
Debugging Standard ML Without Reverse Engineering

Andrew P. Tolnzach”
Andrew W. Appel*

Department of Computer Science
Princeton University

March 1990

Abstract

We have built a novel and efficient replay debugger for our
Standard ML compiler. Debugging facilities are provided
by instrumenting the user’s source code; this approach,
made feasible by ML’s safety property, is machine-
independent and back-end independent. Replay is practical
because ML is normally used functionally, and our com-
piler uses continuation-passing style; thus most of the
program’s state can be checkpointed quickly and com-
pactly using call-with-current-continuation. Together,
instrumentation and replay support a simple and elegant
debugger featuring full variable display, polymorphic type
resolution, stack trace-back, breakpointing, and reverse
execution, even though our compiler is very highly optim-
izing and has no run-time stack.

1. Introduction

Traditional “source-level” debuggers do their real work at
machine level. They rely on detailed information about the
underlying machine model, compiler back end, and run-
time system. Although debuggers typically have access to
the original source text and some symbol table data, coor-
dinating source and object at run time requires extensive
“reverse engineering,” which is difficult. As a result,
source-level debuggers are typically characterized by lim-
ited functionality, poor portability, and considerable inter-
nal complexity [Bruegge85]. These problems are greatly
exacerbated by the presence of compiler optimization,

* Supported in part by NSF Grant CCR-8806121

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

@ 1990 ACM 089791-368-X/90/0006/0001 $1.50

which often makes the task of mapping the machine code
back to the original source essentially impossible
[Hennessy82,Zellwegger84].

Standard ML of New Jersey @ML-NJ) [Appe187a] is a
very highly optimizing compiler for the Standard ML
language [Milner90]. In fact, it completely transforms the
code several times: first into lambda-calculus, then into
continuation passing style, and then through several global
optimization phases. It would be difficult or impossible to
write a traditional debugger that could deal with the result-
ing machine code. Moreover, the standard approach of
turning off optimization would not work here; the
compiler’s whole methodology is based on code tmnsfor-
mation.

Faced with the task of getting a program to run without a
debugger, programmers commonly instrument their code at
key points to print the values of variables or trace the flow
of control. In one respect, this works unusually well for
ML, because the language is safe; that is, compile-time
type checking guarantees that there are no run-time insecu-
rities (“core is never dumped”). This means that we can
always understand the run-time behavior of ML
programs-even buggy ones-without reference to the
underlying machine model (assuming the compiler func-
tions correctly). Since the instrumentation is part of the
code, our ML compiler’s back end guarantees not to
modify its semantics when performing optimization.

Of course, instrumenting code by hand is tedious and
time-consuming. The key idea of our debugger is to
automatically insert instrumentation into the user’s source
code to support subsequent debugger queries. Thus, wher-
ever an identifier is bound, we add code to report its value;
wherever a function is called, we add code to report the

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F91556.91564&domain=pdf&date_stamp=1990-05-01

caller and the callee. Whether or not this added instrumen-
tation is executed is decided at run time, so that informa-
tion is generated only when and if it is wanted, we can also
conditionally break out of the program at any instrumenta-
tion point.

Since we cannot predict in advance what information will
be wanted by the programmer, our debugger supports
reverse execution. This means we can arrange that infor-
mation is collected only after it is known to be relevant to a
user request. For example, to determine the value of an
in-scope variable, we jump back to the time when it was
bound, turn on the conditional instrumentation that reports
its value, record that value, and return to the original time.
Time travel of this kind turns out to be remarkably versa-
tile: we also use it to implement location-based breakpoints
and to display “stack trace-backs”-though our run-time
system actually has no stack, and does tail-call elimination.

Replay debuggers are typically implemented by taking
periodic checkpoints of the program’s state; it turns out that
SML-NJ can do this quite efficiently. ML is a mostly func-
tional language, and the “functional part” of its execution
state can be completely captured in a continuation. SML-
NJ has a call-with-current-continuation (callcc) primitive
[Friedman84], which gives a way to save and reset con-
tinuations at any point in program execution. Because the
SML-NJ compiler uses continuation-passing styIe with no
run-time stack [Appel89b], its implementation of catlcc is
extremely simple and time-efficient. Moreover, although a
single continuation may be large, continuations taken at
adjacent checkpoints will typically point to many of the
same memory cells, so that it is feasible to keep multiple
checkpoints in main memory. ML does have non-
functional features, including a mutable store and I/O sup-
port; different and less efficient methods must be used to
capture the non-functional part of the program’s state, but
this part of the state is typically much smaller than the rest.

Instrumentation is done by a one-pass transformation of the
abstract syntax tree produced by the compiler’s parser: this
is conceptually the same as preprocessing the source code,
but easier. Although our instrumented code runs a few
times slower than ordinary code, it runs about as fast as
unoptimized code and much faster than an interpreter.
Since the other debugging strategies known to us require
either inhibition of optimization or extensive interpretation,
we believe our approach is practical and time-competitive.
Our method does consume a good deal of memory, but we
believe that memory is a relatively inexpensive resource in

most computer systems. The debugger implementation is
completely machine-independent, and uses only a few
well-defined back-end features (for state checkpointing).

