
The Inhibition Spectrum and the
Achievement of Causal Consistency

(Extended Abstract)

Carol Critchlow Kim Taylor *
Center for Applied Mathematics Dept. of Computer Science

Cornell University
Ithaca, New York 14850

Abstract

We consider the problem of distinguishing
causally-consistent global states in asynchronous
distributed systems. Such states are fun-
damental to asynchronous systems, because
they correspond to possible simultaneous global
states; their detection arises in a variety of
distributed applications, including global check-
pointing, deadlock detection, termination detec-
tion, and broadcasting. We consider a spectrum
of protocol capabilities based on the type of e’n-
hibition that occurs, i.e. the extent to which
the protocol delays events of the underlying sys-
tem. For the first time we distinguish local ver-
sus global inhibition and prove fundamental re-
lationships between these concepts and deter-
mining causally-consistent states. In local inhi-
bition, processors only delay events until they
have performed some number of local actions; in
global inhibition, they delay events while wait-
ing for some communication from other proces-
sors. Based on a variety of system and proto-
col characteristics, including the ability to locally
or globally inhibit particular types of events, we
give several new impossibility results and exam-

*Supported by an AT&T Ph.D. Scholarship.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and /or specific permission.

0 1990 ACM-0-89791-404-X/90/0008/0031 $1.50

31

ine some existing protocols. We are then able
to present a thirty-six-case summary of protocols
and impossibility results for the determination of
causally-consistent states as a function of those
characteristics. In particular, we demonstrate
that local inhibition is necessary and sufficient
to solve this problem for general FIFO systems,
while global send inhibition is necessary for gen-
eral non-FIFO systems.

1 Introduction

We consider the problem of distinguishing
causally-consistent global states in asynchronous
distributed systems. Lamport [13] introduces
causality, a means of providing temporal struc-
ture to asynchronous Eystems. Causality may be
used to define a consistent gEobaZ state [16,5] of an
asynchronous system, sometimes referred to as a
consistent cut. Consistent cuts are fundamental
to asynchronous systems, as they correspond to
possible simultaneous global states. We address
the class of consistent-cut protocols, or CCPs,
protocols in which such causally-consistent states
are determined. CCPs arise in numerous dis-
tributed applications such as system checkpoint-
ing [16,5,11], deadlock detection [4], distributctl
termination [9], and broadcasting [2j.

Our spectrum is based on the inhibitory capa-
bilities of protocols. Inhibition in asynchronous
distributed systems is formally defined in [17]. In
that work, inhibition refers to protocols delaying
actions of the underlying system for an interval.
For example, a two-phase CCP is given which de-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F93385.93398&domain=pdf&date_stamp=1990-08-01

lays the sending of messages between phases. In
[3], this concept is termed freezing and is defined
for a general notion of superimposed processes.
However, only the related works of [17,8] have
proven fundamental relationships between inhi-
bition and determining consistent global states-
this paper extends those works significantly-
and no previous work has made the important
distinction between local and global inhibition.

In [17] it is shown that there is no non-
inhibitory CCP for non-FIFO systems, and a
non-inhibitory CCP is given for FIFO systems.
However, the non-inhibitory CCP uses an in-
divisible local operation for receiving a mes-
sage and sending multiple messages in response.
This is certainly “inhibitory” in a sense. In
[S], it is shown that indeed there is no non-
inhibitory CCP for FIFO systems without this
atomic receive-send mechanism. We refine the
previous works by separating cases where a pro-
tocol only delays events until some number of
local actions-sends and internal events-have
been performed from cases where it delays events
while a processor waits for communication from
anot her processor. We distinguish these as lo-
cal versus global inhibition. Local inhibition
can be used to form indivisible local operations
which perform multiple tasks, such as the atomic
receive-send referred to above. The distinction of
local and global inhibition has enabled us to ex-
amine the limitations on developing CCPs more
precisely than is accomplished in [17,8].

In addition to the possibility of local and
global inhibition, we also consider whether (1)
sends, receives, or both can be delayed, (2) the
system is FIFO or non-FIFO, and (3) protocol
messages are allowed to be inconsistent with re-
spect to the cut designated by the protocol. Re-
garding (3), previous works on consistent global
states have assumed one case or the other implic-
itly; however, this assumption affects the success
of some protocols and the existence of protocols
under certain conditions. We give the following
results for the first time.

1. There is no CCP for non-FIFO systems with
local send inhibition and global receive inhi-
bition, even if protocol messages are allowed

to be inconsistent.

2. There is no CCP for FIFO systems with no
inhibition, even with inconsistent protocol
messages.

3. There is no CCP for FIFO systems with lo-
cal send inhibition but no receive inhibition,
if protocol messages must be consistent.

For (1) we prove that, in order to prevent mes-
sage inconsistency, some pair of neighboring pro-
cessors must have causal circularity between the
last states preceding the cut in which those pro-
cessors are willing to receive messages from each
other. We prove (3) in the full pa.per; (2) is
proven in [8]. The latter two proofs are very
similar; in both, we demonstrate the necessity of
certain “essential” messages, sent between pro-
cessors before reaching the cut, and then prove
the existence of a run in which some process is
forced to reach its cut state before sending all of
its essential messages.

