumped”). This means that we can 
always understand the run-time behavior of ML 
programs-even buggy ones-without reference to the 
underlying machine model (assuming the compiler func- 
tions correctly). Since the instrumentation is part of the 
code, our ML compiler’s back end guarantees not to 
modify its semantics when performing optimization. 

Of course, instrumenting code by hand is tedious and 
time-consuming. The key idea of our debugger is to 
automatically insert instrumentation into the user’s source 
code to support subsequent debugger queries. Thus, wher- 
ever an identifier is bound, we add code to report its value; 
wherever a function is called, we add code to report the 
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caller and the callee. Whether or not this added instrumen- 
tation is executed is decided at run time, so that informa- 
tion is generated only when and if it is wanted, we can also 
conditionally break out of the program at any instrumenta- 
tion point. 

Since we cannot predict in advance what information will 
be wanted by the programmer, our debugger supports 
reverse execution. This means we can arrange that infor- 
mation is collected only after it is known to be relevant to a 
user request. For example, to determine the value of an 
in-scope variable, we jump back to the time when it was 
bound, turn on the conditional instrumentation that reports 
its value, record that value, and return to the original time. 
Time travel of this kind turns out to be remarkably versa- 
tile: we also use it to implement location-based breakpoints 
and to display “stack trace-backs”-though our run-time 
system actually has no stack, and does tail-call elimination. 

Replay debuggers are typically implemented by taking 
periodic checkpoints of the program’s state; it turns out that 
SML-NJ can do this quite efficiently. ML is a mostly func- 
tional language, and the “functional part” of its execution 
state can be completely captured in a continuation. SML- 
NJ has a call-with-current-continuation (callcc) primitive 
[Friedman84], which gives a way to save and reset con- 
tinuations at any point in program execution. Because the 
SML-NJ compiler uses continuation-passing styIe with no 
run-time stack [Appel89b], its implementation of catlcc is 
extremely simple and time-efficient. Moreover, although a 
single continuation may be large, continuations taken at 
adjacent checkpoints will typically point to many of the 
same memory cells, so that it is feasible to keep multiple 
checkpoints in main memory. ML does have non- 
functional features, including a mutable store and I/O sup- 
port; different and less efficient methods must be used to 
capture the non-functional part of the program’s state, but 
this part of the state is typically much smaller than the rest. 

Instrumentation is done by a one-pass transformation of the 
abstract syntax tree produced by the compiler’s parser: this 
is conceptually the same as preprocessing the source code, 
but easier. Although our instrumented code runs a few 
times slower than ordinary code, it runs about as fast as 
unoptimized code and much faster than an interpreter. 
Since the other debugging strategies known to us require 
either inhibition of optimization or extensive interpretation, 
we believe our approach is practical and time-competitive. 
Our method does consume a good deal of memory, but we 
believe that memory is a relatively inexpensive resource in 

most computer systems. The debugger implementation is 
completely machine-independent, and uses only a few 
well-defined back-end features (for state checkpointing). 

2. Events and Time 

The debugger modifies source code of “debuggable” func- 
tions by adding instrumentation in the form of events. 
Events are located at value declarations, at the top of each 
function (and each case branch), and immediately prior to 
each function call (excluding built-in functions that cause 
no side-effects). (Note that we do not place events after 
calls; this insures that the compiler’s tail recursion elimina- 
tion methods will still apply.) There is at least one event 
within each basic block, and at each binding location. (In 
practice, adjoining events within the same basic block are 
coalesced to reduce overhead, but we ignore this complica- 
tion in what follows.) This enables events to serve both as 
potential breakpoint locations, and as convenient points at 
which to collect the values of bound variables. Each dis- 
tinct event in the program text is given a unique event 
number. The debugger maintains a mapping between event 
numbers and locations in the original abstract syntax tree, 
which is retained during debugging. 

As the instrumented program runs, the debugger maintains 
a counter that is incremented each time an event is exe- 
cuted (whether or not the associated breakpoint is taken). 
This counter is a form of software instruction counter, 
which we use to uniquely identify points in the program’s 
execution history. We refer to the value of this counter as 
the current time, and talk about the corresponding time of 
any event execution. 

