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Abstract 

We consider the problem of distinguishing 
causally-consistent global states in asynchronous 
distributed systems. Such states are fun- 
damental to asynchronous systems, because 
they correspond to possible simultaneous global 
states; their detection arises in a variety of 
distributed applications, including global check- 
pointing, deadlock detection, termination detec- 
tion, and broadcasting. We consider a spectrum 
of protocol capabilities based on the type of e’n- 
hibition that occurs, i.e. the extent to which 
the protocol delays events of the underlying sys- 
tem. For the first time we distinguish local ver- 
sus global inhibition and prove fundamental re- 
lationships between these concepts and deter- 
mining causally-consistent states. In local inhi- 
bition, processors only delay events until they 
have performed some number of local actions; in 
global inhibition, they delay events while wait- 
ing for some communication from other proces- 
sors. Based on a variety of system and proto- 
col characteristics, including the ability to locally 
or globally inhibit particular types of events, we 
give several new impossibility results and exam- 
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ine some existing protocols. We are then able 
to present a thirty-six-case summary of protocols 
and impossibility results for the determination of 
causally-consistent states as a function of those 
characteristics. In particular, we demonstrate 
that local inhibition is necessary and sufficient 
to solve this problem for general FIFO systems, 
while global send inhibition is necessary for gen- 
eral non-FIFO systems. 

1 Introduction 

We consider the problem of distinguishing 
causally-consistent global states in asynchronous 
distributed systems. Lamport [13] introduces 
causality, a means of providing temporal struc- 
ture to asynchronous Eystems. Causality may be 
used to define a consistent gEobaZ state [16,5] of an 
asynchronous system, sometimes referred to as a 
consistent cut. Consistent cuts are fundamental 
to asynchronous systems, as they correspond to 
possible simultaneous global states. We address 
the class of consistent-cut protocols, or CCPs, 
protocols in which such causally-consistent states 
are determined. CCPs arise in numerous dis- 
tributed applications such as system checkpoint- 
ing [16,5,11], deadlock detection [4], distributctl 
termination [9], and broadcasting [2j. 

Our spectrum is based on the inhibitory capa- 
bilities of protocols. Inhibition in asynchronous 
distributed systems is formally defined in [17]. In 
that work, inhibition refers to protocols delaying 
actions of the underlying system for an interval. 
For example, a two-phase CCP is given which de- 
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lays the sending of messages between phases. In 
[3], this concept is termed freezing and is defined 
for a general notion of superimposed processes. 
However, only the related works of [17,8] have 
proven fundamental relationships between inhi- 
bition and determining consistent global states- 
this paper extends those works significantly- 
and no previous work has made the important 
distinction between local and global inhibition. 

In [17] it is shown that there is no non- 
inhibitory CCP for non-FIFO systems, and a 
non-inhibitory CCP is given for FIFO systems. 
However, the non-inhibitory CCP uses an in- 
divisible local operation for receiving a mes- 
sage and sending multiple messages in response. 
This is certainly “inhibitory” in a sense. In 
[S], it is shown that indeed there is no non- 
inhibitory CCP for FIFO systems without this 
atomic receive-send mechanism. We refine the 
previous works by separating cases where a pro- 
tocol only delays events until some number of 
local actions-sends and internal events-have 
been performed from cases where it delays events 
while a processor waits for communication from 
anot her processor. We distinguish these as lo- 
cal versus global inhibition. Local inhibition 
can be used to form indivisible local operations 
which perform multiple tasks, such as the atomic 
receive-send referred to above. The distinction of 
local and global inhibition has enabled us to ex- 
amine the limitations on developing CCPs more 
precisely than is accomplished in [17,8]. 

In addition to the possibility of local and 
global inhibition, we also consider whether (1) 
sends, receives, or both can be delayed, (2) the 
system is FIFO or non-FIFO, and (3) protocol 
messages are allowed to be inconsistent with re- 
spect to the cut designated by the protocol. Re- 
garding (3), previous works on consistent global 
states have assumed one case or the other implic- 
itly; however, this assumption affects the success 
of some protocols and the existence of protocols 
under certain conditions. We give the following 
results for the first time. 

1. There is no CCP for non-FIFO systems with 
local send inhibition and global receive inhi- 
bition, even if protocol messages are allowed 

to be inconsistent. 

2. There is no CCP for FIFO systems with no 
inhibition, even with inconsistent protocol 
messages. 

3. There is no CCP for FIFO systems with lo- 
cal send inhibition but no receive inhibition, 
if protocol messages must be consistent. 