2. Events and Time

The debugger modifies source code of “debuggable” func-
tions by adding instrumentation in the form of events.
Events are located at value declarations, at the top of each
function (and each case branch), and immediately prior to
each function call (excluding built-in functions that cause
no side-effects). (Note that we do not place events after
calls; this insures that the compiler’s tail recursion elimina-
tion methods will still apply.) There is at least one event
within each basic block, and at each binding location. (In
practice, adjoining events within the same basic block are
coalesced to reduce overhead, but we ignore this complica-
tion in what follows.) This enables events to serve both as
potential breakpoint locations, and as convenient points at
which to collect the values of bound variables. Each dis-
tinct event in the program text is given a unique event
number. The debugger maintains a mapping between event
numbers and locations in the original abstract syntax tree,
which is retained during debugging.

As the instrumented program runs, the debugger maintains
a counter that is incremented each time an event is exe-
cuted (whether or not the associated breakpoint is taken).
This counter is a form of software instruction counter,
which we use to uniquely identify points in the program’s
execution history. We refer to the value of this counter as
the current time, and talk about the corresponding time of
any event execution.

Breakpointing is controlled entirely on the basis of time: a
break is taken at an event execution if the time of that event
matches the value of a targetTime variable maintained by
the debugger, In addition, the debugger keeps an array
eventTimes, indexed by event number, that records the last
time each event was executed. This array allows location-
based breakpointing to be simulated by time-based break-
pointing, as will be described in Section 4. A summary of
the instrumentation code described so far is shown in Fig-
ure 1. Note that event is shown as a subroutine here; in
practice, the code will normally be placed in-line for exe-
cution efficiency.

2

fun event(eventNum,lastBindTime,boundVa1ues) =
(currentTime := !currentTime + 1;
if (!currentTime) = (!targetTime) then

break (eventNum,lastBindTime,boundValuesJ
else 0;
update (eventTimes,eventNum,!currentTime))

Figure 1.

fun1 rev (h: :t) =*

let va14 r = rev3 t
in r Q5 [h]
end

I rev nil =6
nil

Eve&# Event type
1 fun binding
2 fn entry
3 application
4 val binding
5 application
6 fn entry

User code for the rev function
Figure 2.

val bindTime = !currentTime f 1
fun rev (h: :t) =

(event(2,bindTimel,h,t);
let val bindtime = !currentTime in

let val r = (event (3,bindTimeZl;
rev t)

val = event(4,bindTimeZ,r) -
val bindTime = !currentTime

in event(5,bindTime4);
r @ Ihl

end
end)

I rev nil =
(event (6,bindTimel);
nil)

val = event (l,O,rev) -

Instrumented Code for the rev function.
Figure 3.

The debugger adds further instrumentation to each bind-
ing event (val and val ret declarations, and each rule
within a fn or case) to create a new variable named
bindTimen, where n is the event number. This variable
has the same scope as the variables bound at the associ-
ated event: its value is the time at which the binding
occurred. The importance of these variables is described
in Section 5.

tines. When a breakpoint is taken, the user program
transfers control to the debugger by calling break with
these arguments: the event number, the time of the previ-
ous in-scope binding event execution (which will be au
appropriate bindTime variable), and a list of the values
bound at this event (if any). The values are not tagged but
are in a fixed order that can be deduced by the debugger
from the abstract syntax corresponding to the event.

The user program and the debugger are related as corou- Figure 2 shows the user code for a short ML, function

3

which reverses a list. The locations of events in this code
have been indicated by annotating with event numbers;
the adjacent table lists the type of each event. Figure 3
shows the instrumented version of the code, with the ori-
ginal program in bold font and the added instrumentation
in italics; the event function is as in Figure 1.

3. States and Time Travel

The debugger starts up a user program by setting target-
Time to a suitable value and invoking the program as a
coroutine. The user program then executes normally until
the target time or the end of the program is reached, upon
which the debugger is re-entered via break. Whenever it
receives control, the debugger makes a checkpoint of the
current state of the user program, tagged with the current
time.

To continue normally from a breakpoint, the debugger
simply resumes the user program coroutine, leaving the
state unchanged. But the debugger can also restart the
user program from any previous time for which it has a
state checkpoint, simply by restoring that state before
resuming the user program coroutine. To restart the user
program from an arbitrary previous time t, the debugger
resets the program state to the latest time I f for which it
has a checkpoint, sets targetTime to f, and re-executes
forward. To make sure that we won’t have to do too much
re-execution, automatic breaks are caused at regular
intervals. In particular, if the user explicitly wishes to
break at a particular time t, we assume that the period
immediately prior to t is also likely to be of interest, with
our level of interest increasing exponentially as we
approach t. If we are asked to go to time t from the
nearest previous stored time t’, we first break at time t” =
(t + t’) / 2, then halfway between t” and t, and so on, until
we estimate that it would cost less to re-execute directly to
t than to store another state. Taking these breakpoints
during forward execution costs a small amount of extra
time, but saves a great deal of time later if we want to
jump back into the period before t.