Breakpointing is controlled entirely on the basis of time: a 
break is taken at an event execution if the time of that event 
matches the value of a targetTime variable maintained by 
the debugger, In addition, the debugger keeps an array 
eventTimes, indexed by event number, that records the last 
time each event was executed. This array allows location- 
based breakpointing to be simulated by time-based break- 
pointing, as will be described in Section 4. A summary of 
the instrumentation code described so far is shown in Fig- 
ure 1. Note that event is shown as a subroutine here; in 
practice, the code will normally be placed in-line for exe- 
cution efficiency. 
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fun event(eventNum,lastBindTime,boundVa1ues) = 
(currentTime := !currentTime + 1; 
if (!currentTime) = (!targetTime) then 

break (eventNum,lastBindTime,boundValuesJ 
else 0; 
update (eventTimes,eventNum,!currentTime)) 

Figure 1. 

fun1 rev (h: :t) =* 

let va14 r = rev3 t 
in r Q5 [h] 
end 

I rev nil =6 
nil 

Eve&# Event type 
1 fun binding 
2 fn entry 
3 application 
4 val binding 
5 application 
6 fn entry 

User code for the rev function 
Figure 2. 

val bindTime = !currentTime f 1 
fun rev (h: :t) = 

(event(2,bindTimel,h,t); 
let val bindtime = !currentTime in 

let val r = (event (3,bindTimeZl; 
rev t) 

val = event(4,bindTimeZ,r) - 
val bindTime = !currentTime 

in event(5,bindTime4); 
r @ Ihl 

end 
end) 

I rev nil = 
(event (6,bindTimel); 
nil) 

val = event (l,O,rev) - 

Instrumented Code for the rev function. 
Figure 3. 

The debugger adds further instrumentation to each bind- 
ing event (val and val ret declarations, and each rule 
within a fn or case) to create a new variable named 
bindTimen, where n is the event number. This variable 
has the same scope as the variables bound at the associ- 
ated event: its value is the time at which the binding 
occurred. The importance of these variables is described 
in Section 5. 

tines. When a breakpoint is taken, the user program 
transfers control to the debugger by calling break with 
these arguments: the event number, the time of the previ- 
ous in-scope binding event execution (which will be au 
appropriate bindTime variable), and a list of the values 
bound at this event (if any). The values are not tagged but 
are in a fixed order that can be deduced by the debugger 
from the abstract syntax corresponding to the event. 

The user program and the debugger are related as corou- Figure 2 shows the user code for a short ML, function 
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which reverses a list. The locations of events in this code 
have been indicated by annotating with event numbers; 
the adjacent table lists the type of each event. Figure 3 
shows the instrumented version of the code, with the ori- 
ginal program in bold font and the added instrumentation 
in italics; the event function is as in Figure 1. 

3. States and Time Travel 

The debugger starts up a user program by setting target- 
Time to a suitable value and invoking the program as a 
coroutine. The user program then executes normally until 
the target time or the end of the program is reached, upon 
which the debugger is re-entered via break. Whenever it 
receives control, the debugger makes a checkpoint of the 
current state of the user program, tagged with the current 
time. 

To continue normally from a breakpoint, the debugger 
simply resumes the user program coroutine, leaving the 
state unchanged. But the debugger can also restart the 
user program from any previous time for which it has a 
state checkpoint, simply by restoring that state before 
resuming the user program coroutine. To restart the user 
program from an arbitrary previous time t, the debugger 
resets the program state to the latest time I f for which it 
has a checkpoint, sets targetTime to f, and re-executes 
forward. To make sure that we won’t have to do too much 
re-execution, automatic breaks are caused at regular 
intervals. In particular, if the user explicitly wishes to 
break at a particular time t, we assume that the period 
immediately prior to t is also likely to be of interest, with 
our level of interest increasing exponentially as we 
approach t. If we are asked to go to time t from the 
nearest previous stored time t’, we first break at time t” = 
(t + t’) / 2, then halfway between t” and t, and so on, until 
we estimate that it would cost less to re-execute directly to 
t than to store another state. Taking these breakpoints 
during forward execution costs a small amount of extra 
time, but saves a great deal of time later if we want to 
jump back into the period before t. 

This time-travel mechanism is encapsulated in a routine 
called gotoTime, which is used as a primitive by many 
debugger commands. GotoTime takes a primary argu- 
ment newTime, which specifies a time in the past to reset 
to or a time in the future to advance to, and a secondary 
argument errorMargin, which is used when we only 
need to reset a time approximately and it would be waste- 
ful to bother re-executing to a precise time; if there is a 
stored checkpoint within errorMargin units of newTime, 

it will be used and no further forward execution will take 
place. 