For (1) we prove that, in order to prevent mes- 
sage inconsistency, some pair of neighboring pro- 
cessors must have causal circularity between the 
last states preceding the cut in which those pro- 
cessors are willing to receive messages from each 
other. We prove (3) in the full pa.per; (2) is 
proven in [8]. The latter two proofs are very 
similar; in both, we demonstrate the necessity of 
certain “essential” messages, sent between pro- 
cessors before reaching the cut, and then prove 
the existence of a run in which some process is 
forced to reach its cut state before sending all of 
its essential messages. 

We also give three CCPs and discuss their 
inhibitory nature, along with conditions under 
which they are successful. All of these results 
are organized into a thirty-six-case summary of 
protocols and impossibility results as a function 
of system assumptions and protocol capabilities. 
(See Figure 2 of Section 4.) 

2 System Model 

We model asynchronous distributed systems; 
more specifically, sets of autonomous processors 
which can communicate by sending and receiving 
messages along bi-directional channels. By asyn- 
chronous, we mean that (1) there is no global 
clock, (2) there is finite but unbounded delay in 
the transmission of messages, and (3) processors 
may proceed at different rates. The network is 
assumed to be connected though not necessar- 
ily completely connected. Systems are assumed 
to be reliable: no processor can fail, no message 
can be lost or altered in transmission, and all 
messages received have been sent. 

Our model is similar to other models of asyn- 
chronous systems [6,15]. The system behavior 
is represented by a set of possible runs; each run 
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is composed of sequences of events corresponding 
to the local actions of each process. Unlike [6,15], 
we explicitly model the enabling of events by 
preceding event sequences [18]. We also explic- 
itly separate protocol and system events. These 
two differences allow us to define inhibition by 
comparing how an underlying system enables 
events versus how the system plus the protocol 
enables events. Our model is a generalization 
of [ 171, which contains an indivisible operation 
for receiving a message and sending multiple se- 
sponses. In our model, the only indivisible opes- 
ations are the sending or receiving of single mes- 
sages, in addition to internal events. 

Each system consists of a connected network 
of N processors joined by bi-directional chan- 
nels. We let Z = {1,2,. . . , N} denote the set 
of process identifiers. We let C denote the set of 
bi-directional channels, consisting of unordered 
pairs of distinct elements from Z. If the un- 
ordered pair (i, j) is in C then processor i can 
send messages to processor j, and vice-versa; we 
then term i and j neighbors. 

With each processor i is associated a set E; of 
events. A sequence of events from E; is called 
a local history of processor i, and any such fi- 
nite sequence is a local state of i. We let the 
set States(&) denote the set of all possible local 
states consisting of events from E;. Events are of 
three kinds: send events, in which one message is 
sent to a neighbor; receive events, in which one 
message is received from a neighbor; and internal 
events. 

Also associated with processor i is an enabling 
relation M; on local states and events: 

M; c States(E;) x E; 

If the pair (Zi, ei) is in M;, where li is a local 
state of processor i and e; E E;, then we say 1; 
enables e;. The enabling relation describes what 
events could occur in a given local state of pso- 
cessor i; there may be several events enabled by 
a single local state. We require the following: 
for each processor i and each local state Zi of i, if 
(Z;, Teceive(M)) E M;, where M is a message from 
processor j, then (Z;, receive(&)) E M; for any 
message m’ sent by j. This means that at any 
point, i may be willing to receive messages at one 

channel and not at another, but may not selec- 
tively enable receives on a single channel based 
on message contents. Consequences of the al- 
ternative assumption are discussed at the end of 
Section 4. 

Using the elements described thus far, we can 
now formally define & system. A system S is 
a quadruple (Z,C, C, M), where Z = { 1, . . . . N} 
is a set of process identifiers, C is a set of un- 
ordered pairs of distinct processors from Z, E = 

b%,Ez,..., EN} is an N-vector of sets of events, 
and M = {Ml, M2,. . . , MN} is an N-vector of 
enabling relations, such that (1) for each process 
i, Mi C States(Ei) x Ei, (2) for each message 
from process i to process j in E, (i, j) is in C, 
and (3) for any two processes i and j, these is a 

. path (4 id, @I, 22, , ) . . . . (ik,j) in C (i.e. the net- 
work is connected). 

We will associate a set of possible runs, or exe- 
cutions, with each system. First, we introduce a 
means of providing temporal structure to sets of 
local histories, as in [13]. This temporal struc- 
ture expresses the fact that certain events pre- 
cede other events and could, therefore, have a 
causal effect on them. Hence this is referred to 
as potential causality, or simply causality. Given 
an N-vector r = (~1 , . . . , TN), where Ti is a local 
history of processor i for each i, and two events 
e and e’ in T, then e happens-before e’ (written 
e + e’) if either (1) e and e’ are both events in 
ri for some i, and e occurs before e’ in ri; (2) e is 
send(m) and e’ is receive(m) for some message 
m; OS (3) (e, e’) is in the transitive closure of pairs 
of events satisfying conditions (1) and (2) above, 
i.e. these is an event e” such that e -+ e” and 
et1 + e’ . 