This time-travel mechanism is encapsulated in a routine
called gotoTime, which is used as a primitive by many
debugger commands. GotoTime takes a primary argu-
ment newTime, which specifies a time in the past to reset
to or a time in the future to advance to, and a secondary
argument errorMargin, which is used when we only
need to reset a time approximately and it would be waste-
ful to bother re-executing to a precise time; if there is a
stored checkpoint within errorMargin units of newTime,

it will be used and no further forward execution will take
place.

Taking breakpoints is expensive in execution time, and
storing checkpoints is expensive in space, so it is impor-
tant to keep the set of checkpoints we remember reason-
ably small; therefore, we manage it as a cache. We can
choose the size of the cache dynamically by getting
memory-demand information from the run-time system.
For any given cache size, whenever a new state is added
to the cache, some previously stored state may need to be
thrown out. Ideally, we would like to keep the states that
will be most useful in future restarts, but we cannot
predict precisely which these are, so some heuristic is
needed. One heuristic is to use a form of least-recently-
used: throw away the states that have not been used for
restarts in a long time. Another approach is to rank the
states based on how expensive it would be to regenerate
them, and to throw away the least expensive. It is easy to
construct scenarios in which one or the other of these
heuristics fails; we would like to find a compromise
scheme.

4. Breakpoints

We allow the user to set breakpoints either at particular
source program locations (as in traditional debuggers) or
at particular times in the program’s execution history (past
or future). Our debugger is unusual in making time-
based breakpointing the fundamental mechanism and
using it to implement location-based breakpoints. We
think programmers will find efficient time-based break-
points very useful; conventional debuggers can achieve a
similar effect (in the forward direction) only by labori-
ously repeated single-stepping.*

As with most debuggers, we keep a list of breakpoints; the
user can execute either forward or backward to the nearest
breakpoint. At present, encountering a breakpoint simply
returns control to the user, in principle, it would be easy to
associate actions with these breakpoints as well. The
remainder of this section assumes that there is only one
breakpoint, but the methods described can handle multiple
breakpoints and mixtures of time- and location-based
breakpoints without difficulty.

* In one conventional debugger (GDB) we have measured
single-stepping to be more than 25000 times slower than ordinary
execution. Our debugger can execute to a time-based breakpoint at
a rate only 2 to 4 times slower than ordinary execution (see Section
8).

4

Implementation of time-based breakpoints is trivial, given
the gotoTime primitive. Reverse execution to a location-
based breakpoint is also easy: we simply look up the last
time for the given event in the eventTimes array and goto
that time. Forward execution is much more complicated.
Our goal is to find the first time at which the eventTimes
entry for the event has changed. To do this, we jump into
the future looking for an outside bound on the time. Since
we have no a priori idea of the true distance to the desired
time, we first jump forward by an arbitrary delta; if the
entry hasn’t changed we jump forward again by twice as
much as before. We repeat this, doubling our jump each
time, until we find the entry changed or the program
finishes. Note that in this phase of the algorithm we never
go more than twice as far as the true distance, and the
total number of breaks we take is proportional to the log
of the true distance. Having bounded the desired time
from above and below, we next perform a binary search to
pinpoint the time when the entry first changed. The
number of breaks we take in this phase is again propor-
tional to the log of the true distance from our initial start-
ing time. In all our invocations of gotoTime we specify a
broad error margin in hopes of being able to reuse stored
checkpoints without re-execution.

We have chosen this implementation of location-based
breakpoints to keep event instrumentation simple. An
alternative implementation of forward location-based
breakpoints would be to maintain a separate boolean
array, breakwanted, indexed by event number. User
code instrumentation would be extended so that a break at
event i occurs if breakWanted[i] is true or the target time
has been reached. This would give simpler forward
breakpointing but would increase the cost of every event,
whether or not breakpoints were in use. Basing all break-
point decisions on time keeps the per-event test simple
and efficient.

Moreover, our binary search method can be extended to
pinpoint any event having a monotonic indicator function,
perhaps user-specified. * This could be far more efficient
than the traditional implementations of watch-pointing by
repeated breakpoints or memory protection tricks.

* E.g., “break when index variable i reaches 100”.

5. Displaying values

Recall that there is an event associated with each ML
statement that binds a value to an identifier; the bound
value is passed to the debugger when the associated
break is executed. The basis of our technique for
displaying the value of an identifier is to jump back to that
identifier’s binding time, cause the break to occur, collect
the associated value, and return to our original time. Thus
values are typically passed to the debugger only after a
specific request by the user. (This works for the large pro-
portion of ML objects that are immutable; we discuss the
handling of mutable objects below.)

A user’s request for a value is always interpreted in the
context of the particular time and event occurrence at
which the program is currently halted. The variable
requested must be in scope at this point, and any other
variables with the same name are hidden by the one in
scope. If the variable has just been bound at the current
event, the debugger will already have obtained its value
when control was received from the program. Otherwise,
we jump back to the latest prior event execution that
bound some in-scope variable: the time of this execution
is passed to the debugger via the 1astBindTime argument
to break. We repeat this process until we find the desired
value: every in-scope variable must be bound somewhere
on this binding chain of event executions.

