
Trap Architectures for Lisp Systems 

Douglas Johnson 
Texas Instruments MS 369 

P.O. Box 655621 
Dallas, Texas 75265 

johnson@ti.com 
(214) 917-7442 

Abstract 1 Introduction 

Recent measurements of Lisp systems show a dramatic skew- 
ing of operation frequency. For example, small integer (fix- 
num) arithmetic dominates most programs, but other num- 
ber types can occur on almost any operation. Likewise, few 
memory references trigger special handling for garbage col- 
lection, but nearly all memory operations could trigger such 
special handling. Systems like SPARCtm and SPUR have 
shown that small amounts of special hardware can signifi- 
cantly reduce the need for inline software checks by trapping 
when an unusual condition is detected. 

Much of the early RISC design work focused on the fea- 
tures needed to support static languages (particularly C) 
well. In static languages, the data types are known at com- 
pile time and any runtime storage management is done ex- 
plicitly by the progra.mmer. With ca.reful design and cost 
analysis, RISC architectures are providing dramatic perfor- 
mance improvements over earlier architectures [MIPS 861. 

A system’s trapping architecture now becomes key to 
performance. In most systems, the trap architecture is in- 
tended to handle errors (e.g., address faults) or conditions 
requiring large amounts of processing (e.g., page faults). 
The requirements for Lisp traps are quite different. In par- 
ticular, the trap frequency is higher, processing time per 
trap is shorter, and most need to be handled in the user’s 
address space and context. 

There is increasing interest in dynamic languages such a.s 
Smalltalk or Lisp. Dynamic language data types may not be 
known until runtime and storage management is done im- 

plicitly (i.e., garbage collection). These languages are useful 
in applications ranging from artificial intelligence to user 
interfaces. The boundary between static and dynamic lan- 
guages blurs as C++ acquires more dynamic characteristics. 

This paper looks at these requirements, evaluates current 
trap architectures, and proposes enhancements for meeting 
those requirements. These enhancements increase perfor- 
mance for Lisp ll%-35% at a cost of about 1.6% more CPU 
logic. They also aid debugging in general and speed floating 
point exception handling. 

Cursory analysis of dynamic languages shows that RISC 
architectures are well matched to the majority of dynamic 
language operations. Steenkiste showed that Lisp programs 
are dominated by data movement, function calling, and in- 
teger arithmetic [Steenkiste 881. Ungar had similar results 
for Smalltalk [Ungar 861. Typical RISC architectures are 
optimized for those operations. The problem in supporting 
dynamic languages well is one of possibilities rather than 
probabilities. 

For example, any given arithmetic opera.tion will proba- 
bly have simple integer operands, but those operands may 
be any type. In the general case, one cannot know the 
operands’ types ahead of time (e.g.at compile time). There- 
fore, it is necessary to do extensive checking at runtime, 

which can be expensive in time and code space. 
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Data movement presents similar problems. An incre- 
mental garbage collection system [Baker781 requires a read 
barrier’ that must be checked on every fetch from heap 
storage. Generational garbage collectors require a write 
barrier’ that must be checked with every store into the heap 
[Lieberman 831. So far, the cost of inline code for a read ba.r- 
rier has prevented practical implementation of incremental 
garbage collection on conventional processors. Inline checks 
are used for write barriers on conventional processors. They 
are practical because stores are much less frequent than 
reads, but the checks still cause a significant performance 

‘A read barrier is used to copy objects as they are referenced. 
Basically, it requires some special processing whenever a pointer to 
an uncopied object is fetched. 

2A write barrier is used to remember pointers to recently created 
objects so those objects may be easily collected. It requires special 
processing whenever a pointer to a “young” object is stored in an 
“old” object. 
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degradation. 
Efficient implementation of Lisp and other dynamic lan- 

gua.ges on RISC processors requires dramatically different 
implementation strategies than were used on Lisp machines 
[Bosshart 87, Moon 871. Those machines used extensive spe- 
cial hardwa.re and microcode to do the necessary checking 
and specia.1 case handling. RISC processors do not have mic- 
rocode and RISC philosophy dictates a careful evaluation of 
the cost and benefit of special hardware. 

The emerging approach is to use small amounts of spe- 
cial hardware to detect “unusual” conditions and then trap 
to a lmndler for those conditions [Hill 87, Sun 87, Taylor 86, 
Ungar 861. This seems to be a very effective approach; Tay- 
lor predicts SPUR Lisp performance to approach that of 
specialized Lisp machines. However, this burdens the trap 
handling architecture of existing systems beyond their de- 
sign limits. 