We also define a completeness condition on the 
local histories of each execution; more specifi- 
cally, they cannot contain forever-enabledevents. 
An event is forever-enabled in a local history if 
it is enabled by some local state Z of that local 
history, it is not in the history, and it is enabled 
by all local states 1’ for which Z is a prefix. 

We can now associate a set of total runs with 
each system, corresponding to the possible exe- 
cutions of that system. A vector T of local his- 
tories is a total run of a system if five conditions 
hold: (1) for all prefixes I; * e; of T;, 1; enables c; 
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(1 5 i 5 N); (2) there is no receive(m) for which 
there is not a corresponding send(m); (3) the re- 
flexive closure of happens-before is a partial or- 
der on the set of events included in T, i.e. there 
are no two events e and e’ such that e + e’ and 
e’ 4 e in T; (4) no send or internal event of i 
is forever-enabled in r;; and (5) no receive event 
of processor i for which there is a corresponding 
send event in T is forever-enabled in r;. If the first 
three conditions hold of a vector r’ = (T: , . . . , rb) 
of local states, then P’ is called a partial run. If r 
is a total run such that r: is a prefix of local his- 
tory T; for all i, then r’ is also called a consistent 
cut of T. 

We define a protocol in an additive fashion, so 
as to separate the behavior of the protocol from 
the behavior of an underlying system. Given a 
system S = (Z, C, E, M), a protocol P will pro- 
duce a new system P(S) = (Z,C,&‘, M’). The 
events of E are called system events and the 
events of E’ - & are called protocol events. Given 
a sequence of protocol and system events, the 
function SysEvents returns the projection of the 
sequence onto the set of system events; this may 
be applied to local states or local histories. 

Formally, a protocol P is a function which 
maps a system S = (1, C, E, M) to a new system 
P(S) = (2, C, E’, M’) such that (1) & c E’ (2) 
M’ = (Ad;, . ..$I&). where ilfi C_ States(El) x 
El, and (3) for all total runs r’ = (r{, . . ..r.\r) 
of P(S), where ri is the local history of process 
i, run T = (SysEvents(r~), . . . . SysEvents(r~)) is 
a total run of the original system S. We refer 
to runs of this modified system as runs of the 
protocol with respect to the original system. In 
condition (3), we require that the projection of 
a protocol run onto the set of system events be 
some run of the original system. This implies 
that some valid behavior of the original system 
results. 

We investigate the existence of consistent-cut 
protocols for our systems, protocols that distin- 
guish a set of local states in every run that form 
a consistent cut. These differ from snapshot 
[5,11] protocols in that we are not concerned with 
recording the states of channels. Of course, im- 
possibility results for consistent-cut protocols di- 
rectly apply to protocols, such as snapshots, that 

perform other tasks in addition to determining 
consistent cuts. For simplicity, we consider pro- 
tocols which distinguish a single consistent cut 
in each run. Our results generalize in a straight- 
forward manner to protocols distinguishing mul- 
tiple non-intersecting consistent cuts. 

Definition 1. A consistent-cut protocol (CCP) 
is a protocol P which, for every system S and 
every protocol run r in P(S), will create a set 
of local states cut(r) = (II, . . . , IN) called cut 
states, such that (1) (21, . . . , 1~) is a consistent 
cut; (2) in every run r’ = (ri . . . , T&) in which 1; 
is a prefix of T i, 2; will be the ith component of 
cut(#), i.e. if Zi is i’s cut state in run T, then it 
will be i’s cut state in all runs in which it occurs; 
and (3) if r is a run of S and c is a consistent cut 
of T, then there is a run T’ of P(S) which extends 
c, i.e. for each i, ci is a prefix of ri. 

The second condition implies that the cut state 
of each process is distinguishable to that process. 
In other words, each processor i “knows” [15] 
that any messages sent subsequently to j will not 
be received in j’s cut state, regardless of the se- 
quence of steps that j may have taken. The third 
condition implies that a CCP cut may occur any- 
where in the run of the underlying system; this 
eliminates CCPs which, for example, only dis- 
tinguish a cut at the beginning of a run. We 
sometimes consider CCPs in which cut(r) may 
contain inconsistent protocol messages; this im- 
plies that condition (1) is changed to require that 
(SysEvents( II), . . . , SysEvents(ZN)) be consis- 
tent. 