As an example, consider the rev program of Figures 2 and
3. Suppose we are stopped at event #5 (just before doing
the list append), and that the user asks for the value of h.
No values were passed at event #5, so we jump back to
the 1astBindTime for event #5, which was given as bind-
Time4, and will in fact be just one time unit earlier. The
event for this time is #4, which can only give us the value
of r, so we must repeat the procedure, jumping back to
bindTime2, which is associated with event ##2. (Notice
that this will generally not be the most recent execution of
event #2, which will have occurred during the recursive
call to rev used in calculating r, and its time bears no sim-
ple relation to our original starting time.) Since the
desired value of h is available at event K!, the process
completes here.

Note that the bindTimen variables act something like
access links in a conventional run-time system for a
block-structured language; unfortunately, they occupy
storage proportional to the depth of recursion in the pro-
gram. However, the length of the binding chain, and
hence the number of calls to gotoTime needed to look up

4

a variable, is proportional only to the static size of the
program, not to execution time. Moreover, if we look up
the values of multiple variables from the same context we
can expect to revisit many of the same times along the
chain; since checkpoints are cached, no re-execution will
be needed to obtain the second and subsequent values.

Our method for displaying values of objects in the mut-
able store (references and arrays) is somewhat different.
Again we go back to the binding site for the object, but in
this case we collect a pointer to the object, which is
passed to break instead of the object’s contents. We then
jump back to the current time and fetch the current con-
tents of the object (which may have changed repeatedly in
the interim). For this method to work correctly, it is
essential that whenever code for creating a store object is
re-executed (as it typically will be when finding the bind
time for that object) it reuses the same object pointer that
was created during the original execution. If this is not
done, we may have multiple “versions” of the object
referenced from different saved checkpoints and thus get
erroneous results. The mechanism for avoiding this prob-
lem is described in Section 7.

We also plan to support modification of store values. The
debugger can get a pointer to the ref variable as just
described, Fd can then change its value directly (taking
care not to violate type constraints expressed in the
abstract syntax). This has the effect of changing the exe-
cution history of the program, and so all future stored
states must be thrown away. Furthermore, we must
record the change and make sure it gets re-executed
whenever we pass through the same time again; this is
essentially an (internal) action associated with a time-
based breakpoint.

To display a variable’s value, we need to know its type.
ML supports polymorphic variables (e.g., h in the exam-
ple above) whose concrete types may depend on the types
of the actual arguments to the enclosing functions, and
cannot be deduced at compile time. Moreover, our com-
piler (like most ML compilers) has no run-time type tag-
ging scheme either! Happily, we can use the debugger’s
ability to find the variable’s binding time to deduce types.
This is done by finding the calling function’s variables,
determining their types (recursively applying this algo-
rithm if necessary}, and rerunning the compiler’s type-
unification algorithm. (A similar scheme for a stack-
based tag-free run-time environment was described in
[Appel89a].) The only disadvantage of this algorithm is

that it may require time proportional to the depth of
function-call nesting; we hope to improve this for some
common cases by specialized code analysis.

Finally, we can use our knowledge about the binding site
for a variable to display not only its value but also the pro-
gram source that defined it. This is particularly useful for
variabIes representing functions, which have no other
printable “value”. At present, we simply pretty-print the
abstract syntax for the binding, which may be a simple
assignment, function call, or fn (lambda) expression. In
the future, we plan to analyze the definition and recur-
sively find and print the bindings of any functions refer-
enced by the right-hand side of the binding; this should
make it much easier to debug programs that use functions
as first-class values.

6. Reconstructing Call Histories

SML-NJ doesn’t maintain a stack, and it optimizes tail
calling into iteration. Nevertheless, our debugger can
easily produce a “stack trace-back” showing a complete
history of function calls and their arguments. This is pos-
sible because: (i) there is an event immediately prior to
each application; (ii) there is an event at the top of each
function rule body, which is always executed immediately
after an application event; and (iii) all top-of-function
events appear in the binding chain. Thus we can always
determine the caller of the current function by skipping
back through the binding chain to find the current top-of-
function event and then stepping back by one time unit to
the corresponding application event. We can repeat this
process to display calling history to any depth desired.

7. Checkpointing Program State

A program’s state has three separate parts:

1. The current continuation; i.e., the Continuation that
will be invoked when we resume from break. The
continuation encompasses the values of all immut-
able objects and all control fiow.

2. The contents of the mutable store, i.e., the values of
all ref cells and arrays.

3. The I/O state, i.e., the history of activity on all I/O
streams.

Each part of the state is checkpointed using a different
method. At present, we keep all parts of a state check-
point in main memory; some parts could be maintained on
backing store instead, as will be noted below.

6

A fundamental assumption is that the continuation part of
the state will normally be by far the most voluminous.
Fortunately, it is also the easiest part to capture, using the
call-with-current-continuation (callcc) primitive provided
by the SML-NJ run-time system; in fact, the existence of
this feature was a key motivation for our approach. Stor-
ing the current continuation is very fast (involving only
the copying of a few registers), and only costs space when
it keeps live pointers to objects that would otherwise be
garbage collected. Thus continuations are an inherently
incremental checkpointing mechanism. We actually cap-
ture the current continuation at a break as a byproduct of
switching to the debugger coroutine; the operation is
straightforward, and we will say no more about continua-
tion state here.