Taking breakpoints is expensive in execution time, and 
storing checkpoints is expensive in space, so it is impor- 
tant to keep the set of checkpoints we remember reason- 
ably small; therefore, we manage it as a cache. We can 
choose the size of the cache dynamically by getting 
memory-demand information from the run-time system. 
For any given cache size, whenever a new state is added 
to the cache, some previously stored state may need to be 
thrown out. Ideally, we would like to keep the states that 
will be most useful in future restarts, but we cannot 
predict precisely which these are, so some heuristic is 
needed. One heuristic is to use a form of least-recently- 
used: throw away the states that have not been used for 
restarts in a long time. Another approach is to rank the 
states based on how expensive it would be to regenerate 
them, and to throw away the least expensive. It is easy to 
construct scenarios in which one or the other of these 
heuristics fails; we would like to find a compromise 
scheme. 

4. Breakpoints 

We allow the user to set breakpoints either at particular 
source program locations (as in traditional debuggers) or 
at particular times in the program’s execution history (past 
or future). Our debugger is unusual in making time- 
based breakpointing the fundamental mechanism and 
using it to implement location-based breakpoints. We 
think programmers will find efficient time-based break- 
points very useful; conventional debuggers can achieve a 
similar effect (in the forward direction) only by labori- 
ously repeated single-stepping.* 

As with most debuggers, we keep a list of breakpoints; the 
user can execute either forward or backward to the nearest 
breakpoint. At present, encountering a breakpoint simply 
returns control to the user, in principle, it would be easy to 
associate actions with these breakpoints as well. The 
remainder of this section assumes that there is only one 
breakpoint, but the methods described can handle multiple 
breakpoints and mixtures of time- and location-based 
breakpoints without difficulty. 

* In one conventional debugger (GDB) we have measured 
single-stepping to be more than 25000 times slower than ordinary 
execution. Our debugger can execute to a time-based breakpoint at 
a rate only 2 to 4 times slower than ordinary execution (see Section 
8). 
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Implementation of time-based breakpoints is trivial, given 
the gotoTime primitive. Reverse execution to a location- 
based breakpoint is also easy: we simply look up the last 
time for the given event in the eventTimes array and goto 
that time. Forward execution is much more complicated. 
Our goal is to find the first time at which the eventTimes 
entry for the event has changed. To do this, we jump into 
the future looking for an outside bound on the time. Since 
we have no a priori idea of the true distance to the desired 
time, we first jump forward by an arbitrary delta; if the 
entry hasn’t changed we jump forward again by twice as 
much as before. We repeat this, doubling our jump each 
time, until we find the entry changed or the program 
finishes. Note that in this phase of the algorithm we never 
go more than twice as far as the true distance, and the 
total number of breaks we take is proportional to the log 
of the true distance. Having bounded the desired time 
from above and below, we next perform a binary search to 
pinpoint the time when the entry first changed. The 
number of breaks we take in this phase is again propor- 
tional to the log of the true distance from our initial start- 
ing time. In all our invocations of gotoTime we specify a 
broad error margin in hopes of being able to reuse stored 
checkpoints without re-execution. 

We have chosen this implementation of location-based 
breakpoints to keep event instrumentation simple. An 
alternative implementation of forward location-based 
breakpoints would be to maintain a separate boolean 
array, breakwanted, indexed by event number. User 
code instrumentation would be extended so that a break at 
event i occurs if breakWanted[i] is true or the target time 
has been reached. This would give simpler forward 
breakpointing but would increase the cost of every event, 
whether or not breakpoints were in use. Basing all break- 
point decisions on time keeps the per-event test simple 
and efficient. 

Moreover, our binary search method can be extended to 
pinpoint any event having a monotonic indicator function, 
perhaps user-specified. * This could be far more efficient 
than the traditional implementations of watch-pointing by 
repeated breakpoints or memory protection tricks. 

* E.g., “break when index variable i reaches 100”. 

5. Displaying values 

Recall that there is an event associated with each ML 
statement that binds a value to an identifier; the bound 
value is passed to the debugger when the associated 
break is executed. The basis of our technique for 
displaying the value of an identifier is to jump back to that 
identifier’s binding time, cause the break to occur, collect 
the associated value, and return to our original time. Thus 
values are typically passed to the debugger only after a 
specific request by the user. (This works for the large pro- 
portion of ML objects that are immutable; we discuss the 
handling of mutable objects below.) 

