
Trap Architectures for Lisp Systems

Douglas Johnson
Texas Instruments MS 369

P.O. Box 655621
Dallas, Texas 75265

johnson@ti.com
(214) 917-7442

Abstract 1 Introduction

Recent measurements of Lisp systems show a dramatic skew-
ing of operation frequency. For example, small integer (fix-
num) arithmetic dominates most programs, but other num-
ber types can occur on almost any operation. Likewise, few
memory references trigger special handling for garbage col-
lection, but nearly all memory operations could trigger such
special handling. Systems like SPARCtm and SPUR have
shown that small amounts of special hardware can signifi-
cantly reduce the need for inline software checks by trapping
when an unusual condition is detected.

Much of the early RISC design work focused on the fea-
tures needed to support static languages (particularly C)
well. In static languages, the data types are known at com-
pile time and any runtime storage management is done ex-
plicitly by the progra.mmer. With ca.reful design and cost
analysis, RISC architectures are providing dramatic perfor-
mance improvements over earlier architectures [MIPS 861.

A system’s trapping architecture now becomes key to
performance. In most systems, the trap architecture is in-
tended to handle errors (e.g., address faults) or conditions
requiring large amounts of processing (e.g., page faults).
The requirements for Lisp traps are quite different. In par-
ticular, the trap frequency is higher, processing time per
trap is shorter, and most need to be handled in the user’s
address space and context.

There is increasing interest in dynamic languages such a.s
Smalltalk or Lisp. Dynamic language data types may not be
known until runtime and storage management is done im-

plicitly (i.e., garbage collection). These languages are useful
in applications ranging from artificial intelligence to user
interfaces. The boundary between static and dynamic lan-
guages blurs as C++ acquires more dynamic characteristics.

This paper looks at these requirements, evaluates current
trap architectures, and proposes enhancements for meeting
those requirements. These enhancements increase perfor-
mance for Lisp ll%-35% at a cost of about 1.6% more CPU
logic. They also aid debugging in general and speed floating
point exception handling.

Cursory analysis of dynamic languages shows that RISC
architectures are well matched to the majority of dynamic
language operations. Steenkiste showed that Lisp programs
are dominated by data movement, function calling, and in-
teger arithmetic [Steenkiste 881. Ungar had similar results
for Smalltalk [Ungar 861. Typical RISC architectures are
optimized for those operations. The problem in supporting
dynamic languages well is one of possibilities rather than
probabilities.

For example, any given arithmetic opera.tion will proba-
bly have simple integer operands, but those operands may
be any type. In the general case, one cannot know the
operands’ types ahead of time (e.g.at compile time). There-
fore, it is necessary to do extensive checking at runtime,

which can be expensive in time and code space.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

@ 1990 ACM 089791-368-X/90/0006/0079 $1.50 79

Data movement presents similar problems. An incre-
mental garbage collection system [Baker781 requires a read
barrier’ that must be checked on every fetch from heap
storage. Generational garbage collectors require a write
barrier’ that must be checked with every store into the heap
[Lieberman 831. So far, the cost of inline code for a read ba.r-
rier has prevented practical implementation of incremental
garbage collection on conventional processors. Inline checks
are used for write barriers on conventional processors. They
are practical because stores are much less frequent than
reads, but the checks still cause a significant performance

‘A read barrier is used to copy objects as they are referenced.
Basically, it requires some special processing whenever a pointer to
an uncopied object is fetched.

2A write barrier is used to remember pointers to recently created
objects so those objects may be easily collected. It requires special
processing whenever a pointer to a “young” object is stored in an
“old” object.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F91556.91595&domain=pdf&date_stamp=1990-05-01

degradation.
Efficient implementation of Lisp and other dynamic lan-

gua.ges on RISC processors requires dramatically different
implementation strategies than were used on Lisp machines
[Bosshart 87, Moon 871. Those machines used extensive spe-
cial hardwa.re and microcode to do the necessary checking
and specia.1 case handling. RISC processors do not have mic-
rocode and RISC philosophy dictates a careful evaluation of
the cost and benefit of special hardware.

The emerging approach is to use small amounts of spe-
cial hardware to detect “unusual” conditions and then trap
to a lmndler for those conditions [Hill 87, Sun 87, Taylor 86,
Ungar 861. This seems to be a very effective approach; Tay-
lor predicts SPUR Lisp performance to approach that of
specialized Lisp machines. However, this burdens the trap
handling architecture of existing systems beyond their de-
sign limits.

This article will show that current trap architectures are
too slow to be effective for dynamic language traps and pro-
poses changes that make trapping much better than inline
code. Section 2 discusses the particular requirements of Lisp
trap handling. Section 3 talks about the limits of current ar-
chitectures with examples drawn from SPARC and SPUR.
Section 4 proposes some tra.p handling features and esti-
mates their cost and benefit in the context of both SPARC
and SPUR. Section 5 is a summary.