To capture I/O state, we record all I/O operations in a
time-indexed log. In normal mode, each I/O operation
appends its result to the log before returning. On replay,
the I/O operation is not performed and the log entry for
the current time is returned instead. We obviously cannot
do better than this for interactive I/O, but we could avoid
keeping a log of input from files by assuming that the files
are stable and checkpointing the file pointers; we may
implement this approach in future. It would also be rea-
sonable to keep our log on backing store.

Capturing mutable store state is our biggest challenge.
Fortunately, we expect the store to account for a relatively
small part of total data; for example, 99.7% of the objects
created when SML-NJ compiles itself are immutable. It is
therefore acceptable to penalize programs that make
heavy use of the store. The most obvious method for
checkpointing the store would be to copy the contents of
all arrays and ref cells wholesale, but this could be very
wasteful if there are many store objects of which only a
few have been created or updated since the last break.
Instead, we keep delta lists; that is, at each break we
record only changes that have occurred since the last
break. We build these lists by instrumenting every array
creation and update so that it appends a pointer to the
updated element to a global list. (This global list can tem-
porarily occupy a great deal of space; a very similar list is
already maintained by our generational garbage collector,
and we could make use of it at the cost of increased
dependence on the details of the back end.)

delta list is stored tagged with the current time. To reset
the store to a given time t, we must consult, in order, the
contents of all delta lists with tags between 0 and t, and
reset the values of each element in each list. If the same
objects are repeatedly updated, they will tend to appear in
many lists, with all but the last appearance being overwrit-
ten. To improve efficiency in this circumstance, we
periodically merge adjacent lists, removing duplicate ele-
ments. In principle, we could also keep the lists on back-
ing store.

Our algorithm for looking up store object values (see Sec-
tion 5) puts a further demand on the store history system:
we must insure that if an object creation is re-executed
when the original object is still live then the original
object is reused. To do this, we maintain a table of store
objects, hashed on creation time, and instrument each
creation to check this table. If there is a relevant entry it is
reused; otherwise the object is created and inserted in the
table. This is a significant source of inefficiency, and we
are looking for alternative methods to solve the problem.

We use special weak pointers to the store objects from
within the debugger’s data structures. Weak pointers are
like ordinary ones except that the garbage collector is
allowed to remove objects pointed to only from weak
pointers. Suppose, as is often the case, that a large
number of the store objects created in the user program
are short-lived (e.g., local to the scope of a loop body),
and would normally be reclaimed before we take a break.
Our use of weak pointers allows this to continue happen-
ing; using ordinary pointers would prevent the objects
from being treated as garbage.

8. Implementation and Performance

We have implemented the debugger (in ML) as an exten-
sion to the ML-NJ compiler. The implementation is
divided into several modules, with support for checkpoint-
ing, time travel, code instrumentation, and query com-
mands clearly separated. Debugger code is wholly
independent of the compiler’s back end except for con-
tinuation checkpointing (which uses callcc) and store
checkpointing (which uses weak pointers and some basic
knowledge about run-time data formats). The code is
roughly 3200 lines long (about 10% of the size of the
compiler itself).

When a break occurs, the debugger retrieves the list,
removes duplicate entries (typically very numerous), and
fetches a copy of the contents of each entry. The resulting

7

Program Store
Events

RedBlack 2.5 %
Lexer 5.6
UnionFind 8.4
TermRewrite 0

RefCreate 90.9
RefUpdate 90.9
I/O 0 I

Normal Instrumented for Debugging

Code Execution Code Execution Debug
Size Time Size Time Time

2784 b 10.3+1 .o s 10208 b 22.4+2.6 s 31.7+3.7 s
14012 7.9-kO.l 37892 16.8+6.4 27.7+7.4
8060 5.4+0.6 38204 17.7+9.7 31.6+15.2
7096 6.9+0.1 34900 20.1+0.3 26.2fO.6

512 0.2+0.0 4232 23.2+17.7 30.0+24.5
568 O.l+O.O 6368 2.0+7.5 3.6+10.6
760 2.5+0.1 2980 8.2+1.6 41.9+1.8

Benchmark Statistics
(Code Size in bytes of VAX machine code.)

(Ties in form execution-time + garbage-collection-time, both in CPU seconds.)

Table 1

Unoptimized

Execution
Time

28.1+2.2 s
16.1+0.7
10.6i1.5
18.9+0.1

0.84-0.0
0.2+0.0
2.6+0.0

The debugger is fully integrated into the SML-NJ interac-
tive system; code can be compiled and executed in debug
mode by using simple commands, which are ordinary ML
functions loaded into the user’s top-level environment.
The user can write new debugger functions based on the
existing primitives, using ML itself as a “customization
language.”

We have benchmarked the debugger (on a 32 MB VAXs-
tation 3500 running Ultrix) with the results shown in
Table 1. The top section of the table contains entries for
typical programs: RedBlack does insertions into a red-
black tree, Lexer does lexical analysis on ML source text
and counts tokens, UnionFind reads strings from a file
and does union and find operations with path compres-
sion, and TermRewrite (the only purely functional pro-
gram benchmarked) does symbolic differentiation by
term-rewriting. The entries in the bottom section of the
table represent some worst-case program types:
RefCreate simply creates mutable reference cells,
RefUpdate just updates such cells, and I/O just copies an
input file to an output file. The column labeled Store
Events gives the percentage of event executions that
represent creation or update of mutable store cells. We
report execution time and garbage collection time
separately because we believe the latter can be made arbi-
trarily small given sufficient memory [Appe187b] and the
use of virtual-memory techniques [Shaw87] that would be
expected in a production compiler.