This article will show that current trap architectures are 
too slow to be effective for dynamic language traps and pro- 
poses changes that make trapping much better than inline 
code. Section 2 discusses the particular requirements of Lisp 
trap handling. Section 3 talks about the limits of current ar- 
chitectures with examples drawn from SPARC and SPUR. 
Section 4 proposes some tra.p handling features and esti- 
mates their cost and benefit in the context of both SPARC 
and SPUR. Section 5 is a summary. 

2 Requirements 

The requirements for Lisp trap handling are largely an ex- 
tension of those in existing systems. Lisp is still interested 
in having the system handle interrupts, page faults, fatal 
errors, etc. However, Lisp and other dynamic languages can 
benefit from additional trap features. 

These features fall into two major areas: operand/result 
type checking and storage management. Type checking is 
used to ensure that the operands to an operation are com- 
patible with the operation and that the results are appro- 
priate (e.g.do not overllow). Storage management features 
allow a Lisp system to implement read and write barriers to 
support modern garbage collectors. 

2.1 Type Checking 

In its full generality, Common Lisp [Steele 841 defines generic 
arithmetic on eight distinct numeric types. Any combina- 
tion of numeric operands may appear on any operation. If 
the operands are non-numeric, the proper error condition 
must be raised. 

Lisp machines use microcode and multi-way branch hard- 
ware to implement macroinstructions with the required func- 
tionality. Lisp implementations on conventional hardware 
have used a variety of techniques including out-of-line gen- 
eric arithmetic routines, compile time type inferencing, and 
type declarations. Tag checking on conventional hardware 
typica.lly consumes 16% to 18% of total execution time 
[Shaw 881. 

The SPARC and SPUR RISC architectures contain in- 
structions for fixed length integer (fixnum) arithmetic that 
cause a trap to occur if the operands are not both inte- 
gers or if an overflow occurs. SPARC has TADDccTV and 
TSUDccTV instructions that do the necessary checking for fix- 
num operand types and overflow results. Nearly all SPUR’s 
arithmetic, logical, and compare operations trap for inap- 
propriate operands or overflows. 

This can be a very effective approach. Shaw notes that 
“fixnum arithmetic is the dominant type of arithmetic in 
the test programs”. Fixnums are 28%-51% of all data ac- 
cesses and 540/o-92% of all objects allocated. The trapping 
instructions permit the most common generic operations to 
be performed in a single instruction and still have the full 
generality Lisp requires. 12%-34% of SPUR’s dynamic in- 
structions do tag checks while less than 1% of the instruc- 
tions actually trapped [Taylor 861 3. 

When a trap occurs, the trap handler must emulate the 
trapping instruction or enter the appropriate error context. 
For emulation, the handler (with or without hardware as- 
sistance) must decode the trapping instruction, fetch the 
operands, perform any required data conversion, do the op- 
eration, and place the results in the instruction’s destina- 
tion. For errors, the trap handler must return coutrol to 
the Lisp error handler with sufficient information about the 
error and sufficient state to allow the error handler to repair 
the error (perhaps with the aid of the user) and continue. 

The trap handler must have a certain amount of support 
to emulate an instruction. Prima.rily, it must have access to 
the primitive Lisp environment. The handler needs to access 
the operands, allocate storage for converted operands and 
results. and return a result as if it had come from the trap- 
ping instruction. The access and allocation requirements 
imply that the trap handler can itself cause traps, either for 
virtual memory faults or storage management traps. 

2.2 Storage Management 

Garbage collection is a critical issue for Lisp system per- 
formance. It must have minimal impact on interactive re- 
sponse, impose minimal overhead on program execution, 
and interact well with virtual memory systems. Garbage col- 
lection has been justly accused of violating the basic premises 
of virtual memory. While virtual memory assumes locality 
of reference, most garbage collectors exhibit little, if any, lo- 
cality. They tend to sweep the entire virtual space, making 
only a few references to each object in the space. 

A great deal of research has gone into this problem with 
commendable success. Lisp machines now support very ef- 
fective garbage collection. Dynamic storage management is 
not only inexpensive [Moon 841, but actually improves local- 
itv of reference lCourts 881. Lisu machines use considerable , - 
amounts of special hardware, particularly in the memory 
mapping, to support storage management. 

Garbage collection algorithms for conventional systems 
have been less successful. Until recently, Lisps on conven- 
tional machines used simple stop-and-copy garbage collec- 
tors. These collectors require a pause in Lisp execution while 
the garbage collector traverses the entire Lisp heap finding 
live objects and copying them. This approach requires nei- 
ther a read nor a write barrier. However, it imposes a delay 
in interactive response (often several minutes) and destroys 
the virtual memory working set. 