Because of the separation of system and pro- 
tocol events, our model does not allow the merg- 
ing of system and protocol messages. This type 
of merging occurs in piggybacking techniques, in 
which protocol information is added to the con- 
tents of system messages. Our results are de- 
pendent upon this restriction. There are proto- 
cols, utilizing piggybacking, that determine con- 
sistent cuts of non-FIFO systems and are “non- 
inhibitory” in a sense [10,12,14], although they 
typically do not have the distinguishability char- 
acteristic (condition (2) of the CCP definition). 
We address this further in Section 6. Our results 
show that, without piggybacking or some other 
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mechanism stronger than those of OUT model, a 
CCP for non-FIFO systems cannot be attained, 
even with a high degree of inhibition. 

3 The Inhibition Spectrum 

The definitions of this section will allow us to 
characterize nine different categories of protocols 
with respect to their inhibitory characteristics. 

First, we define inhibition essentially as in [17]. 
We take the intermediate approach of first defin- 
ing the notion of disabling an event. 

Definition 2. Let S = (2, C, E, M) be a sys- 
tem, P be a protocol with P(S) = (2, C, E’, M’), 
and r be a run of P(S). An event e; is disabledin 
state 1; of r if the subsequence of system events 
in 2; enables e; in the original system, but Ii does 
not enable ei: 

(li,ei) # M;’ 

Definition 3. A protocol is non-inhibitory if no 
event is disabled in any run of the protocol. 

A non-inhibitory protocol, then, does not inter- 
fere with the running of the underlying system. 
Any protocol which does disable system events 
is inhibitory. 

Recall that we wish to separate cases where 
a protocol delays events only until some num- 
ber of local actions-send or internal events- 
have been performed from cases where it delays 
events while waiting for communication from an- 
other processor. Hence we further distinguish 
two types of inhibition, local and global, for the 
first time. We use the terminology that an event 
may be locally or globally delayed, whereas in 
doing so a protocol exhibits local or global inhi- 
bition. 

Definition 4. Suppose event ep is disabled by 
a protocol in state I, of run r. We say ep is 
locally delayed if there exists a run r’ such that 
(1) T’ contains an extension Zp’ of Ip; (2) ep is not 
disabled by the protocol in &‘; and (3) a,’ - Zp 
contains no receive events. 

Thus, the re-enabling of a locally delayed event 
does not depend upon communication from an- 
other processor. Local delay has the following 
consequence: if events have been locally delayed 
in the states of a partial run, then in some ex- 
tending run, each event is re-enabled with no in- 
tervening receives. TGs is formalized by th.e fol- 
lowing lemma; its proof is straightforward from 
the definition of local delay and is contained in 
the full paper. 

Lemma 1. Let r be a protocol run, (11,. . . ,!N) 
be a consistent cut of T, pl, . . . , pk be a subset 
of processors, and events epl,. . . , epk be locally 
delayed by the protocol in states Zp1,. . . , IPk, re- 
spectively. Then there is a run T’ such that 

(1 1,. . ., IN) is a consistent cut of T’, and, for 
2= * 1 , . . ., k, there are no receive events between 
Zpi and a state in which epi is no longer disabled. 

Given the definition of local delay, locally and 
globally inhibitory protocols are defined in a 
straightforward manner. 

Definition 5. A protocol is locally inhibitory if 
any event disabled ifi any run of the protocol is 
delayed locally. An inhibitory protocol that does 
not have this property is globally inhibitory. 

This implies that, in a globally inhibitory pro- 
tocol, some events are delayed while waiting for 
communication. 

Finally, we also consider whether or not send 
events or receive events are delayed by an in- 
hibitory protocol. 

Definition 6. A protocol exhibits send inhibi- 
tion if some (locally or globally) delayed events 
are send events. Likewise, a protocol exhibits 
receive inhibition if some (locally or globally) de- 
layed events are receive events. 

Thus, we can define three types of inhibition 
based on whether send events are delayed locally, 
globally, or not at all, and similarly for receive 
events. This results in nine different combina- 
tions of protocol capabilities. (See Figure 2 of 
Section 4.) For example, a protocol exhibits lo- 
cal receive inhibition and global send inhibition 
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Name Channels Inhibition Protocol Messages 
Flood1 FIFO local send inconsistent 
Flood2 FIFO local receive consistent 
Tree non-FIFO global send consistent 

Figure 1: Protocol characteristics. 

if it delays both receive and send events, and no 
delayed receive event requires communication to 
be re-enabled. 