The left-hand side of the table compares normal (uninstru-
mented) optimized code to instrumented code, for which
two timing figures are given. Execution Time is the time

Interpreted

Execution
Time

758.9+18.6 s
219.2+4.1

ti

123.4+3.7
297.0+9.7

19.6+0.7
13.3+0.8
5.6+0.1

needed to execute the instrumented program to comple-
tion without taking breaks; it measures the overhead of
instrumentation. Debug Time is the time needed to exe-
cute to a location-based breakpoint at the end of the pro-
gram; this involves taking periodic checkpoints and re-
executing some part of the tail end of the program (up to
two-thirds of the program in the worst case); it is intended
to measure the cost of executing the whole program in a
more typical debugging context. Nearly all the added
time is in re-execution; separate measurements (not
detailed here) show that checkpointing alone costs very
little. It should be emphasized that the Debug Time figure
reported is dependent on several arbitrary parameters
(e.g., minimum and maximum checkpointing intervals)
that we have made no effort to tune as yet.

These timings confirm the practicality of our approach.
The typical programs execute only 2 to 4 times slower
under the debugger than normally. Debug Times are at
worst twice as long. This seems an entirely tolerable
price to pay for debugging functionality. Reference opera-
tions slow things down very substantially, as the worst-
case benchmarks make clear, but this does not cause the
typical programs to suffer too much. I/O is particularly
expensive on replay; this accounts for the Debug Times
being higher than might be expected.

The two right-hand columns of Table 1 give evidence that
our instrumentation approach compares well with other
possible debugger methods in time performance. Unop-
timized Execution Time is the time to execute the normal
program when it is compiled with all optional optimiza-
tions turned off. This approximates the time that could be

8

expected if we had tried to build a conventional debugger
on top of a compiler that didn’t do code-rewriting optimi-
zations. Times in this column are comparable to Instru-
mented Execution Times. Interpreted Execution Time is
the time to execute the normal program under our
lambda-calculus interpreter; with such an interpreter,
users could reasonably debug by manually instrumenting
their own code as needed at run time. Interpretation is typ-
ically an order of magnitude slower than instrumented
execution.

The table also shows that instrumenting code increases its
size significantly, and compile time increases accordingly
(somewhat worse than linearly). We can mitigate this
effect by not compiling event instrumentation in-line; this
cuts compilation time by 30% to 50%, while increasing
execution time by 25% to 75%. We would also like to
speed up our compiler!

To compare the memory demands of debugging versus
normal execution, we separately consider (i) the memory
used to compile the program, (ii) the static memory occu-
pied by the program after it has been compiled, and (iii)
the dynamic memory occupied by program data while it is
running.*

We have not extensively measured memory use during
compilation. A debuggable program will temporarily
require more memory because a second, larger, instru-
mented version of the abstract syntax is produced, and all
the other intermediate representations will be correspond-
ingly larger.

Except for code size (see Table 1), the static space
requirements of instrumented and non-instrumented code
are very similar. The instrumented version requires only a
small additional data structure describing events; this
structure points into the original abstract syntax, which is
large but is kept by the standard system anyway.

Dynamic memory use is much more interesting. Figure 4
shows dynamic memory usage (in MB of live data) meas-
ured at regular intervals over the course of each typical
benchmark run, with checkpoint caching disabled. The
lowest curve in each graph shows the amount of data gen-

* To get an overall picture of memory demand on the machine,
one must also add the size of the underlying compiler and run-time
system (1.67MB for the standard system vs. 1.93MB for the
system supporting debugging), and of the operating system.

erated by ordinary non-instrumented code. The middle
curve shows the the amount of data generated by instru-
mented code; the extra data is accounted for by the I/O
log, delta lists for the mutable store, and larger code clo-
sures. The top curve includes the additional space needed
to store uncompressed delta lists for the mutable store;
this final increment is not part of the checkpoint but can
contribute significantly to temporary memory require-
ments. Note that all figures were obtained by measuring
live data size after full garbage collections. They are valid
for comparative purposes, but must be multiplied by a
substantial factor (at least 3) to get an estimate of the
actual peak memory requirements of a adequately func-
tioning system.

Figure 5 illustrates the phenomenon of storage sharing by
continuations for each typical benchmark. In each case, a
series of checkpoints was taken at exponentially decreas-
ing intervals approaching a particular time towards the
end of the computation (a log scale has been used on the
x-axis to display the points more clearly). The lower
curve in each graph shows memory use when each check-
point was thrown away before the next was stored. The
upper curve represents the case where all checkpoints
were retained in the cache; the resulting exponential dis-
tribution of cache entry times is typical for many
debugger operations. Substantial sharing occurs in all
cases; in programs like RedBlack that build up a data
structure, sharing is almost 100%. Moreover, even for
programs like TermRewrite, which turn over their live
data rapidly, the marginal space cost of additional check-
points approaches zero as the interval between them
decreases.