2 Requirements

The requirements for Lisp trap handling are largely an ex-
tension of those in existing systems. Lisp is still interested
in having the system handle interrupts, page faults, fatal
errors, etc. However, Lisp and other dynamic languages can
benefit from additional trap features.

These features fall into two major areas: operand/result
type checking and storage management. Type checking is
used to ensure that the operands to an operation are com-
patible with the operation and that the results are appro-
priate (e.g.do not overllow). Storage management features
allow a Lisp system to implement read and write barriers to
support modern garbage collectors.

2.1 Type Checking

In its full generality, Common Lisp [Steele 841 defines generic
arithmetic on eight distinct numeric types. Any combina-
tion of numeric operands may appear on any operation. If
the operands are non-numeric, the proper error condition
must be raised.

Lisp machines use microcode and multi-way branch hard-
ware to implement macroinstructions with the required func-
tionality. Lisp implementations on conventional hardware
have used a variety of techniques including out-of-line gen-
eric arithmetic routines, compile time type inferencing, and
type declarations. Tag checking on conventional hardware
typica.lly consumes 16% to 18% of total execution time
[Shaw 881.

The SPARC and SPUR RISC architectures contain in-
structions for fixed length integer (fixnum) arithmetic that
cause a trap to occur if the operands are not both inte-
gers or if an overflow occurs. SPARC has TADDccTV and
TSUDccTV instructions that do the necessary checking for fix-
num operand types and overflow results. Nearly all SPUR’s
arithmetic, logical, and compare operations trap for inap-
propriate operands or overflows.

This can be a very effective approach. Shaw notes that
“fixnum arithmetic is the dominant type of arithmetic in
the test programs”. Fixnums are 28%-51% of all data ac-
cesses and 540/o-92% of all objects allocated. The trapping
instructions permit the most common generic operations to
be performed in a single instruction and still have the full
generality Lisp requires. 12%-34% of SPUR’s dynamic in-
structions do tag checks while less than 1% of the instruc-
tions actually trapped [Taylor 861 3.

When a trap occurs, the trap handler must emulate the
trapping instruction or enter the appropriate error context.
For emulation, the handler (with or without hardware as-
sistance) must decode the trapping instruction, fetch the
operands, perform any required data conversion, do the op-
eration, and place the results in the instruction’s destina-
tion. For errors, the trap handler must return coutrol to
the Lisp error handler with sufficient information about the
error and sufficient state to allow the error handler to repair
the error (perhaps with the aid of the user) and continue.

The trap handler must have a certain amount of support
to emulate an instruction. Prima.rily, it must have access to
the primitive Lisp environment. The handler needs to access
the operands, allocate storage for converted operands and
results. and return a result as if it had come from the trap-
ping instruction. The access and allocation requirements
imply that the trap handler can itself cause traps, either for
virtual memory faults or storage management traps.

2.2 Storage Management

Garbage collection is a critical issue for Lisp system per-
formance. It must have minimal impact on interactive re-
sponse, impose minimal overhead on program execution,
and interact well with virtual memory systems. Garbage col-
lection has been justly accused of violating the basic premises
of virtual memory. While virtual memory assumes locality
of reference, most garbage collectors exhibit little, if any, lo-
cality. They tend to sweep the entire virtual space, making
only a few references to each object in the space.

A great deal of research has gone into this problem with
commendable success. Lisp machines now support very ef-
fective garbage collection. Dynamic storage management is
not only inexpensive [Moon 841, but actually improves local-
itv of reference lCourts 881. Lisu machines use considerable , -
amounts of special hardware, particularly in the memory
mapping, to support storage management.

Garbage collection algorithms for conventional systems
have been less successful. Until recently, Lisps on conven-
tional machines used simple stop-and-copy garbage collec-
tors. These collectors require a pause in Lisp execution while
the garbage collector traverses the entire Lisp heap finding
live objects and copying them. This approach requires nei-
ther a read nor a write barrier. However, it imposes a delay
in interactive response (often several minutes) and destroys
the virtual memory working set.

More recently, several commercial Lisp implementations
have begun using generational stop and copy collectors to
reduce these problems. This approach requires only a write
barrier which can be implemented with inline software. These

3The question of how to effectively tag data in RISC machines is
not one this paper will address any further. It is worth noting that
Lisp does not require a large number of ta8 types. Shaw showed that
one tag bit (integer/pointer) identifies 31% of the dynamic data in his
benchmarks, two bits identifies 67%-96%, while three bits identifies
over 98%.

80

collectors have been more effective, but limit the practical
virt us1 memory size of the Lisp and require much more phys-
ica.1 memory than systems that use both a read and a write
barrier.