More recently, several commercial Lisp implementations 
have begun using generational stop and copy collectors to 
reduce these problems. This approach requires only a write 
barrier which can be implemented with inline software. These 

3The question of how to effectively tag data in RISC machines is 
not one this paper will address any further. It is worth noting that 
Lisp does not require a large number of ta8 types. Shaw showed that 
one tag bit (integer/pointer) identifies 31% of the dynamic data in his 
benchmarks, two bits identifies 67%-96%, while three bits identifies 
over 98%. 
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collectors have been more effective, but limit the practical 
virt us1 memory size of the Lisp and require much more phys- 
ica.1 memory than systems that use both a read and a write 
barrier. 

Steenkiste shows that writes to the heap constitute about 
1.7% of the dynamic instructions executed. A software write 
barrier check will consist of about 12 instructions, 4-6 of 
which will be executed if no barrier fault is detected. This 
implies that a software write barrier adds about 7%-10% 
to the runtime, which is consistent with Moon’s estimate 
of 10% and Shaw’s 7%-14% for Lisp systems [Moon 84, 
Shaw 881. This makes software write barriers expensive, but 
acceptable. 

Trap rate = (1) 

SPUR provides a hardware write barrier. Each data item 
has a two bit generation number as part of its tag. A trap 
is generated when an item with a younger generation tag is 
stored through a pointer with a older generation tag. 

The Explorertm associates generation with the address 
of a.n obiect rather than with its nointer. Each entry in the 

I 

memory map has two bits indicating the generation number 
of that area of storage. When one pointer is stored through 
another, address translation is done on both. The memory 
system sets a microcode flag if a pointer to a young storage 
area is being stored into an old area [Greenblstt 831. 

Beads from the heap (which require a read barrier check) 
a.re 4.3 times more common than writes [Steenkiste 871. A 
software read barrier can be implemented with roughly the 
same number of instructions as a write barrier. Because 
of the increased frequency, it will have a run time penalty 
that is about 4 times greater than the write barrier or an 
estimated 28%-40%, which is unacceptable in most systems. 
Actual measurements have shown software read barriers cost 
41%-51% [Zorn 891. 

The hardware for the Explorer’s read barrier is simple. 
The same memory map that contains the generation num- 
bers also contains an oldspace bit. Pointers fetched from the 
heap are translated through the memory map and a, micro- 
code fla.g is set if the pointer references oldspace. [ElIis 881 
shows that read and write barriers can be implemented using 
standard memory protection hardware. [Krueger 881 shows 
how RISC architectures can be extended to implement read 
and write barriers. 

2.3 Performance 

It’s clear that not all dynamic languages are alike. For ex- 
ample, data for Smalltalk indicates that only 3.9% of the 
tagged stores trap[Ungar 861, while Taylor’s Lisp data (for 
programs that did any generation traps) ranges from less 
than 1% to nearly 91%, with a typical number being around 
13%. A designer of a Lisp system who based the trap archi- 
tecture on the Smalltalk data will be somewhat disappointed 
with the Lisp performance. 

The performance of trap handlers can be critical to over- 
all system performance. While trapping is a good strat- 
egy to deal with less common events and data types, “less 
common” does not necessarily mean “rare”. Unfortunately, 
there is little data on trap frequency. Taylor notes that 
0%-0.64% of all instructions cause write barrier traps and 
O%-0.89% cause tag faults depending on benchmark. (IIe 
also notes that O%-19.4% of all instructions do generation 
checks while 13%-35% do tag checks.) 

If we speculate that read barrier traps are proportional 
to write barrier traps, then an estimate for total trap rate 
might be: 

tag tTClpJ + 

wkte traps + 

(read/write TUti0 * WTite traps) 

Using Taylor’s numbers we get a trap rate of 0%-4.3%. 
An average trap handler length of 25 instructions would dou- 
ble the runtime of the worst ca.se program. 

Trap handler performance also competes against inline 
code. Ignoring some secondary effects such as cache perfor- 
mance, the formula for the tradeoff is: 

Trap overhead 5 (2) 
check frequency 
trap frequency 

* check code length 

Using Taylor’s data for the Boyer benchmark’s write barrier 
checks, the trap overhead should be less than $$& * 5 or 
about 90 instructions. This does not include the actual work 
done in the trap handler since that needs to be done in either 
case. 