Since a globally inhibitory protocol may both 
globally and locally delay events, it follows that 
global inhibition of a particular type of event 
(send or receive) is at least as strong as local 
inhibition of that event. Clearly, local inhibition 
of a particular type of event is at least as strong 
as no inhibition of that event. Thus, for exam- 
ple, when other factors remain constant, global 
send inhibition is at least as strong as local send 
inhibition, which is at least as strong as no send 
inhibition. This is independent of the type of 
protocol under consideration. 

4 Protocols 

In this section we give three CCPs and discuss 
their inhibitory characteristics. The first two are 
flooding algorithms, in which messages are sent 
along every channel in the system [7,5]. Flood1 is 
essentially the Chandy and Lamport checkpoint- 
ing algorithm [5]. Flood.2 is similar to that of 
[ 171, with the indivisible receive-send mechanism 
replaced by local receive inhibition. The third 
algorithm, Tree, is a two-phase spanning tree 
protocol from [17]; it is similar to protocols in 
[9,1]. Properties of these CCPs are summarized 
in Figure 1, namely: (1) whether they work for 
non-FIFO channels, or only FIFO, (2) the type 
of inhibition used, and (3) the consistency of the 
resulting cut with respect to protocol messages. 
We leave a discussion of message complexity to 
Section 6. 

In both Flood1 and Flood2, messages are sent 
along every channel in the system beginning with 
a distinguished initiator I. A consistent cut 

occurs because any system message sent after 
the protocol messages must arrive after the cut 
due to FIFO channels. Additionally, either the 
sending or receiving of system messages must be 
inhibited during the interval in which protocol 
messages are sent. In Floodl, in which the cut is 
reached at the beginning of that interval, system 
messages sent to a neighbor prior to the protocol 
message could be inconsistent and are therefore 
inhibited. In Flood2, the cut is reached at the 
end of the interval. Consequently, it is the re- 
ception of system messages which could cause 
inconsistency and must be inhibited. In both 
protocols, the inhibition is only local because a 
sequence of send events ends the disabling, with 
no necessary communication from another pro- 
cessor . 

Each (*) below indicates a state in the consis- 
tent cut. We assume that an internal protocol 
event, denoted “start CCP,” begins each initia- 
tor’s protocol execution. A proof of correctness 
of Flood1 is contained in [5]. Flood2 is proved 
correct almost identically to the protocol in [l7]. 

Protocol 1. Flood1 (FIFO channels, local 
send inhibition): 

l Initiator I, at any time : 
Start CCP; (*) Send(cut,l,j) to 
each neighbor j before sending new 
system messages to j. 

l Other processors i, immediately upon 
first receiving a message of the form 
(cut, k, i) : 
(*) Send(cut, i, j) to each neighbor 
j # k before sending new system 
messages to j. 

Protocol 2. Flood2 (FIFO channels, local re- 
ceive inhibition): 
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0 Initiator I, at any time : 
Start CCP; Send(c&,l,j) to each 
neighbor j before receiving new 
messages. (*) 

l Other processors i, immediately upon 
first receiving a message of the form 
(cut, 5, i) : 
Send( cut, i, j) to all neighbors j # k 
before receiving new messages. (*) 

Protocol 3 uses a two-phase method. A span- 
ning tree of the network, assumed to be known 
in advance, is used to minimize communication. 
Again there is a distinguished initiator I. Three 
messages, Prepare&t, i&t, and Resume are sent 
respectively down, up, and back down the span- 
ning tree. System send events are disabled as 
Cut messages move up the tree and re-enabled 
as Resume messages move down the tree. Since 
a message chain from the initiator is required to 
re-enable the send events, this is an example of 
global send inhibition. A proof of the correctness 
of this protocol is contained in [17]. In sum, any 
inconsistent message sent after the cut-and af- 
ter the re-enabling of system send events-would 
have to be received before being sent, due to 
causal chains from the receiver to the initiator 
and from the initiator to the sender. 

Protocol 3. Tree (non-FIFO channels, global 
send inhibition): 

Let 2’ be a spanning tree of the network 
rooted at I. 

Let parent(i) and children(i) be the 
parent and children of i in 2’. 

(1) Initiator I: Start CCP; Send 
PrepareCut to chiZdren( I). 

(2) Each internal node i, after receiving 
PrepareCut: Send PrepareCut to 
children(i). 

(3) Leaf nodes i, after receiving 
PrepareCut: Disable system sends; 
Send Cut to parent(i). (*) 

(4) Each internal node i, after receiving 
Cut from children(i): Disable sys- 
tem sends; Send Cut to parent(i). 

(*I 

(5) Initiator I, after receiving Cut from 
children(i): (*) Send Resume to 
children(I). 