A user’s request for a value is always interpreted in the 
context of the particular time and event occurrence at 
which the program is currently halted. The variable 
requested must be in scope at this point, and any other 
variables with the same name are hidden by the one in 
scope. If the variable has just been bound at the current 
event, the debugger will already have obtained its value 
when control was received from the program. Otherwise, 
we jump back to the latest prior event execution that 
bound some in-scope variable: the time of this execution 
is passed to the debugger via the 1astBindTime argument 
to break. We repeat this process until we find the desired 
value: every in-scope variable must be bound somewhere 
on this binding chain of event executions. 

As an example, consider the rev program of Figures 2 and 
3. Suppose we are stopped at event #5 (just before doing 
the list append), and that the user asks for the value of h. 
No values were passed at event #5, so we jump back to 
the 1astBindTime for event #5, which was given as bind- 
Time4, and will in fact be just one time unit earlier. The 
event for this time is #4, which can only give us the value 
of r, so we must repeat the procedure, jumping back to 
bindTime2, which is associated with event ##2. (Notice 
that this will generally not be the most recent execution of 
event #2, which will have occurred during the recursive 
call to rev used in calculating r, and its time bears no sim- 
ple relation to our original starting time.) Since the 
desired value of h is available at event K!, the process 
completes here. 

Note that the bindTimen variables act something like 
access links in a conventional run-time system for a 
block-structured language; unfortunately, they occupy 
storage proportional to the depth of recursion in the pro- 
gram. However, the length of the binding chain, and 
hence the number of calls to gotoTime needed to look up 
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a variable, is proportional only to the static size of the 
program, not to execution time. Moreover, if we look up 
the values of multiple variables from the same context we 
can expect to revisit many of the same times along the 
chain; since checkpoints are cached, no re-execution will 
be needed to obtain the second and subsequent values. 

Our method for displaying values of objects in the mut- 
able store (references and arrays) is somewhat different. 
Again we go back to the binding site for the object, but in 
this case we collect a pointer to the object, which is 
passed to break instead of the object’s contents. We then 
jump back to the current time and fetch the current con- 
tents of the object (which may have changed repeatedly in 
the interim). For this method to work correctly, it is 
essential that whenever code for creating a store object is 
re-executed (as it typically will be when finding the bind 
time for that object) it reuses the same object pointer that 
was created during the original execution. If this is not 
done, we may have multiple “versions” of the object 
referenced from different saved checkpoints and thus get 
erroneous results. The mechanism for avoiding this prob- 
lem is described in Section 7. 

We also plan to support modification of store values. The 
debugger can get a pointer to the ref variable as just 
described, Fd can then change its value directly (taking 
care not to violate type constraints expressed in the 
abstract syntax). This has the effect of changing the exe- 
cution history of the program, and so all future stored 
states must be thrown away. Furthermore, we must 
record the change and make sure it gets re-executed 
whenever we pass through the same time again; this is 
essentially an (internal) action associated with a time- 
based breakpoint. 

To display a variable’s value, we need to know its type. 
ML supports polymorphic variables (e.g., h in the exam- 
ple above) whose concrete types may depend on the types 
of the actual arguments to the enclosing functions, and 
cannot be deduced at compile time. Moreover, our com- 
piler (like most ML compilers) has no run-time type tag- 
ging scheme either! Happily, we can use the debugger’s 
ability to find the variable’s binding time to deduce types. 
This is done by finding the calling function’s variables, 
determining their types (recursively applying this algo- 
rithm if necessary}, and rerunning the compiler’s type- 
unification algorithm. (A similar scheme for a stack- 
based tag-free run-time environment was described in 
[Appel89a].) The only disadvantage of this algorithm is 

that it may require time proportional to the depth of 
function-call nesting; we hope to improve this for some 
common cases by specialized code analysis. 

Finally, we can use our knowledge about the binding site 
for a variable to display not only its value but also the pro- 
gram source that defined it. This is particularly useful for 
variabIes representing functions, which have no other 
printable “value”. At present, we simply pretty-print the 
abstract syntax for the binding, which may be a simple 
assignment, function call, or fn (lambda) expression. In 
the future, we plan to analyze the definition and recur- 
sively find and print the bindings of any functions refer- 
enced by the right-hand side of the binding; this should 
make it much easier to debug programs that use functions 
as first-class values. 