Steenkiste shows that writes to the heap constitute about
1.7% of the dynamic instructions executed. A software write
barrier check will consist of about 12 instructions, 4-6 of
which will be executed if no barrier fault is detected. This
implies that a software write barrier adds about 7%-10%
to the runtime, which is consistent with Moon’s estimate
of 10% and Shaw’s 7%-14% for Lisp systems [Moon 84,
Shaw 881. This makes software write barriers expensive, but
acceptable.

Trap rate = (1)

SPUR provides a hardware write barrier. Each data item
has a two bit generation number as part of its tag. A trap
is generated when an item with a younger generation tag is
stored through a pointer with a older generation tag.

The Explorertm associates generation with the address
of a.n obiect rather than with its nointer. Each entry in the

I

memory map has two bits indicating the generation number
of that area of storage. When one pointer is stored through
another, address translation is done on both. The memory
system sets a microcode flag if a pointer to a young storage
area is being stored into an old area [Greenblstt 831.

Beads from the heap (which require a read barrier check)
a.re 4.3 times more common than writes [Steenkiste 871. A
software read barrier can be implemented with roughly the
same number of instructions as a write barrier. Because
of the increased frequency, it will have a run time penalty
that is about 4 times greater than the write barrier or an
estimated 28%-40%, which is unacceptable in most systems.
Actual measurements have shown software read barriers cost
41%-51% [Zorn 891.

The hardware for the Explorer’s read barrier is simple.
The same memory map that contains the generation num-
bers also contains an oldspace bit. Pointers fetched from the
heap are translated through the memory map and a, micro-
code fla.g is set if the pointer references oldspace. [ElIis 881
shows that read and write barriers can be implemented using
standard memory protection hardware. [Krueger 881 shows
how RISC architectures can be extended to implement read
and write barriers.

2.3 Performance

It’s clear that not all dynamic languages are alike. For ex-
ample, data for Smalltalk indicates that only 3.9% of the
tagged stores trap[Ungar 861, while Taylor’s Lisp data (for
programs that did any generation traps) ranges from less
than 1% to nearly 91%, with a typical number being around
13%. A designer of a Lisp system who based the trap archi-
tecture on the Smalltalk data will be somewhat disappointed
with the Lisp performance.

The performance of trap handlers can be critical to over-
all system performance. While trapping is a good strat-
egy to deal with less common events and data types, “less
common” does not necessarily mean “rare”. Unfortunately,
there is little data on trap frequency. Taylor notes that
0%-0.64% of all instructions cause write barrier traps and
O%-0.89% cause tag faults depending on benchmark. (IIe
also notes that O%-19.4% of all instructions do generation
checks while 13%-35% do tag checks.)

If we speculate that read barrier traps are proportional
to write barrier traps, then an estimate for total trap rate
might be:

tag tTClpJ +

wkte traps +

(read/write TUti0 * WTite traps)

Using Taylor’s numbers we get a trap rate of 0%-4.3%.
An average trap handler length of 25 instructions would dou-
ble the runtime of the worst ca.se program.

Trap handler performance also competes against inline
code. Ignoring some secondary effects such as cache perfor-
mance, the formula for the tradeoff is:

Trap overhead 5 (2)
check frequency
trap frequency

* check code length

Using Taylor’s data for the Boyer benchmark’s write barrier
checks, the trap overhead should be less than $$& * 5 or
about 90 instructions. This does not include the actual work
done in the trap handler since that needs to be done in either
case.

There is a wide distribution of check and trap frequen-
cies. A number of Taylor’s benchmarks (9 of 17) did checks,
but did not trap. For those progra.ms, traps improve perfor-
mance regardless of trap cost because the inline checks are
eliminated. Taylor’s worst case program (tft) trapped on
91% of the write barrier checks and 4.6% of the tag checks.

2.4 Requirements Summary

Trap architectures for Lisp systems have requirements that
are significantly different from more conventional systems.
The most important requirement is that the handler must
be able to emulate some operation that is not directly sup-
ported by the hardware. Trap handlers need interfaces with
garbage collection and Lisp level error handlers. This means
the trap handler must have ready access to the Lisp envi-
ronment .

Furthermore, the trap handler cannot accept some re-
strictions that are often placed on trap handlers. For ex-
ample, a Lisp trap handler must reference arbitrary objects
in the Lisp environment, which means it must be able to
tolerate page faults i.e., the trap handler must also be able
to tra.p.

Because Lisp traps occur at a much greater frequency
than traditional system traps, the trap architecture must
minimize the runtime (software) effort to get to the trap
handler, determine what must be done, and do it.

Programs tha.t cause unusually high numbers of traps
will suffer greatly with slow trap handlers. Unfortunately,
there are interesting programs (such as floating point inten-
sive programs) that exhibit high trap rates. Without some
care in the design of the trap architecture, the system will
not be usable by those programs. It’s worth spending some
hardware to speed trap handling.