There is a wide distribution of check and trap frequen- 
cies. A number of Taylor’s benchmarks (9 of 17) did checks, 
but did not trap. For those progra.ms, traps improve perfor- 
mance regardless of trap cost because the inline checks are 
eliminated. Taylor’s worst case program (tft) trapped on 
91% of the write barrier checks and 4.6% of the tag checks. 

2.4 Requirements Summary 

Trap architectures for Lisp systems have requirements that 
are significantly different from more conventional systems. 
The most important requirement is that the handler must 
be able to emulate some operation that is not directly sup- 
ported by the hardware. Trap handlers need interfaces with 
garbage collection and Lisp level error handlers. This means 
the trap handler must have ready access to the Lisp envi- 
ronment . 

Furthermore, the trap handler cannot accept some re- 
strictions that are often placed on trap handlers. For ex- 
ample, a Lisp trap handler must reference arbitrary objects 
in the Lisp environment, which means it must be able to 
tolerate page faults i.e., the trap handler must also be able 
to tra.p. 

Because Lisp traps occur at a much greater frequency 
than traditional system traps, the trap architecture must 
minimize the runtime (software) effort to get to the trap 
handler, determine what must be done, and do it. 

Programs tha.t cause unusually high numbers of traps 
will suffer greatly with slow trap handlers. Unfortunately, 
there are interesting programs (such as floating point inten- 
sive programs) that exhibit high trap rates. Without some 
care in the design of the trap architecture, the system will 
not be usable by those programs. It’s worth spending some 
hardware to speed trap handling. 

3 Current Architectures’ Limitations 

Current trap architectures are not designed for handling the 
traps of a dynamic language. They are intended to han- 
dle errors (e.g.address faults) or conditions requiring large 
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amounts of processing (e.g.page faults). These trap archi- 
tectures a.re inadequate for dynamic languages for three key 
reasons. First, all traps enter kernel mode. The user has 
little or no control over how the trap is handled. Second, 
there is insufficient support for rapid instruction emulation. 
Third, trap handlers cannot tolerate traps themselves. 

3.1 Kernel Mode Trap Handlers 

Existing trap architectures (including SPARC and SPUR) 
expect the kernel to handle all traps’. If all traps enter 
the operating system, either the trap handlers for dynamic 
ls.nguages are built into the kernel or the kernel needs mech- 
anisms to return control to the user for certain traps. 

Fundamentally, the kernel is the wrong implementation 
level for dynamic language trap handlers. The kernel is both 
over privileged and under privileged. It’s over privileged in 
the sense that it can generally do things users can’t, such as 
accessing protected memory. If the trap handler is emulat- 
ing a user instruction, it needs to do so with the the same 
a.ccess rights as the user program, otherwise security holes 
may be opened. The kernel is under privileged because trap 
handlers usually run a.t low levels within the kernel and of- 
ten do not have access to higher level functions such as file 
systems or communications. 

Different dynamic languages need different trap handlers. 
They have different encoding schemes, different data types, 
different semantics, and different garbage collectors. The 
kernel needs a different set of handlers for each implemen- 
ta.tion of each language and must switch handlers with each 
process switch. 

On a more mundane level, kernel trap handlers cause 
problems unless all the dynamic languages and the kernel 
are written and maintained by the same vendor. Kernel 
vendors are understandably reluctant to put “strange” code 
into the privileged portion of the system. Even then, the 
details of coordinating kernel releases with all the dynamic 
language releases seem overwhelming. 

SPUR and the Sprite Operating System [Ousterhout 871 
provide a much more flexible mechanism. A user program 
can “register” trap ha.ndlers with the kernel that will be 
used when a particular trap occurs. These trap handlers are 
part of the user process and run in user mode. The ker- 
nel calls the registered handler after a trap occurs, passing 
information such as the decoded trapping instruction and 
its operands. When returning, the trap handler can return 
results as if it came from the trapping instruction or it can 
cause the instruction to be re-executed. 

This approach eliminates most of the functional difficul- 
ties of kernel resident trap handlers. Unfortunately, it does 
nothing to deal with the performance problems. In fact, 
the additional interface requirements slightly aggravate the 
situation. 

3.2 SPUR Trap Architecture 

Let’s examine what SPUR does for the tag trap caused when 
instruction operands are not both fixed length integers. The 

‘The SPARC processor enters supervisor state for all traps, while 
SPUR stays in user slate for some traps. Both sysLcms vector the 
traps through a table that cannot be modified by the user. Both 
schemes effectively constrain the kernel to fielding all traps. 

numbers in parenthesis are the approximate’ number of in- 
structions required to perform the operation. 

1. 

2. 

3. 

4. 

5. 