6. Reconstructing Call Histories 

SML-NJ doesn’t maintain a stack, and it optimizes tail 
calling into iteration. Nevertheless, our debugger can 
easily produce a “stack trace-back” showing a complete 
history of function calls and their arguments. This is pos- 
sible because: (i) there is an event immediately prior to 
each application; (ii) there is an event at the top of each 
function rule body, which is always executed immediately 
after an application event; and (iii) all top-of-function 
events appear in the binding chain. Thus we can always 
determine the caller of the current function by skipping 
back through the binding chain to find the current top-of- 
function event and then stepping back by one time unit to 
the corresponding application event. We can repeat this 
process to display calling history to any depth desired. 

7. Checkpointing Program State 

A program’s state has three separate parts: 

1. The current continuation; i.e., the Continuation that 
will be invoked when we resume from break. The 
continuation encompasses the values of all immut- 
able objects and all control fiow. 

2. The contents of the mutable store, i.e., the values of 
all ref cells and arrays. 

3. The I/O state, i.e., the history of activity on all I/O 
streams. 

Each part of the state is checkpointed using a different 
method. At present, we keep all parts of a state check- 
point in main memory; some parts could be maintained on 
backing store instead, as will be noted below. 
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A fundamental assumption is that the continuation part of 
the state will normally be by far the most voluminous. 
Fortunately, it is also the easiest part to capture, using the 
call-with-current-continuation (callcc) primitive provided 
by the SML-NJ run-time system; in fact, the existence of 
this feature was a key motivation for our approach. Stor- 
ing the current continuation is very fast (involving only 
the copying of a few registers), and only costs space when 
it keeps live pointers to objects that would otherwise be 
garbage collected. Thus continuations are an inherently 
incremental checkpointing mechanism. We actually cap- 
ture the current continuation at a break as a byproduct of 
switching to the debugger coroutine; the operation is 
straightforward, and we will say no more about continua- 
tion state here. 

To capture I/O state, we record all I/O operations in a 
time-indexed log. In normal mode, each I/O operation 
appends its result to the log before returning. On replay, 
the I/O operation is not performed and the log entry for 
the current time is returned instead. We obviously cannot 
do better than this for interactive I/O, but we could avoid 
keeping a log of input from files by assuming that the files 
are stable and checkpointing the file pointers; we may 
implement this approach in future. It would also be rea- 
sonable to keep our log on backing store. 

Capturing mutable store state is our biggest challenge. 
Fortunately, we expect the store to account for a relatively 
small part of total data; for example, 99.7% of the objects 
created when SML-NJ compiles itself are immutable. It is 
therefore acceptable to penalize programs that make 
heavy use of the store. The most obvious method for 
checkpointing the store would be to copy the contents of 
all arrays and ref cells wholesale, but this could be very 
wasteful if there are many store objects of which only a 
few have been created or updated since the last break. 
Instead, we keep delta lists; that is, at each break we 
record only changes that have occurred since the last 
break. We build these lists by instrumenting every array 
creation and update so that it appends a pointer to the 
updated element to a global list. (This global list can tem- 
porarily occupy a great deal of space; a very similar list is 
already maintained by our generational garbage collector, 
and we could make use of it at the cost of increased 
dependence on the details of the back end.) 

delta list is stored tagged with the current time. To reset 
the store to a given time t, we must consult, in order, the 
contents of all delta lists with tags between 0 and t, and 
reset the values of each element in each list. If the same 
objects are repeatedly updated, they will tend to appear in 
many lists, with all but the last appearance being overwrit- 
ten. To improve efficiency in this circumstance, we 
periodically merge adjacent lists, removing duplicate ele- 
ments. In principle, we could also keep the lists on back- 
ing store. 

Our algorithm for looking up store object values (see Sec- 
tion 5) puts a further demand on the store history system: 
we must insure that if an object creation is re-executed 
when the original object is still live then the original 
object is reused. To do this, we maintain a table of store 
objects, hashed on creation time, and instrument each 
creation to check this table. If there is a relevant entry it is 
reused; otherwise the object is created and inserted in the 
table. This is a significant source of inefficiency, and we 
are looking for alternative methods to solve the problem. 

We use special weak pointers to the store objects from 
within the debugger’s data structures. Weak pointers are 
like ordinary ones except that the garbage collector is 
allowed to remove objects pointed to only from weak 
pointers. Suppose, as is often the case, that a large 
number of the store objects created in the user program 
are short-lived (e.g., local to the scope of a loop body), 
and would normally be reclaimed before we take a break. 
Our use of weak pointers allows this to continue happen- 
ing; using ordinary pointers would prevent the objects 
from being treated as garbage. 