3 Current Architectures’ Limitations

Current trap architectures are not designed for handling the
traps of a dynamic language. They are intended to han-
dle errors (e.g.address faults) or conditions requiring large

81

amounts of processing (e.g.page faults). These trap archi-
tectures a.re inadequate for dynamic languages for three key
reasons. First, all traps enter kernel mode. The user has
little or no control over how the trap is handled. Second,
there is insufficient support for rapid instruction emulation.
Third, trap handlers cannot tolerate traps themselves.

3.1 Kernel Mode Trap Handlers

Existing trap architectures (including SPARC and SPUR)
expect the kernel to handle all traps’. If all traps enter
the operating system, either the trap handlers for dynamic
ls.nguages are built into the kernel or the kernel needs mech-
anisms to return control to the user for certain traps.

Fundamentally, the kernel is the wrong implementation
level for dynamic language trap handlers. The kernel is both
over privileged and under privileged. It’s over privileged in
the sense that it can generally do things users can’t, such as
accessing protected memory. If the trap handler is emulat-
ing a user instruction, it needs to do so with the the same
a.ccess rights as the user program, otherwise security holes
may be opened. The kernel is under privileged because trap
handlers usually run a.t low levels within the kernel and of-
ten do not have access to higher level functions such as file
systems or communications.

Different dynamic languages need different trap handlers.
They have different encoding schemes, different data types,
different semantics, and different garbage collectors. The
kernel needs a different set of handlers for each implemen-
ta.tion of each language and must switch handlers with each
process switch.

On a more mundane level, kernel trap handlers cause
problems unless all the dynamic languages and the kernel
are written and maintained by the same vendor. Kernel
vendors are understandably reluctant to put “strange” code
into the privileged portion of the system. Even then, the
details of coordinating kernel releases with all the dynamic
language releases seem overwhelming.

SPUR and the Sprite Operating System [Ousterhout 871
provide a much more flexible mechanism. A user program
can “register” trap ha.ndlers with the kernel that will be
used when a particular trap occurs. These trap handlers are
part of the user process and run in user mode. The ker-
nel calls the registered handler after a trap occurs, passing
information such as the decoded trapping instruction and
its operands. When returning, the trap handler can return
results as if it came from the trapping instruction or it can
cause the instruction to be re-executed.

This approach eliminates most of the functional difficul-
ties of kernel resident trap handlers. Unfortunately, it does
nothing to deal with the performance problems. In fact,
the additional interface requirements slightly aggravate the
situation.

3.2 SPUR Trap Architecture

Let’s examine what SPUR does for the tag trap caused when
instruction operands are not both fixed length integers. The

‘The SPARC processor enters supervisor state for all traps, while
SPUR stays in user slate for some traps. Both sysLcms vector the
traps through a table that cannot be modified by the user. Both
schemes effectively constrain the kernel to fielding all traps.

numbers in parenthesis are the approximate’ number of in-
structions required to perform the operation.

1.

2.

3.

4.

5.

Preserve trap state and re-enable traps. (35)

Decode trapping instruction and recover operands. (63)

Find user handler and enter it. (31)

1Jser handler returns(via trap). Preserve state and re-
enable traps. (24)

Place results in destination register and resume with
next instruction. (35)

This is a total of 166 instructions for the trap overhead.
With this overhead, a floating point operation will be about
200 times slower than the equivalent small integer (fixnum)
operation.

The code is all hand coded assembly language. In a few
places, the code is written more for generality than speed.
However, the majority of the work is required by the trap
architecture and is not “waste”. About half of it (90 instruc-
tions, items 1, 3, and 4), is caused by having to enter and
exit the kernel twice for each trap. Most of the remainder
(items 2 and 5) is present because the software must emu-
late the hardware instruction fetch, decode, operand fetch,
and result write.

3.3 SPARC Trap Architecture

While not available in a.ny current commercial systems, the
same approach to dynamic language traps could be used for
the SPARC. The instruction counts for a tag trap handler
interface are:

1. Preserve trap state and enter user mode. (17)

2. Decode trapping instruction and recover operands. (45)

3. Find user handler and enter it. (21)

4. User handler returns (via trap). Place results in desti-
nation register and resume with next instruction. (23)

SPARC requires a total of 106 instructions for the in-
terface. While better than SPUR, it is still unacceptable.
Decoding the instruction is simpler because the SPARC has
full 32 bit left and right shifts while SPUR can only shift
three bits left and one bit right.

Recovering the operands and returning the result,s is far
easier because SPARC’s SAVE and RESTORE instructions can
transfer data directly from one register window to another.
On the other hand, the trap handler must correctly set
SPAHC’s condition codes for the emulated instruction.

3.4 Limitations Summary

Both SPARC and SPUR have serious limitations on traps
for dynamic languages. It is difficult for a user to get control
after a trap occurs. The handler must use softwa.re to decode
the trapping instruction and returning an emulated result is
awkward. All this degrades performance to such an extent
that inline code is faster for most programs.

‘Th e counts are approximate because there is some variance in
path length and because same instructions contribute to more than
one operation.