9. Related Work

Many of our ideas were anticipated in Balzer’s seminal
EXDAMS system [Balzer69]. He uses a similar instru-
mentation method to log important events (first to a buffer
and eventually to a file) for subsequent post-mortem
analysis. Our ideas on using binding site information
resemble his “flowback analysis,” which has also been
revived in [Miller88]. A major difference in our work is
that we collect event data only on request, which keeps
execution overheads low enough to support interactive
debugging; low-cost, conditionally-triggered events are
exploited in a similar way by the Parasight system
[Aral89].

Automatic instrumentation has been used for interactive
debugging before. [Hanson781 describes how a general-

0 200 400 600 800 0 256 448 496 508 511 511.7

0.40 - RedBlack

0.30

0.20

0.10

0.00

Lexer

I
- 0.08

. ’ I I I I 0.00 y , I I I I
0 100 200 300 400 0 200 350 387.5 396.9 399.2 399.8

UnionFind UnionFind

-- 0.25

0 100 200 300 400 0 200 350 387.5 396.9 399.2 399.8

TermRewrite I

t

0.12

0.08

14 o.oo

/&+----I 0.04

TermRewrite

I
I I I I I

0 200 400 600 800

Time (1,000’s of steps)

1000 1200 0 500 875 968.7 992.1 997.9

Time (1,000’s of steps)

Dynamic Memory Usage Overlapping of Checkpoint Storage
Figure 4. Figure 5.

10

ized event mechanism can be built into a programming travel, which the debugger uses internally in a very
language (SNOBOL4) and used to support debugging.
[Dybvig88] describes a LISP debugging mechanism based
on instrumentation via a powerful macro system. We have
previously used instrumentation in ML to produce execu-
tion profiles [Appe188].

[Johnson881 explores the use of continuations and stores
as first-class objects in the language GL, and suggests
their utility for debugging.

Many replay debuggers have been proposed, especially in
connection with parallel programming systems
[Curtis82,LeBlanc87,McDowell89], and the idea of using
a log to govern or assist re-execution is well-established.
One important issue in such systems is how to measure
time: [Cargill87] proposed a hardware instruction
counter; [Mellor-Crummey891 use assembly-code-level
instrumentation to implement a counter in software. A
higher-level software counter is easier to use with a com-
piler that performs significant rewriting or optimization.
Another key issue is how to support checkpointing
efficiently. A very thorough checkpointing system is pro-
posed and analyzed in [Wilson89], which supports the
idea that the whole history of very large systems can be
preserved at acceptable cost.

10. Conclusions and Future Work

We have built a practical ML debugger based on source
code instrumentation and time travel. The debugger pro-
vides novel solutions to the challenges posed by our com-
piler methodology, which prevents ordinary source-level
debugger techniques from working. Execution time for
instrumented code is only a few times slower than ordi-
nary code. Space requirements for checkpointing func-
tional state are minimized because continuations share
storage. The space needed to keep track of changes to the
mutable store is kept low by simple coordination with the
garbage collector. Except for this and the use of callcc,
our debugger is completely independent of the compiler’s
back end and the underlying machine. As a result it was
relatively simple to write and would be trivial to port.

One obvious goal at present is to build up a body of users
and experience using the debugger in “real life” applica-
tions. This will enable us to develop a set of realistic
benchmarks representing typical debugging sessions; hav-
ing these is a prerequisite for any serious performance
analysis, in particular for testing alternative checkpoint
caching strategies. We would also like to see whether time

comprehensive way, will prove equally valuable as a
user-level facility. Finding suitable metaphors and
methods for navigating through the history of a computa-
tion will become increasingly important as replay
mechanisms become a common part of programming
environments.

The main use of replay debugging to date has been in
parallel programming systems, and we expect that our
debugging approach will extend naturally to such systems,
although some of our time-travel tricks may not carry
over to a multi-thread environment. Our notion of event
can easily be extended to cover various kinds of commun-
ication and synchronization operations; because we instru-
ment code at source level our approach will mesh particu-
larly well with languages that support such operations
explicitly.

We believe that instrumentation will be a key technique in
future debugging systems. Compilers are becoming
increasingly aggressive in transforming code. A computa-
tion originally expressed by the programmer in the source
language may be transformed into machine code that per-
forms a quite different computation. This is normally
acceptable if the new computation’s external behavior is
consistent with that of the original. But to debug the pro-
gram effectively, we need the machine code to conform
closely to the original program text. The best way to
make the compiler produce such code is to extend the
program’s external behavior to make its internal state
observable, e.g., by recording a trace of statement execu-
tion or permitting display and update of intermediate vari-
ables. When translating this extended program, the com-
piler will be constrained to produce machine code that
mirrors the original computation to whatever degree of
precision required. Source-level instrumentation is the
natural way to produce the extended version of the source.

We are particularly interested in applying our approach to
lazy and parallel languages with indeterminate execution
order. Many such languages have transformational com-
pilers of the type just discussed. In addition, they offer a
further challenge: for debugging, it is often desirable to fix
a particular repeatable execution order for a program.
Again, this may be achieved by transforming the program,
this time into one that performs the same computation as
the original but is determinate, at least during replay. We
believe instrumentation can be useful here as well.