8. Implementation and Performance 

We have implemented the debugger (in ML) as an exten- 
sion to the ML-NJ compiler. The implementation is 
divided into several modules, with support for checkpoint- 
ing, time travel, code instrumentation, and query com- 
mands clearly separated. Debugger code is wholly 
independent of the compiler’s back end except for con- 
tinuation checkpointing (which uses callcc) and store 
checkpointing (which uses weak pointers and some basic 
knowledge about run-time data formats). The code is 
roughly 3200 lines long (about 10% of the size of the 
compiler itself). 

When a break occurs, the debugger retrieves the list, 
removes duplicate entries (typically very numerous), and 
fetches a copy of the contents of each entry. The resulting 
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Program Store 
Events 

RedBlack 2.5 % 
Lexer 5.6 
UnionFind 8.4 
TermRewrite 0 

RefCreate 90.9 
RefUpdate 90.9 
I/O 0 I 

Normal Instrumented for Debugging 

Code Execution Code Execution Debug 
Size Time Size Time Time 

2784 b 10.3+1 .o s 10208 b 22.4+2.6 s 31.7+3.7 s 
14012 7.9-kO.l 37892 16.8+6.4 27.7+7.4 
8060 5.4+0.6 38204 17.7+9.7 31.6+15.2 
7096 6.9+0.1 34900 20.1+0.3 26.2fO.6 

512 0.2+0.0 4232 23.2+17.7 30.0+24.5 
568 O.l+O.O 6368 2.0+7.5 3.6+10.6 
760 2.5+0.1 2980 8.2+1.6 41.9+1.8 

Benchmark Statistics 
(Code Size in bytes of VAX machine code.) 

(Ties in form execution-time + garbage-collection-time, both in CPU seconds.) 

Table 1 

Unoptimized 

Execution 
Time 

28.1+2.2 s 
16.1+0.7 
10.6i1.5 
18.9+0.1 

0.84-0.0 
0.2+0.0 
2.6+0.0 

The debugger is fully integrated into the SML-NJ interac- 
tive system; code can be compiled and executed in debug 
mode by using simple commands, which are ordinary ML 
functions loaded into the user’s top-level environment. 
The user can write new debugger functions based on the 
existing primitives, using ML itself as a “customization 
language.” 

We have benchmarked the debugger (on a 32 MB VAXs- 
tation 3500 running Ultrix) with the results shown in 
Table 1. The top section of the table contains entries for 
typical programs: RedBlack does insertions into a red- 
black tree, Lexer does lexical analysis on ML source text 
and counts tokens, UnionFind reads strings from a file 
and does union and find operations with path compres- 
sion, and TermRewrite (the only purely functional pro- 
gram benchmarked) does symbolic differentiation by 
term-rewriting. The entries in the bottom section of the 
table represent some worst-case program types: 
RefCreate simply creates mutable reference cells, 
RefUpdate just updates such cells, and I/O just copies an 
input file to an output file. The column labeled Store 
Events gives the percentage of event executions that 
represent creation or update of mutable store cells. We 
report execution time and garbage collection time 
separately because we believe the latter can be made arbi- 
trarily small given sufficient memory [Appe187b] and the 
use of virtual-memory techniques [Shaw87] that would be 
expected in a production compiler. 

The left-hand side of the table compares normal (uninstru- 
mented) optimized code to instrumented code, for which 
two timing figures are given. Execution Time is the time 

Interpreted 

Execution 
Time 

758.9+18.6 s 
219.2+4.1 

ti 

123.4+3.7 
297.0+9.7 

19.6+0.7 
13.3+0.8 
5.6+0.1 

needed to execute the instrumented program to comple- 
tion without taking breaks; it measures the overhead of 
instrumentation. Debug Time is the time needed to exe- 
cute to a location-based breakpoint at the end of the pro- 
gram; this involves taking periodic checkpoints and re- 
executing some part of the tail end of the program (up to 
two-thirds of the program in the worst case); it is intended 
to measure the cost of executing the whole program in a 
more typical debugging context. Nearly all the added 
time is in re-execution; separate measurements (not 
detailed here) show that checkpointing alone costs very 
little. It should be emphasized that the Debug Time figure 
reported is dependent on several arbitrary parameters 
(e.g., minimum and maximum checkpointing intervals) 
that we have made no effort to tune as yet. 