4 Features

This section proposes a few additional features needed for
good performance on dynamic language traps. Those fea-
tures have very low implementation cost and yield much
improved performance. The purpose is to give the user pro-
gram control over certain traps, eliminate undue restrictions
on code within trap handlers, provide information about the
trap to the handler, and allow the handler to return a result
as if it had come from the trapping instruction.

The features are first described in general terms that
apply to many architectures’. Then specific modifications
to SPUR a.nd SPAKC are proposed with an analysis of cost
and benefit.

4.1 User Trap Control

It’s clear that the user program is the most effective place
to handle certain traps, while the operating system must
handle others. Traps should be divided into two groups:
user and system. The system traps include:

l reset

l error

0 interrupt

s page fault and protection violation

s window overflow and underflow

l Illegal or privileged instruction

* Half of the trap codes for a trap instruction

which a.re basica.lly the traditional traps.
The user tra.ps include:

tag trap

overflow

GC trap (read and write barrier faults)

IJnaligned address trap

Half of the trap codes for a trap instruction

which are basically the traps added for dynamic language
support.

System traps vector through a table in the kernel space’.
User traps vector through a table in the user’s address space,
indicated by a special register, the User Trap Base Register
(UTBR), which can be modified by the user.

System traps have priority over user traps. If both occur
during an instruction, the system trap will be taken and the
user trap ignored. Re-execution of the instruction after the
system trap will generate the user trap if the trap condition
is still present.

A user trap is best viewed as a forced subroutine call.
The current register window pointer is incremented (a sys-
tem window overflow trap may occur), the PC and NextPC’

‘While the debate about the value of register windows has no end,
this is an area where they shine. The trap handler automatically
gets a full set of scratch registers at minimal runtime cost. For the
most part, the balance of this paper will assume a register windowed
machine. IIowevcr, the basic principles are readily applied to fixed
register architectures and is lcft as an exercise for the student.

‘SPUR has the table at a fixed location in low memory while
SPARC uses a special register, the Trap Base Register, to hold a
pointer to the trap vector.

‘Most R.ISC machines (including SPUR and SPAR’2 use delayed
control transfer instructions. This means the next instruction to be
executed may not be related to the trapping instruction. Two pro-
gram counters are a necessary part of the trap state.

are stored in the new window and execution continues at
the proper location in the user trap vector. The proces-
sor rema.ins in user state. In addition, informa.tion about
the trapping instruction and its operands are written to the
trap handler’s register window.

System traps use the system window and do not generate
a window overflow trap. They vector through the system
trap table, disable system traps, and put the processor into
supervisor state.

4.2 Trap Information

A large part of the tag trap handlers is devoted to recover-
ing information fopcode and operands) that the hardware
had available at the time of the trap. A ma.jor improve-
ment in tra.p performance can be achieved by making the
information directly accessible to the trap handler.

All of the necessary information is readily available in
the hardware at the time of the trap. For a register window
machine, it can be placed in the trap handler’s window. The
required information is:

Instruction --- the trapping instruction9

~$1 --- Contains the ualue of the first source operand of
the trapping instruction.

0~2 - Contains the valve of the second source operand of
the trapping instruction.

Dest - Contains the register number of the destination
register of the trapping instructionr’.

4.3 Handler Return

A user trap handler does one of two things on return. If the
handler has corrected whatever condition caused the trap,
the trapping instruction will be re-executed a.5 if the trap
had not occurred. If the handler has emulated the trapping
instruction, a value must be returned as if it had ccme from
the trapping instruction and execution continued with the
next instruction. The former is what system trap handlers
do with traps like virtual memory faults. Nearly all trap
architectures provide good support for tha.t style of trap
return.

Architectures do not provide good support for instruc-
tion emulation by a trap handler. What needs to be done
is for the emulated result to be placed in the destination
register of the trapping instruction and any condition codes
to be set appropriately.

Results are normally returned in the register window be-
fore the window being used by the tra.p handler. The SPUR
requires 35 instructions to do this and it must be done in
kernel mode to prevent interrupts or other traps from de-
stroying the trap handler window during the (brief) time
it is running in the trapping instruction’s window. This re-
quires 24 more instructions to enter the kernel. The problem
is less difficult on SPARC, which is able to use the RESTORE
instruction to return a result directly.

‘The handler could fetch this using the trap PC, but this would
almost certainly cause a data cache fault in systems with split in-
struction and data caches. Architecturally, it is probably better to
avoid that potential cost.

“This could be extracted from the instruction on a machine with
fast shift-and-mask.

83

4.4 SPUR Implementation

SPUR needs three modifications to implement the proposed
trap architecture. It should partition its trap vector into
user and system vectors, it needs to add the user readable
special registers, and it needs to add an instruction to return
an emulated result.