Preserve trap state and re-enable traps. (35) 

Decode trapping instruction and recover operands. (63) 

Find user handler and enter it. (31) 

1Jser handler returns(via trap). Preserve state and re- 
enable traps. (24) 

Place results in destination register and resume with 
next instruction. (35) 

This is a total of 166 instructions for the trap overhead. 
With this overhead, a floating point operation will be about 
200 times slower than the equivalent small integer (fixnum) 
operation. 

The code is all hand coded assembly language. In a few 
places, the code is written more for generality than speed. 
However, the majority of the work is required by the trap 
architecture and is not “waste”. About half of it (90 instruc- 
tions, items 1, 3, and 4), is caused by having to enter and 
exit the kernel twice for each trap. Most of the remainder 
(items 2 and 5) is present because the software must emu- 
late the hardware instruction fetch, decode, operand fetch, 
and result write. 

3.3 SPARC Trap Architecture 

While not available in a.ny current commercial systems, the 
same approach to dynamic language traps could be used for 
the SPARC. The instruction counts for a tag trap handler 
interface are: 

1. Preserve trap state and enter user mode. (17) 

2. Decode trapping instruction and recover operands. (45) 

3. Find user handler and enter it. (21) 

4. User handler returns (via trap). Place results in desti- 
nation register and resume with next instruction. (23) 

SPARC requires a total of 106 instructions for the in- 
terface. While better than SPUR, it is still unacceptable. 
Decoding the instruction is simpler because the SPARC has 
full 32 bit left and right shifts while SPUR can only shift 
three bits left and one bit right. 

Recovering the operands and returning the result,s is far 
easier because SPARC’s SAVE and RESTORE instructions can 
transfer data directly from one register window to another. 
On the other hand, the trap handler must correctly set 
SPAHC’s condition codes for the emulated instruction. 

3.4 Limitations Summary 

Both SPARC and SPUR have serious limitations on traps 
for dynamic languages. It is difficult for a user to get control 
after a trap occurs. The handler must use softwa.re to decode 
the trapping instruction and returning an emulated result is 
awkward. All this degrades performance to such an extent 
that inline code is faster for most programs. 

‘Th e counts are approximate because there is some variance in 
path length and because same instructions contribute to more than 
one operation. 



4 Features 

This section proposes a few additional features needed for 
good performance on dynamic language traps. Those fea- 
tures have very low implementation cost and yield much 
improved performance. The purpose is to give the user pro- 
gram control over certain traps, eliminate undue restrictions 
on code within trap handlers, provide information about the 
trap to the handler, and allow the handler to return a result 
as if it had come from the trapping instruction. 

The features are first described in general terms that 
apply to many architectures’. Then specific modifications 
to SPUR a.nd SPAKC are proposed with an analysis of cost 
and benefit. 

4.1 User Trap Control 

It’s clear that the user program is the most effective place 
to handle certain traps, while the operating system must 
handle others. Traps should be divided into two groups: 
user and system. The system traps include: 

l reset 

l error 

0 interrupt 

s page fault and protection violation 

s window overflow and underflow 

l Illegal or privileged instruction 

* Half of the trap codes for a trap instruction 

which a.re basica.lly the traditional traps. 
The user tra.ps include: 

tag trap 

overflow 

GC trap (read and write barrier faults) 

IJnaligned address trap 

Half of the trap codes for a trap instruction 

which are basically the traps added for dynamic language 
support. 

System traps vector through a table in the kernel space’. 
User traps vector through a table in the user’s address space, 
indicated by a special register, the User Trap Base Register 
(UTBR), which can be modified by the user. 

System traps have priority over user traps. If both occur 
during an instruction, the system trap will be taken and the 
user trap ignored. Re-execution of the instruction after the 
system trap will generate the user trap if the trap condition 
is still present. 

A user trap is best viewed as a forced subroutine call. 
The current register window pointer is incremented (a sys- 
tem window overflow trap may occur), the PC and NextPC’ 

‘While the debate about the value of register windows has no end, 
this is an area where they shine. The trap handler automatically 
gets a full set of scratch registers at minimal runtime cost. For the 
most part, the balance of this paper will assume a register windowed 
machine. IIowevcr, the basic principles are readily applied to fixed 
register architectures and is lcft as an exercise for the student. 

‘SPUR has the table at a fixed location in low memory while 
SPARC uses a special register, the Trap Base Register, to hold a 
pointer to the trap vector. 