(6) Internal nodes i, aft& receiv- 
ing Resume from parent(i): Send 
Resume to children(i); Enable dis- 
abled system sends. 

(7) Leaf nodes i, after receiving 
Resume from parent(i): Enable 
disabled system sends. 

Figure 2 illustrates which CCPs are success- 
ful under varying system and protocol charac- 
teristics. For every case in which none of these 
protocols can be used, we can demonstrate im- 
possibility as designated by IMP. Specific impos- 
sibility results for the IMP+ cases are presented 
in the following section; the remaining impossi- 
bilities are immediate consequences of those re- 
sults. 

Recall that we do not assume that processors 
can choose to receive some messages but not oth- 
ers on a single channel; the appropriateness of 
this capability depends on the level of software 
being modeled. Also, the behavior of “selec- 
tive receive” is ambiguous in the case of FIFO 
channels. If this mechanism is allowed in non- 
FIFO systems, then there is a protocol symmet- 
ric to Tree, in which receives are globally dis- 
abled rather than sends; it is successful regard- 
less of send inhibition and protocol message con- 
sistency. This case is less interesting from the 
standpoint of understanding the precise limita- 
tions on attaining CCPs. 

5 Impossibility theorems 

In this section we present impossibility results for 
the IMPt cases in Figure 2. To cover the non- 
FIFO cases, we assume global receive inhibition 
and local send inhibition and show that these 
are not enough to produce cuts in which system 
messages are guaranteed to be consistent. The 
remaining non-FIFO cases then follow immedi- 
ately. 

Theorem 1. With global receive inhibition and 
local send inhibition, there is no CCP for non- 
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Figure 2: Consistent-cut protocols and impossibilities in the inhibition spectrum. 

FIFO systems. Moreover, this is true even if we 
require only that system messages be consistent. 

In the proof we will show that, for any CCP as 
described, there is necessarily a run with the fol- 
lowing property: for some two processors, there 
is causal circularity between the last states pre- 
ceding their respective cuts in which they are 
willing to receive messages from each other. We 
commence by presenting two lemmas from [17]. 

The first lemma states that the event 
receive(m) may occur on a processor j as soon 
as all events of j which happen-before send(m) 
have occurred. 

Lemma 2. Let r be a run such that Zi . ci is 
a prefix of ri and Zj . send(m) is a prefix of rj, 
where m is a message from j to i. Suppose that 
receive(m) is enabled by Zi and that m has not 
been received in Zi. Then if ci does not happen- 
before send(m), there is a run T’ such that Ii . 
send(m) is a prefix of r$ and 2; . receive(m) is a 
prefix of ri. 

If an event ci of i happens-before an event cj of j, 
then if cj is not a receive, ei must happen-before 
the event immediately preceding cj as well. This 
is the conclusion of the second lemma. 

Lemma 3. Let r be a run, ci a non-receive event 
. . 

occurring m Ti, and e: the event occurring imme- 
diately before ei in Ti. Then for any event ej, if 
ej 4 e; it must be the case that ej 4 e!,. 

In order to prove Theorem 1, we need only 
prove that, for any protocol satisfying the condi- 
tions of the theorem, in some run of the protocol 
with respect to some system, the cut produced 
by the protocol is inconsistent. We can therefore 
make any worst-case assumptions about the en- 
abling relations on sequences of system events. 

Proof of Theorem 1: Given a run r of the 
protocol, let I, - eP be the cut state of p in T for 
each processor p. Let i be any processor. Let 
Ii’ be the last proper prefix of i’s cut state in 
which receives from some processor are enabled 
and e! be the event following 1;’ in T. Let j be 
any processor whose receives are enabled in 1;‘; 
from the manner in which Ii’ was chosen, there 
must be at least one such processor. Let Zj’ be 
the last proper prefix of j’s cut state in which 
receives from some processor are enabled and ei 
be the event following Zj’ in T. Let Zj” be the last 
proper prefix of Z$ . e[i in which receives from i 
are enabled and ey be the event following lj”. 
(See Figure 3. Note that some of the receive- 
free intervals may be empty; e.g., it may be that 

ei = I?;‘.) 
Let send(mij) be a send event from i to j that 

is enabled by the subsequence of system events 
in Ii *ci. Let scnd(mji) be a send event from j 
to i that is enabled by the subsequence of system 
events in Ij - ej. The protocol may inhibit the oc- 
currence of send(m;j) in Ii e ei and of send(mj;) 
in Zj . ej. However, since this inhibition can only 
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ei SeTid( mij) 

FUU T’ 

j 
-w-----e 

e!j 
ei Se?Jd( mj; ) 

Figure 3: Proof of Theorem 1. Dashed lines are intervals in which no receive events occur, arrows 
represent happens-before, and ‘X’ marks cut states. (A),(B) f lI o ow from Lemma 2. (C),(D) then follow 
from Lemma 3. (D) and absence of (E) imply (F). 

be local, by Lemma 1 there is a run r’ in which 
Zp - ep is a prefix of T; for each p, and no receive 
events occur between 2; 0 e; (respectively Zj * ej) 
and the state in which scnd(m;j) (respectively 
scnd(mj;)) is re-enabled. We can also assume 
that send(mij) and scnd(mji) occur as soon as 
they are re-enabled. We consider T’. 