11

Acknowledgements

David Tarditi implemented support for run-time resolution of
polymorphic types. The type-checking of callcc in Standard ML
is due to Bruce Duba and David MacQueen.

References

[AppelS7a].
A.W. Appel and D.B. MacQueen, “A Standard ML com-
piler,” in Functional Programming Languages and Com-
puter Architecture, ed. G. Kahn, LNCS , vol. 274, pp.
301-324, Springer Verlag, 1987.

[Appe187b].
A.W. Appel, “Garbage collection can be faster than stack
allocation,” Information Processing Letters, vol. 25, no.
4, pp. 275-279, 1987.

[Appe188].
A.W. Appel, B.F. Duba, and D.B. MacQueen, “Profiling
in the presence of optimization and garbage collection,”
Technical Report CS-TR-197-88, Princeton University
Dept. of Computer Science, 1988.

[Appel89a].
A.W. Appel, “Runtime tags aren’t necessary,” Lisp and
Symbolic Computation, vol. 2, pp. 153-162, 1989.

[Appel89b].
A.W. Appel, “Continuation-passing, closure-passing
style,” Sixteenth ACM Symp. on Principles of Program-
ming Languages, pp. 293-302, 1989.

[Ara189].
Z. Aral, I. Gertner, and G. Schaffer, “Efficient debugging
primitives for multiprocessors,” Proc. 3rd International
Conf. on Architectural Support for Programming
Languages and Operating Systems, 1989.

[Balzer69].
R.M. Balzer, “EXDAMS - EXtendable Debugging and
Monitoring System,” AFIPS Proc. Spring Joint Com-
puter Conference, vol. 34, pp. 567-580, AFIPS Press,
Arlington, VA, 1969.

[Bruegge85].
B. Bruegge, “Adaptability and portability of symbolic
debuggers,” (Thesis) CMU-CS-85-174, Carnegie-Mellon
University Dept. of Computer Science, Sept 1985.

[Cargill87].
T.A. CargiIl and B.N. Locantbi, “Cheap hardware sup-
port for software debugging and profiling,” Proc. SIG-
PLAN ‘87 Symposium on Compiler Construction, pp. 82-
83, June 1987.

[Curtis82].
R. Curtis and L. Wittie, “Bugnet: A debugging system
for parallel programming environments,” Proc. 3rd Znrer-
national Conf on Distributed Computing Systems, pp.
394-399, October 1982.

[Dybvig88].
R.K. Dybvig, D.P. Friedman, and C.T. Haynes,
“Expansion-Passing style: A general macro mechanism,”
Lisp and Symbolic Computation, vol. 1, pp. 53-75, 1988.

[Friedman84].
D.P. Friedman, C.T. Haynes, and E. Kohlbecker, “Pro-
gramming with continuations,” in Program fransforma-
tion and programming environments, ed. P. Pepper, pp.
263-274, Springer, 1984.

[Hanson78].
D.R. Hanson, “Event associations in SNOBOL4 for pro-
gram debugging,” Software Practice and Experience,
vol. 8, pp. 115129,1978.

[Hennessy82].
J. Hennessy, “Symbolic debugging of optimized code,”
ACM Transactions on Programming Languages and Sys-
tems, vol. 4, no. 3, pp. 323-344, July 1982.

[Johnson88].
G.F. Johnson and D. Duggan, “Stores and partial con-
tinuations as first-class objects in a language and its
environment,” Proc. 15th ACM SIGACT-SZGPLAN Sym-
posium on Principles of Programming Languages, San
Diego, CA, January 1988.

[LeBlanc87].
T.J. LeBlanc and J.M. Mellor-Crummey, “Debugging
parallel programs with Instant Replay,” IEEE Transac-
tions on Computers, vol. 36, no. 4, pp. 471-482, April 87.

[McDowell89].
C.E. McDowell and D.P. Helmbold, “Debugging con-
current programs,” ACM Computing Surveys, vol. 21, no.
4, pp. 593-622, December 1989.

[Mellor-Crummey89].
J.M. Mellor-Crummey and T.J. LeBlanc, “A software
instruction counter,” Proc. 3rd International Conf on
Architectural Support for Programming Languages and
Operating Systems, 1989.

[Miller88].
B.P. Miller and J.-D Choi, “A mechanism for efficient
debugging of parallel programs,” Proc. SIGPLAN ‘88
Conference on Programming Language Design and
Implementation, pp. 135-144, Atlanta, Georgia, June 22-
24, 1988.

[MilneBO].
R. Milner, M. Tofte, and R. Harper, The Definition of
Standard ML, MIT Press, Cambridge, Mass., 1990.

[Shaw87].
Robert A. Shaw, “Improving garbage collector perfor-
mance in virtual memory,” STAN-TR-87-323, Stanford
University Computer Science Department, 1987.

[Wilson89].
P.R. Wilson and T.G. Moher, “Demonic memory for pro-
cess histories,” Proc. SIGPLAN 89 Conference on Pro-
gramming Language Design and Implementation, June
1989.

[Zellweger84].
P.T. Zellweger, “Interactive source-level debugging of
optimized programs,” CSL-84-5, Xerox Corporation Palo
Alto Research Center, May 1984.

12