‘Most R.ISC machines (including SPUR and SPAR’2 use delayed 
control transfer instructions. This means the next instruction to be 
executed may not be related to the trapping instruction. Two pro- 
gram counters are a necessary part of the trap state. 

are stored in the new window and execution continues at 
the proper location in the user trap vector. The proces- 
sor rema.ins in user state. In addition, informa.tion about 
the trapping instruction and its operands are written to the 
trap handler’s register window. 

System traps use the system window and do not generate 
a window overflow trap. They vector through the system 
trap table, disable system traps, and put the processor into 
supervisor state. 

4.2 Trap Information 

A large part of the tag trap handlers is devoted to recover- 
ing information fopcode and operands) that the hardware 
had available at the time of the trap. A ma.jor improve- 
ment in tra.p performance can be achieved by making the 
information directly accessible to the trap handler. 

All of the necessary information is readily available in 
the hardware at the time of the trap. For a register window 
machine, it can be placed in the trap handler’s window. The 
required information is: 

Instruction --- the trapping instruction9 

~$1 --- Contains the ualue of the first source operand of 
the trapping instruction. 

0~2 - Contains the valve of the second source operand of 
the trapping instruction. 

Dest - Contains the register number of the destination 
register of the trapping instructionr’. 

4.3 Handler Return 

A user trap handler does one of two things on return. If the 
handler has corrected whatever condition caused the trap, 
the trapping instruction will be re-executed a.5 if the trap 
had not occurred. If the handler has emulated the trapping 
instruction, a value must be returned as if it had ccme from 
the trapping instruction and execution continued with the 
next instruction. The former is what system trap handlers 
do with traps like virtual memory faults. Nearly all trap 
architectures provide good support for tha.t style of trap 
return. 

Architectures do not provide good support for instruc- 
tion emulation by a trap handler. What needs to be done 
is for the emulated result to be placed in the destination 
register of the trapping instruction and any condition codes 
to be set appropriately. 

Results are normally returned in the register window be- 
fore the window being used by the tra.p handler. The SPUR 
requires 35 instructions to do this and it must be done in 
kernel mode to prevent interrupts or other traps from de- 
stroying the trap handler window during the (brief) time 
it is running in the trapping instruction’s window. This re- 
quires 24 more instructions to enter the kernel. The problem 
is less difficult on SPARC, which is able to use the RESTORE 
instruction to return a result directly. 

‘The handler could fetch this using the trap PC, but this would 
almost certainly cause a data cache fault in systems with split in- 
struction and data caches. Architecturally, it is probably better to 
avoid that potential cost. 

“This could be extracted from the instruction on a machine with 
fast shift-and-mask. 
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4.4 SPUR Implementation 

SPUR needs three modifications to implement the proposed 
trap architecture. It should partition its trap vector into 
user and system vectors, it needs to add the user readable 
special registers, and it needs to add an instruction to return 
an emulated result. 

The instruction VALUERETURN takes two arguments, the 
value to be returned and the number of the register to return 
it to (both arguments in registers). The instruction reads 
the return value and the destination register number out 
of the current register window, moves the window pointer 
to the previous window, and stores the return value in the 
proper destination register. It can be implemented with 
minor extensions to the existing SPUR data paths. 

The 59 instructions SPUR needs to return an emulated 
result are reduced to two: 

/* The trap handler is now executing 
in the register window immediately 
below the trapping instruction’s 
windoa. Register values are : 
NEXT-PC-REC -- the address of the 

next instruction to 
be executed. 

DEST-REC -- the number of the 
destination register 
of the trapping 
instruct ion. 

RETURN-VAL -- the value to be 
returned. 

Go back to user program */ 
jump-reg NEXT-PC-BEG 
value-return DESTJtEG,EETURN~VAL 
/*In delay slot, return value */ 

The JUMPREG instruction continues the user program at 
the next instruction after the trapping instruction. The 
VALUERETURN executes in the delay slot of the jump and re- 
turns the emulated result and restores the current window 
pointer. 

4.5 SPUR Performance 

The suggested changes have a major impact on trap per- 
formance. The 188 instructions from the SPUR’s tag trap 
handler are reduced to two”. 

/* The trap handler is noa executing 
in the register window immediately 
below the trapping instruction’s 
nindoa . Register values axe: 

PC-REG -- the address of the instruction 
that trapped. 

NEXT-PC-l&EC -- the address of the 
next instruction to 
be executed. 