The instruction VALUERETURN takes two arguments, the
value to be returned and the number of the register to return
it to (both arguments in registers). The instruction reads
the return value and the destination register number out
of the current register window, moves the window pointer
to the previous window, and stores the return value in the
proper destination register. It can be implemented with
minor extensions to the existing SPUR data paths.

The 59 instructions SPUR needs to return an emulated
result are reduced to two:

/* The trap handler is now executing
in the register window immediately
below the trapping instruction’s
windoa. Register values are :
NEXT-PC-REC -- the address of the

next instruction to
be executed.

DEST-REC -- the number of the
destination register
of the trapping
instruct ion.

RETURN-VAL -- the value to be
returned.

Go back to user program */
jump-reg NEXT-PC-BEG
value-return DESTJtEG,EETURN~VAL
/*In delay slot, return value */

The JUMPREG instruction continues the user program at
the next instruction after the trapping instruction. The
VALUERETURN executes in the delay slot of the jump and re-
turns the emulated result and restores the current window
pointer.

4.5 SPUR Performance

The suggested changes have a major impact on trap per-
formance. The 188 instructions from the SPUR’s tag trap
handler are reduced to two”.

/* The trap handler is noa executing
in the register window immediately
below the trapping instruction’s
nindoa . Register values axe:

PC-REG -- the address of the instruction
that trapped.

NEXT-PC-l&EC -- the address of the
next instruction to
be executed.

INST-REG -- the instruction that trapped.
OPl -- the value of the first operand.
DP2 -- the value of the second operand.
DESTJEG -- the number of the

destination register
of the trapping

“Placing the values in the trap register window will take four extra
clocks on the SPUR to make the trap a total of six clocks.

instruction.
/* Begin trap handler */

*/

/* Go back to user program */
jump-reg NEXT-PC-BEG
value-return DESTJtEG.BETUFtN~VAL

The reduction in instruction count is pretty spectacu-
lar. However, it’s important only as it contributes to perfor-
mance a.t the user level. As mentioned in section 2.3, there
are two ways to measure it. Against inline code, we can
rewrite equation 2 to show the “equivalent inline instruc-
tions” of the trap overhead:

Equivalent inline instructions = (3)

trap overhead *
ttap frequency

check frequency

For trap overhead, we will count the trap as six plus
the two return instructions12. For the Boyer benchma.rk’s
write barrier checks, the trap is cheaper than an inline check
of6** instructions-about a third of an instruction.
Since inline checks seem to cost 4-6 instructions, the new
trap architecture is a major improvement. The old .architec-
ture has 188 * T
tions” which in a:

or about 10 “equivalent inline instruc-
mates most checks are better done inline.

Zorn [Zorn 891 looked at garbage collection costs for Lisp
using either software with a 4.5 instruction overhead and
hardware traps with a 7 instruction overhead. Table 1 shows
the overhead for four benchmarks with a GC threshold of
500 Kilobytes. The results are consistent with Taylor who
shows generation (write barrier) traps occur on 0%-0.64%
of the instructions executed for an overhead of 0%-S% with
the modified trap architecture. Shaw estimates inline write
barrier checks to cost 7%-14%.

Benchmark Hardware Trap Inline Software

Lisp Comprler 0.0 5.1
Curare 0.1 1.5
Boyer-Moore TP 0.0 13.8
RL 2.6 13.2

Table 1: Write Barrier CPU Overheads (percent)

vThe actual execution time cost of the trap overhead
is proportional to the percentage of instructions that trap.
Taylor shows that tag traps occur on 0%-0.89% of the in-
structions executed. The cost of tag checking with a six
instruction trap overhead will be 0%-66/o. Compare this to
Steenkiste’s 24% and Shaw’s Is%-18% cost for inline tag
checking. Using traps for both tag and write barrier checks
will give a net performance improvement in the ll%-35%
range. There will also be a significant reduction in code size
because of the removal of the inline checks.

Perhaps more importantly, a good trap architecture makes
incremental GC possible. Courts [Courts 881 has shown that
incremental garbage collection can be used to aclrieve ma-
jor improvements in paging behavior. Table 2 is also from
Zorn and shows that inline software is not really practical
for read barrier checks, but hardware assistance makes the
cost of read barriers quite acceptable.

121%e arbitrarily equated clocks to instructions.

84

[Benchmark II Hardware Trap I Inline Software 1
Lisp Compiler II 9.8 42.6
Curare 11.4 51.2
Boyer-Moore TP 11.0 49.6
RL II 9.4 1 40.8 1

Table 2: Read Barrier CPU Overheads (percent)

4.6 SPUR Hardware

Little additional hardware is needed to implement this trap
architecture on SPUR. The user trap vector requires an ad-
ditional register (the UTBH.) to hold the base address of
the vector. This would be implemented in parallel to the
existing Trap F’C register used for the system traps. When
a trap occurs, the proper register is selected based on trap
type.