These timings confirm the practicality of our approach. 
The typical programs execute only 2 to 4 times slower 
under the debugger than normally. Debug Times are at 
worst twice as long. This seems an entirely tolerable 
price to pay for debugging functionality. Reference opera- 
tions slow things down very substantially, as the worst- 
case benchmarks make clear, but this does not cause the 
typical programs to suffer too much. I/O is particularly 
expensive on replay; this accounts for the Debug Times 
being higher than might be expected. 

The two right-hand columns of Table 1 give evidence that 
our instrumentation approach compares well with other 
possible debugger methods in time performance. Unop- 
timized Execution Time is the time to execute the normal 
program when it is compiled with all optional optimiza- 
tions turned off. This approximates the time that could be 
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expected if we had tried to build a conventional debugger 
on top of a compiler that didn’t do code-rewriting optimi- 
zations. Times in this column are comparable to Instru- 
mented Execution Times. Interpreted Execution Time is 
the time to execute the normal program under our 
lambda-calculus interpreter; with such an interpreter, 
users could reasonably debug by manually instrumenting 
their own code as needed at run time. Interpretation is typ- 
ically an order of magnitude slower than instrumented 
execution. 

The table also shows that instrumenting code increases its 
size significantly, and compile time increases accordingly 
(somewhat worse than linearly). We can mitigate this 
effect by not compiling event instrumentation in-line; this 
cuts compilation time by 30% to 50%, while increasing 
execution time by 25% to 75%. We would also like to 
speed up our compiler! 

To compare the memory demands of debugging versus 
normal execution, we separately consider (i) the memory 
used to compile the program, (ii) the static memory occu- 
pied by the program after it has been compiled, and (iii) 
the dynamic memory occupied by program data while it is 
running.* 

We have not extensively measured memory use during 
compilation. A debuggable program will temporarily 
require more memory because a second, larger, instru- 
mented version of the abstract syntax is produced, and all 
the other intermediate representations will be correspond- 
ingly larger. 

Except for code size (see Table 1), the static space 
requirements of instrumented and non-instrumented code 
are very similar. The instrumented version requires only a 
small additional data structure describing events; this 
structure points into the original abstract syntax, which is 
large but is kept by the standard system anyway. 

Dynamic memory use is much more interesting. Figure 4 
shows dynamic memory usage (in MB of live data) meas- 
ured at regular intervals over the course of each typical 
benchmark run, with checkpoint caching disabled. The 
lowest curve in each graph shows the amount of data gen- 

* To get an overall picture of memory demand on the machine, 
one must also add the size of the underlying compiler and run-time 
system (1.67MB for the standard system vs. 1.93MB for the 
system supporting debugging), and of the operating system. 

erated by ordinary non-instrumented code. The middle 
curve shows the the amount of data generated by instru- 
mented code; the extra data is accounted for by the I/O 
log, delta lists for the mutable store, and larger code clo- 
sures. The top curve includes the additional space needed 
to store uncompressed delta lists for the mutable store; 
this final increment is not part of the checkpoint but can 
contribute significantly to temporary memory require- 
ments. Note that all figures were obtained by measuring 
live data size after full garbage collections. They are valid 
for comparative purposes, but must be multiplied by a 
substantial factor (at least 3) to get an estimate of the 
actual peak memory requirements of a adequately func- 
tioning system. 

Figure 5 illustrates the phenomenon of storage sharing by 
continuations for each typical benchmark. In each case, a 
series of checkpoints was taken at exponentially decreas- 
ing intervals approaching a particular time towards the 
end of the computation (a log scale has been used on the 
x-axis to display the points more clearly). The lower 
curve in each graph shows memory use when each check- 
point was thrown away before the next was stored. The 
upper curve represents the case where all checkpoints 
were retained in the cache; the resulting exponential dis- 
tribution of cache entry times is typical for many 
debugger operations. Substantial sharing occurs in all 
cases; in programs like RedBlack that build up a data 
structure, sharing is almost 100%. Moreover, even for 
programs like TermRewrite, which turn over their live 
data rapidly, the marginal space cost of additional check- 
points approaches zero as the interval between them 
decreases. 