We know that mji is not received in 2:; if 
it were, the cut would be inconsistent. We 
also know that receivc(mj;) is enabled by Zj, by 
definition of r!. Suppose that e: f, send(mji). 
Lemma 2 then implies that there is some run T” 

in which 2: . receiue(m+) is a prefix of T:. In 
this run, neither Zi nor any prefix of 1: can be 
i’s cut state: if it were, the same local state 
would be i’s cut state in run T’ (by condition 
(2) of the definition of CCP), which is not the 
case. In sum, T” is a possible run in which the 
message mji is sent after j’s cut state and re- 
ceived before i’s, and the cut produced by the 
protocol is inconsistent. Thus the assumption 
that el + scnd(mj;) in run r’ leads us to a con- 
tradiction. Therefore it must be the case that 
e: ---f scnd(mj;). A symmetric argument estab- 
lishes that ey + scnd(m;j). (See arrows (A) and 
(B) in Figure 3). 

Recall that all receive events are disabled 
between e: and ej, and that none occur be- 
tween ej and scnd(mj;). By repeatedly applying 
Lemma 3, we have that e{ --) sc&(mj;) implies 
that ei -+ e>. Similarly, e; -+ ei. (See arrows (C) 
and (D) in Figure 3.) 

We claim that there can be no message se- 
quence starting between e: and ci and ending 
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between ey and e$ (the cancelled arrow (E) in 
Figure 3). If we can show this, then e: -+ e$ 
implies e! --) ey (arrow (F)) and the partial or- 
der will be violated. So suppose there is such 
a sequence. It must have length at least two, 
since receives from i are disabled at j in the 
interval of interest. Suppose the first event of 
the message sequence is ey = send(m) to pro- 
cessor k. The event receive(m) must occur 
in k’s cut state; otherwise, the remainder of 
the message sequence will contain an inconsis- 
tent message. We can assume that either the 
event immediately after scnd(m;j) is a system 
send event send(m;k) to k or that sends to k 
have been disabled by the protocol in the state 
1; * e; * . . . * send(m;j). In the latter case, we can 
consider (by Lemma 1) a run which is identi- 
cal to r’ UP through send(mij), scnd(mj;) and 
k’s cut state, and in which there are no re- 
ceive events occurring between scnd(mij) and 
the state in which some send to k is re-enabled. 
Assume that the event following this state is 
send(m;k) to k. In either case-send( m;k) 
immediately following the cut state, or after 
a sequence of non-receive events-necessarily 
receive(m) f, send(mik). Otherwise, since there 
are no receive events between er = send(m) and 
SfSZCZ( m;k), receive(m) + send(m;r,) would im- 
ply (by Lemma 3) that receive(m) 4 ey = 
send(m), resulting in circular causality. Now, 
since receive(m) ft Send(mi~), we can apply 
Lemma 2 and produce a run in which mik is in- 
consistent. Therefore, by contradiction, there is 
no message sequence beginning between e: and 



e; and ending between e: and e>. 
Thus e: + e: implies e: + ey. We have al- 

ready shown that e: --f e; and that e? + e:; con- 
sequently, there is causal circularity in run T’. 1 

Our remaining results deal with FIFO systems. 
The proofs of these theorems are fairly similar: 
Theorem 2 is proven in [8]; a slight variation 
of that argument, presented in the full paper, 
proves Theorem 3. In both, we assume the ex- 
istence of a CCP with the required characteris- 
tics and derive a contradiction. The proofs differ 
in that in the non-inhibitory case, one can as- 
sume that the event immediately following a cut 
state is a system send, while in the presence of 
local send inhibition, one cannot. The proof in 
[S] produces a possible run in which one of these 
system messages is inconsistent. The proof of 
Theorem 3 also produces a possible run in which 
there is an inconsistent message; however, due to 
local send inhibition, this message can be made 
to be a protocol message. This is the intuition 
behind Floodl. 

Theorem 2. There is no non-inhibitory CCP 
for FIFO systems, even if protocol messages are 
not required to be consistent. 