The user tra.p information is readily available to the hard-
ware at trap time. Opl and Op2 are placed in front of the
ALU inputs and are loaded during the execute pipe stage.
The Instruction and Dest registers are slightly more dif-
ficult. This information is not currently available after the
instruction fetch stage. So two sets of temporary latches
need to be added to carry the data through intermediate
stages to the execute phase (when user traps occur).

Finally, the VALUE-RETURN instruction requires a fourth
input be a.dded to the multiplexer selecting the register to
be modified. This allows the register number to be a data
value rather than an immediate in the instruction.

None of these changes have an effect on the CPU’s crit-
ical path. They also have only a minor impact on the area
and gate counts. There are about 1500 transistors required
to implement the registers for forwarding the instruction
and operands through the pipeline. The user trap base reg-
ister and its logic adds 400 transistors. The other changes
sre trivial. The additional input to the muItipIexer costs 10
transistors and adds 0.3% to the length of one data bus. The
additional opcode requires only slight changes to the opcode
PLA. Since the present SPUR CPU uses about 120,000 tran-
sistors, the proposed changes add about 1.6% to the chip.

4.7 SPARC Implementation

SPARC’s changes are very similar to SPUR’s. It should par-
tition its trap vector into user arid system vectors, place the
trap information in the trap register window, and allow user
programs to directly modify the integer condition codes and
execute a RETT, return trap instruction. Since SPARC can
extract the destination register from the instruction regis-
ter in two operations, the destination register number is not
saved seperately.

It is not necessary to add a VALUE.REWRN instruction.
The RESTORE instruction can he used to perform the same
function, although sIightIy more trap handler code is re-
quired. By extending the privileged instructions RDPSR and
WRPSR to allow the user to read and write only the condi-
tion codes, the user can easily emulate instructions that set
condition codes.

4.8 SPARC PERFORMANCE

The 108 instructions from SPARC’s tag trap handler are
reduced to 8:

/* The trap handler is now executing
in the register window immediately
below the trapping inStrUCtiOn’S

nindon. Register values are:

PC-REC -- the address of the instruction
that trapped.

NEXT-PCJiEG -- the address of the
next instruction to
be executed.

INST-RFaG -- the instruction that trapped.
OPl -- the value of the first operand.
OP2 -- the value of the second operand. */

/* Save the condition codes. */
rd Xpsr ,%PSR-FlEG

/* Begin trap handler */

/* Go back to user program */
/* aant dest-reg times 2 */

srl %INST_REG,24,%DESTJEG
/* get current pc */

Ll: call L2
and %DEST_REG,Ox3E,%DESTJtEG

L2: add %o7,%DEST_REG,%o7
jmpl [%o’l+(table-Ll)] ,%O
ur XPSR-REG.%psr

table : jmpl %NEXT-PC-REG,%O
restore %RETUEtN-VAL,O.%O
jwl %NEXT-PC-REG,%O
restore %RETURN-VAL,O.%I

The return section uses the destination register number
as an index into a table of jmpl-restore pairs that return
the emulated result, restore the window, and continue exe-
cution at the next instruction. This takes nine instructions
including two to extract the destination register from the
instruction’s. For calculating overhead, add four clocksL4
for the trap.

Translating the 13 instruction overhead through equa-
tion 3, shows that the equivalent inline instructions for the
Boyer benchmark will he: 13 * w or about .i’2 instruc-
tions. The unmodified architecture as an inline equivalent K
of about six instructions, indicating unmodified traps are
about as efficient as inline code.

Tag traps will cost O%-10% with the proposed changes
and generation traps will cost 0%-S%.

4.9 SPARC Hardware

The hardware cost of making these changes on SPARC will
vary depending on the implementation technology and de-
tails of the integer pipeline. It shouldn’t be drastically dif-
ferent than SPUR unless the IU is radically different.

lSA VALUE-RETURN instruction could reduce this from nine to
five, which would speed up s program with a high trap rate by several
percent.

14 . . . or instructions

85

5 Sutttmary

Small amounts of hardware support can significantly im-
prove the support for dynamic languages on RISC architec-
tures. The technique of detecting “unusual” conditions and
trapping is an efficient means of handling the wide range
of operand types and storage management required by Lisp
and other dynamic languages.

An architecture that wishes to support dynamic Ian-
guages well must provide slightly more powerful trap mech-
anisms than previously necessary. In particular, the trap
architecture must give the user control over certain trap
types, the ability to rapidly recover information about the
trap, and a means of returning emulated results. These fea-
tures can be implemented as simple extensions to the trap
architectures of most RISC systems and do not require large
a.mounts of chip area or high degrees of complexity. They
du yield substantial performance improvement over either
inline software checks or existing trap architectures.

Giving users control over some classes of traps ha.s ad-
vant,a.ges in other languages as well. Full implementations of
IEEE floating point can benefit from fast user traps. This
trap structure makes it easy to have language specific han-
dlers for integer overflow and similar conditions. Even C
can benefit-Sun 4 C has a compiler option (“-misaligned”)
that allows access to integers that are not on a four byte
boundary. It’s implemented by using a subroutine instead
of a load instruction. With the proposed trap architecture,
it could be a load that traps if the data is misaligned.