INST-REG -- the instruction that trapped. 
OPl -- the value of the first operand. 
DP2 -- the value of the second operand. 
DESTJEG -- the number of the 

destination register 
of the trapping 

“Placing the values in the trap register window will take four extra 
clocks on the SPUR to make the trap a total of six clocks. 

instruction. 
/* Begin trap handler */ 

*/ 

/* Go back to user program */ 
jump-reg NEXT-PC-BEG 
value-return DESTJtEG.BETUFtN~VAL 

The reduction in instruction count is pretty spectacu- 
lar. However, it’s important only as it contributes to perfor- 
mance a.t the user level. As mentioned in section 2.3, there 
are two ways to measure it. Against inline code, we can 
rewrite equation 2 to show the “equivalent inline instruc- 
tions” of the trap overhead: 

Equivalent inline instructions = (3) 

trap overhead * 
ttap frequency 

check frequency 

For trap overhead, we will count the trap as six plus 
the two return instructions12. For the Boyer benchma.rk’s 
write barrier checks, the trap is cheaper than an inline check 
of6** instructions-about a third of an instruction. 
Since inline checks seem to cost 4-6 instructions, the new 
trap architecture is a major improvement. The old .architec- 
ture has 188 * T 
tions” which in a: 

or about 10 “equivalent inline instruc- 
mates most checks are better done inline. 

Zorn [Zorn 891 looked at garbage collection costs for Lisp 
using either software with a 4.5 instruction overhead and 
hardware traps with a 7 instruction overhead. Table 1 shows 
the overhead for four benchmarks with a GC threshold of 
500 Kilobytes. The results are consistent with Taylor who 
shows generation (write barrier) traps occur on 0%-0.64% 
of the instructions executed for an overhead of 0%-S% with 
the modified trap architecture. Shaw estimates inline write 
barrier checks to cost 7%-14%. 

Benchmark Hardware Trap Inline Software 

Lisp Comprler 0.0 5.1 
Curare 0.1 1.5 
Boyer-Moore TP 0.0 13.8 
RL 2.6 13.2 

Table 1: Write Barrier CPU Overheads (percent) 

vThe actual execution time cost of the trap overhead 
is proportional to the percentage of instructions that trap. 
Taylor shows that tag traps occur on 0%-0.89% of the in- 
structions executed. The cost of tag checking with a six 
instruction trap overhead will be 0%-66/o. Compare this to 
Steenkiste’s 24% and Shaw’s Is%-18% cost for inline tag 
checking. Using traps for both tag and write barrier checks 
will give a net performance improvement in the ll%-35% 
range. There will also be a significant reduction in code size 
because of the removal of the inline checks. 

Perhaps more importantly, a good trap architecture makes 
incremental GC possible. Courts [Courts 881 has shown that 
incremental garbage collection can be used to aclrieve ma- 
jor improvements in paging behavior. Table 2 is also from 
Zorn and shows that inline software is not really practical 
for read barrier checks, but hardware assistance makes the 
cost of read barriers quite acceptable. 

121%e arbitrarily equated clocks to instructions. 
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[Benchmark II Hardware Trap I Inline Software 1 
Lisp Compiler II 9.8 42.6 
Curare 11.4 51.2 
Boyer-Moore TP 11.0 49.6 
RL II 9.4 1 40.8 1 

Table 2: Read Barrier CPU Overheads (percent) 

4.6 SPUR Hardware 

Little additional hardware is needed to implement this trap 
architecture on SPUR. The user trap vector requires an ad- 
ditional register (the UTBH.) to hold the base address of 
the vector. This would be implemented in parallel to the 
existing Trap F’C register used for the system traps. When 
a trap occurs, the proper register is selected based on trap 
type. 

The user tra.p information is readily available to the hard- 
ware at trap time. Opl and Op2 are placed in front of the 
ALU inputs and are loaded during the execute pipe stage. 
The Instruction and Dest registers are slightly more dif- 
ficult. This information is not currently available after the 
instruction fetch stage. So two sets of temporary latches 
need to be added to carry the data through intermediate 
stages to the execute phase (when user traps occur). 

Finally, the VALUE-RETURN instruction requires a fourth 
input be a.dded to the multiplexer selecting the register to 
be modified. This allows the register number to be a data 
value rather than an immediate in the instruction. 

None of these changes have an effect on the CPU’s crit- 
ical path. They also have only a minor impact on the area 
and gate counts. There are about 1500 transistors required 
to implement the registers for forwarding the instruction 
and operands through the pipeline. The user trap base reg- 
ister and its logic adds 400 transistors. The other changes 
sre trivial. The additional input to the muItipIexer costs 10 
transistors and adds 0.3% to the length of one data bus. The 
additional opcode requires only slight changes to the opcode 
PLA. Since the present SPUR CPU uses about 120,000 tran- 
sistors, the proposed changes add about 1.6% to the chip. 