Theorem 3. There is no CCP for FIFO systems 
using local send inhibition and no receive inhibi- 
tion if protocol messages are required to be con- 
sistent . 

6 Conclusions and Related 
Work 

In this work we have distinguished local versus 
global inhibition for the first time, and conse- 
quently defined a spectrum of protocol capabili- 
ties with respect to inhibition. We have given a 
complete analysis of the existence of consistent- 
cut protocols as a function of these capabilities, 
while also considering the FIFO or non-FIFO 
nature of channels and whether or not protocol 
messages are allowed to be inconsistent with re- 
spect to a cut. We have shown that local inhibi- 
tion is necessary and sufficient to develop a CCP 
for FIFO systems, while global inhibition of send 

events is necessary and sufficient for non-FIFO 
systems. 

Many issues are subjects of related research. 
One such issue is that of piggybacking. Non- 
FIFO channels in which messages can be “pig- 
gybacked” differ from the pure non-FIFO case, 
because an order is imposed on messages that are 
packaged together. The “red-white” algorithm of 
[12,14] is an example of a protocol which piggy- 
backs a protocol marker onto system messages 
in order to determine consistent cuts. In that 
protocol, a color-either white or red-is asso- 
ciated with each processor at each point in its 
local history. A processor starts out white, but 
may spontaneously turn red, after which it adds 
a red marker to each message it sends to a neigh- 
bor. Any white processor about to receive a red 
marker turns red immediately before doing so. 
The white states of the processors form a consis- 
tent cut. 

Our definition of “inhibitory” assumes a model 
in which system and protocol events are distinct, 
therefore it is difficult to apply it to the red-white 
protocol. However, since the protocol only adds 
to, and does not impede, the sending or recep- 
tion of any system message, it could reasonably 
be considered “non-inhibitory.” Thus one could 
take the viewpoint that the red-white protocol 
is a non-inhibitory, consistent-cut protocol for 
non-FIFO systems; although, as we will observe 
below, it does not quite satisfy our conditions 
on CCPs. Regardless, we have shown in The- 
orem 1 that without allowing piggybacking or 
some other mechanism stronger than those in our 
model, such a protocol is not possible to attain. 

The red-white protocol, while certainly deter- 
mining consistent global states, does not sat- 
isfy the “distinguishability” requirement (condi- 
tion (2)) of our definition of a CCP. A partic- 
ular local state may be the cut state of proces- 
sor p in one run (because the next event at p in 
that run is the reception of a red message) but 
not in another (because the following event is, 
say, some internal event enabled by that local 
state). In effect, the protocol designates a previ- 
ous state as a processor’s cut state; the processor 
does not know until after the fact that it was at 
the cut. Alternatively, one could assume that 
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a processor is able to “peek” at the contents of 
arriving messages. Then a processor could, im- 
mediately before the reception of a red message, 
designate its current state as the cut state. This 
requires stronger capabilities for processors than 
those granted in our model. 

Another approach is to model the reception of 
a piggybacked message in the red-white protocol 
as two separate but consecutive receive events, 
the first of the marker and the second of the 
system message. The red-white algorithm could 
then be modified to designate the state ending 
with the reception of the red marker as a pro- 
cessor’s cut state. This protocol satisfies condi- 
tion (2) of our CCP definition, and has inconsis- 
tent protocol messages. However, if we do model 
the reception of piggybacked messages as dis- 
tinct receive events, guaranteeing their consec- 
utive reception would seem inherently to require 
some form of inhibition. This becomes more 
acute if one looks at a final approach to design- 
ing CCPs using piggybacking: that of simulating 
FIFO channels by including the entire message 
history with every message. Note that this also 
requires unbounded message size. In sum, the 
modeling of piggybacked messages, and their in- 
teraction with distinguishability and inhibition, 
involves many subtle issues. 

Another important issue is the relative com- 
plexities of CCPs. It appears that results of 
[17] can be extended to show that any CCP for 
FIFO systems using up to local send and receive 
inhibition requires one message per full-duplex 
channel. Since CCPs using global send inhi- 
bition can use as little as 3(N - 1) messages, 
as in Protocol 3, this illustrates a trade-off be- 
tween global inhibition and message complexity, 
A lower bound for protocols using global inhi- 
bition is unknown. Related work [l] examines 
message versus time complexity trade-offs in a 
class of protocols, called synchronizers, which re- 
semble CCPs although they differ somewhat in 
their causal constraints. A message-complexity 
lower bound for synchronizers is given as a de- 
creasing function of time complexity. However, 
in that work inhibition is not considered directly, 
although it is a potential source for increasing the 
time complexity of protocols. 
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