A final word of advice: any trap handlers of importance
must be fully written before the processor architecture is fi-
nalized. Without a complete implementation, it is much too
easy to ignore some awkward feature that seriously damages
performance.

5.1 Acknowledgments

I’d like to thank Bob Courts, Randy Ka.tz, Steve Krueger,
and Dave Patterson for their encouragement and thoughts
in writing this paper. Shing-Ip Kong provided the details
of the SPUR hardware implementation and needs special
thanks. Finally, I’d like to thank everyone on the SPUR
project who made me feel like a welcome part of the project
for the year I worked with them.

References

[Baker781 Henry Baker, “List Processing in Real Time on
a Serial Computer”, Communications of the ACM 21(4),
pp. 280-294, 1978.

[Bosshart 871 Patrick Bosshart et al., “A 533K-Transistor
Lisp Processor Chip,” Digest 1 g87 international Solid-
State Circuits Conference, February 1987, IEEE, New
York, pp. 203-203.

[Courts 881 H.R. Courts, “Improving Locality of Reference
in a Garba.ge-Collecting Memory Management System.”
Communications of the ACM, September 1988.

[Ellis 88) John R. Ellis, Kai Li, and Andrew W. Appel,
“Real-time Concurrent Collection on Stock Multiproces-
sors” Digital Systems Research Center Research Report
25. February, 1988.

[Greenblatt 831 Richard Greenblatt, private communica-
tion, Dallas, Texas, June 1983.

[Hill 871 Ma.rk Hill, et al. “Design Decisions in SPUR: A
VLSl Multiprocessor”, IEEE Computer, November 1986,
pp. 8-22.

[Krueger 881 Steven D. Krueger, “VLSI-Appropria.te
Garbage Collection Support” in VLSIfor Artificial Intel-
ligence, edited Jose’ G. Delgado-Frias and Will R. Moore,
Kluwer Academic Publishers, 1989, pp 75-84.

[Lieberman 831 H. Lieberman and C. Hewitt, “A Real-Time
Garbage Collector Based on the Lifetimes of Objects.“,
Communications ACM, June 1983, pp. 419-429.

[MIPS 861 MIPS Computer Systems, Inc. Performance
Brief, April 24, 1986, April 1986.

[Moon 873 David Moon, “Symbolics Architecture,” IEEE
Computer, January 1987, pp. 43-52.

[Moon 841 David Moon, “Garbage Collection in a Large
Lisp System.” ACM Symposium on Lisp and Functional
Programming, Austin, Texas, 1984, pp. 235-246.

[Ousterhout 871 John Ousterhout, Andrew Cherenson, Fred
Douglis, Michael Nelson, and Brent Welch, “The Sprite
Network Operating System” Computer, Feburary 1988,
also a.ppeared as UC Berkeley Report No. UCB/CSD
87/359 June 1987.

[Steele 841 Guy L. Steele, Common Lisp, The Language,
Digital Press, 1984.

[Steenkiste 871 Peter Steenkiste and John Hennessy, “Tags
and Type Checking in Lisp: Hardware and Software Ap-
proaches,” Proceedings Second Internationul Conference
on Architectural Support for Programming Languages and
Operating Systems, ACM/IEEE, October 1987, pp. 50-59.

[Steenkiste 881 Peter Steenkiste and John Hennessy, “Lisp
on a. Reduced Instruction-Set Processor: Characterization
and Optimiza.tion.” Computer, July 1988, pp. 34-45.

[Shaw 8R] Robert Shaw, Empirical Analysis of a Lisp Sys-
tem, Ph.D. dissertation, Stanford University, February
1988. Also appeared as Stanford Technical Report CSL-
TR-88-351.

[Sun 871 Sun Microsystems, Inc., The SPARC(tm) Archi-
tecture Manual, Revision 50 of August 8, 1987.

[Taylor 861 G.S. Taylor, P.N. Hilfinger, J. Larus, et al.
“Evaluation of the SPUR Lisp Architecture.” Proceedings
of the 13th Annual International Symposium on Computer
Architecture, ACM, Tokyo, June 1986, pp. 444-452.

[Ungar 861 David Michael Ungar, The Design and Eualua-
tion of a High Performance Smalltalk System, Ph.D. dis-
serta.tion, U.C. Berkeley, Feburary 1986, Also appeared
as Berkeley Technical Report UCB/CSD 86/28’7.

[Zorn 891 Benjamin G. Zorn, Comparative Performance
Evaluation of Garbage Collection Algorithms, Ph.D. dis-
sertation, U.C. Berkeley, December 1989, Also appeared
as Berkeley Technical Report UCB/CSD 89/544.

86