4.7 SPARC Implementation 

SPARC’s changes are very similar to SPUR’s. It should par- 
tition its trap vector into user arid system vectors, place the 
trap information in the trap register window, and allow user 
programs to directly modify the integer condition codes and 
execute a RETT, return trap instruction. Since SPARC can 
extract the destination register from the instruction regis- 
ter in two operations, the destination register number is not 
saved seperately. 

It is not necessary to add a VALUE.REWRN instruction. 
The RESTORE instruction can he used to perform the same 
function, although sIightIy more trap handler code is re- 
quired. By extending the privileged instructions RDPSR and 
WRPSR to allow the user to read and write only the condi- 
tion codes, the user can easily emulate instructions that set 
condition codes. 

4.8 SPARC PERFORMANCE 

The 108 instructions from SPARC’s tag trap handler are 
reduced to 8: 

/* The trap handler is now executing 
in the register window immediately 
below the trapping inStrUCtiOn’S 

nindon. Register values are: 

PC-REC -- the address of the instruction 
that trapped. 

NEXT-PCJiEG -- the address of the 
next instruction to 
be executed. 

INST-RFaG -- the instruction that trapped. 
OPl -- the value of the first operand. 
OP2 -- the value of the second operand. */ 

/* Save the condition codes. */ 
rd Xpsr ,%PSR-FlEG 

/* Begin trap handler */ 

/* Go back to user program */ 
/* aant dest-reg times 2 */ 

srl %INST_REG,24,%DESTJEG 
/* get current pc */ 

Ll: call L2 
and %DEST_REG,Ox3E,%DESTJtEG 

L2: add %o7,%DEST_REG,%o7 
jmpl [%o’l+(table-Ll)] ,%O 
ur XPSR-REG.%psr 

table : jmpl %NEXT-PC-REG,%O 
restore %RETUEtN-VAL,O.%O 
jwl %NEXT-PC-REG,%O 
restore %RETURN-VAL,O.%I 

The return section uses the destination register number 
as an index into a table of jmpl-restore pairs that return 
the emulated result, restore the window, and continue exe- 
cution at the next instruction. This takes nine instructions 
including two to extract the destination register from the 
instruction’s. For calculating overhead, add four clocksL4 
for the trap. 

Translating the 13 instruction overhead through equa- 
tion 3, shows that the equivalent inline instructions for the 
Boyer benchmark will he: 13 * w or about .i’2 instruc- 
tions. The unmodified architecture as an inline equivalent K 
of about six instructions, indicating unmodified traps are 
about as efficient as inline code. 

Tag traps will cost O%-10% with the proposed changes 
and generation traps will cost 0%-S%. 

4.9 SPARC Hardware 

The hardware cost of making these changes on SPARC will 
vary depending on the implementation technology and de- 
tails of the integer pipeline. It shouldn’t be drastically dif- 
ferent than SPUR unless the IU is radically different. 

lSA VALUE-RETURN instruction could reduce this from nine to 
five, which would speed up s program with a high trap rate by several 
percent. 

14 . . . or instructions 
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5 Sutttmary 

Small amounts of hardware support can significantly im- 
prove the support for dynamic languages on RISC architec- 
tures. The technique of detecting “unusual” conditions and 
trapping is an efficient means of handling the wide range 
of operand types and storage management required by Lisp 
and other dynamic languages. 

An architecture that wishes to support dynamic Ian- 
guages well must provide slightly more powerful trap mech- 
anisms than previously necessary. In particular, the trap 
architecture must give the user control over certain trap 
types, the ability to rapidly recover information about the 
trap, and a means of returning emulated results. These fea- 
tures can be implemented as simple extensions to the trap 
architectures of most RISC systems and do not require large 
a.mounts of chip area or high degrees of complexity. They 
du yield substantial performance improvement over either 
inline software checks or existing trap architectures. 

Giving users control over some classes of traps ha.s ad- 
vant,a.ges in other languages as well. Full implementations of 
IEEE floating point can benefit from fast user traps. This 
trap structure makes it easy to have language specific han- 
dlers for integer overflow and similar conditions. Even C 
can benefit-Sun 4 C has a compiler option (“-misaligned”) 
that allows access to integers that are not on a four byte 
boundary. It’s implemented by using a subroutine instead 
of a load instruction. With the proposed trap architecture, 
it could be a load that traps if the data is misaligned. 

A final word of advice: any trap handlers of importance 
must be fully written before the processor architecture is fi- 
nalized. Without a complete implementation, it is much too 
easy to ignore some awkward feature that seriously damages 
performance. 
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