9. Related Work 

Many of our ideas were anticipated in Balzer’s seminal 
EXDAMS system [Balzer69]. He uses a similar instru- 
mentation method to log important events (first to a buffer 
and eventually to a file) for subsequent post-mortem 
analysis. Our ideas on using binding site information 
resemble his “flowback analysis,” which has also been 
revived in [Miller88]. A major difference in our work is 
that we collect event data only on request, which keeps 
execution overheads low enough to support interactive 
debugging; low-cost, conditionally-triggered events are 
exploited in a similar way by the Parasight system 
[Aral89]. 

Automatic instrumentation has been used for interactive 
debugging before. [Hanson781 describes how a general- 
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ized event mechanism can be built into a programming travel, which the debugger uses internally in a very 
language (SNOBOL4) and used to support debugging. 
[Dybvig88] describes a LISP debugging mechanism based 
on instrumentation via a powerful macro system. We have 
previously used instrumentation in ML to produce execu- 
tion profiles [Appe188]. 

[Johnson881 explores the use of continuations and stores 
as first-class objects in the language GL, and suggests 
their utility for debugging. 

Many replay debuggers have been proposed, especially in 
connection with parallel programming systems 
[Curtis82,LeBlanc87,McDowell89], and the idea of using 
a log to govern or assist re-execution is well-established. 
One important issue in such systems is how to measure 
time: [Cargill87] proposed a hardware instruction 
counter; [Mellor-Crummey891 use assembly-code-level 
instrumentation to implement a counter in software. A 
higher-level software counter is easier to use with a com- 
piler that performs significant rewriting or optimization. 
Another key issue is how to support checkpointing 
efficiently. A very thorough checkpointing system is pro- 
posed and analyzed in [Wilson89], which supports the 
idea that the whole history of very large systems can be 
preserved at acceptable cost. 

10. Conclusions and Future Work 

We have built a practical ML debugger based on source 
code instrumentation and time travel. The debugger pro- 
vides novel solutions to the challenges posed by our com- 
piler methodology, which prevents ordinary source-level 
debugger techniques from working. Execution time for 
instrumented code is only a few times slower than ordi- 
nary code. Space requirements for checkpointing func- 
tional state are minimized because continuations share 
storage. The space needed to keep track of changes to the 
mutable store is kept low by simple coordination with the 
garbage collector. Except for this and the use of callcc, 
our debugger is completely independent of the compiler’s 
back end and the underlying machine. As a result it was 
relatively simple to write and would be trivial to port. 

One obvious goal at present is to build up a body of users 
and experience using the debugger in “real life” applica- 
tions. This will enable us to develop a set of realistic 
benchmarks representing typical debugging sessions; hav- 
ing these is a prerequisite for any serious performance 
analysis, in particular for testing alternative checkpoint 
caching strategies. We would also like to see whether time 

comprehensive way, will prove equally valuable as a 
user-level facility. Finding suitable metaphors and 
methods for navigating through the history of a computa- 
tion will become increasingly important as replay 
mechanisms become a common part of programming 
environments. 

The main use of replay debugging to date has been in 
parallel programming systems, and we expect that our 
debugging approach will extend naturally to such systems, 
although some of our time-travel tricks may not carry 
over to a multi-thread environment. Our notion of event 
can easily be extended to cover various kinds of commun- 
ication and synchronization operations; because we instru- 
ment code at source level our approach will mesh particu- 
larly well with languages that support such operations 
explicitly. 

We believe that instrumentation will be a key technique in 
future debugging systems. Compilers are becoming 
increasingly aggressive in transforming code. A computa- 
tion originally expressed by the programmer in the source 
language may be transformed into machine code that per- 
forms a quite different computation. This is normally 
acceptable if the new computation’s external behavior is 
consistent with that of the original. But to debug the pro- 
gram effectively, we need the machine code to conform 
closely to the original program text. The best way to 
make the compiler produce such code is to extend the 
program’s external behavior to make its internal state 
observable, e.g., by recording a trace of statement execu- 
tion or permitting display and update of intermediate vari- 
ables. When translating this extended program, the com- 
piler will be constrained to produce machine code that 
mirrors the original computation to whatever degree of 
precision required. Source-level instrumentation is the 
natural way to produce the extended version of the source. 

We are particularly interested in applying our approach to 
lazy and parallel languages with indeterminate execution 
order. Many such languages have transformational com- 
pilers of the type just discussed. In addition, they offer a 
further challenge: for debugging, it is often desirable to fix 
a particular repeatable execution order for a program. 
Again, this may be achieved by transforming the program, 
this time into one that performs the same computation as 
the original but is determinate, at least during replay. We 
believe instrumentation can be useful here as well. 
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