We also give three CCPs and discuss their
inhibitory nature, along with conditions under
which they are successful. All of these results
are organized into a thirty-six-case summary of
protocols and impossibility results as a function
of system assumptions and protocol capabilities.
(See Figure 2 of Section 4.)

2 System Model

We model asynchronous distributed systems;
more specifically, sets of autonomous processors
which can communicate by sending and receiving
messages along bi-directional channels. By asyn-
chronous, we mean that (1) there is no global
clock, (2) there is finite but unbounded delay in
the transmission of messages, and (3) processors
may proceed at different rates. The network is
assumed to be connected though not necessar-
ily completely connected. Systems are assumed
to be reliable: no processor can fail, no message
can be lost or altered in transmission, and all
messages received have been sent.

Our model is similar to other models of asyn-
chronous systems [6,15]. The system behavior
is represented by a set of possible runs; each run

32

is composed of sequences of events corresponding
to the local actions of each process. Unlike [6,15],
we explicitly model the enabling of events by
preceding event sequences [18]. We also explic-
itly separate protocol and system events. These
two differences allow us to define inhibition by
comparing how an underlying system enables
events versus how the system plus the protocol
enables events. Our model is a generalization
of [171, which contains an indivisible operation
for receiving a message and sending multiple se-
sponses. In our model, the only indivisible opes-
ations are the sending or receiving of single mes-
sages, in addition to internal events.

Each system consists of a connected network
of N processors joined by bi-directional chan-
nels. We let Z = {1,2,. . . , N} denote the set
of process identifiers. We let C denote the set of
bi-directional channels, consisting of unordered
pairs of distinct elements from Z. If the un-
ordered pair (i, j) is in C then processor i can
send messages to processor j, and vice-versa; we
then term i and j neighbors.

With each processor i is associated a set E; of
events. A sequence of events from E; is called
a local history of processor i, and any such fi-
nite sequence is a local state of i. We let the
set States(&) denote the set of all possible local
states consisting of events from E;. Events are of
three kinds: send events, in which one message is
sent to a neighbor; receive events, in which one
message is received from a neighbor; and internal
events.

Also associated with processor i is an enabling
relation M; on local states and events:

M; c States(E;) x E;

If the pair (Zi, ei) is in M;, where li is a local
state of processor i and e; E E;, then we say 1;
enables e;. The enabling relation describes what
events could occur in a given local state of pso-
cessor i; there may be several events enabled by
a single local state. We require the following:
for each processor i and each local state Zi of i, if
(Z;, Teceive(M)) E M;, where M is a message from
processor j, then (Z;, receive(&)) E M; for any
message m’ sent by j. This means that at any
point, i may be willing to receive messages at one

channel and not at another, but may not selec-
tively enable receives on a single channel based
on message contents. Consequences of the al-
ternative assumption are discussed at the end of
Section 4.

Using the elements described thus far, we can
now formally define & system. A system S is
a quadruple (Z,C, C, M), where Z = { 1, N}
is a set of process identifiers, C is a set of un-
ordered pairs of distinct processors from Z, E =

b%,Ez,..., EN} is an N-vector of sets of events,
and M = {Ml, M2,. . . , MN} is an N-vector of
enabling relations, such that (1) for each process
i, Mi C States(Ei) x Ei, (2) for each message
from process i to process j in E, (i, j) is in C,
and (3) for any two processes i and j, these is a

. path (4 id, @I, 22, ,) (ik,j) in C (i.e. the net-
work is connected).

We will associate a set of possible runs, or exe-
cutions, with each system. First, we introduce a
means of providing temporal structure to sets of
local histories, as in [13]. This temporal struc-
ture expresses the fact that certain events pre-
cede other events and could, therefore, have a
causal effect on them. Hence this is referred to
as potential causality, or simply causality. Given
an N-vector r = (~1 , . . . , TN), where Ti is a local
history of processor i for each i, and two events
e and e’ in T, then e happens-before e’ (written
e + e’) if either (1) e and e’ are both events in
ri for some i, and e occurs before e’ in ri; (2) e is
send(m) and e’ is receive(m) for some message
m; OS (3) (e, e’) is in the transitive closure of pairs
of events satisfying conditions (1) and (2) above,
i.e. these is an event e” such that e -+ e” and
et1 + e’ .

We also define a completeness condition on the
local histories of each execution; more specifi-
cally, they cannot contain forever-enabledevents.
An event is forever-enabled in a local history if
it is enabled by some local state Z of that local
history, it is not in the history, and it is enabled
by all local states 1’ for which Z is a prefix.

We can now associate a set of total runs with
each system, corresponding to the possible exe-
cutions of that system. A vector T of local his-
tories is a total run of a system if five conditions
hold: (1) for all prefixes I; * e; of T;, 1; enables c;

33

(1 5 i 5 N); (2) there is no receive(m) for which
there is not a corresponding send(m); (3) the re-
flexive closure of happens-before is a partial or-
der on the set of events included in T, i.e. there
are no two events e and e’ such that e + e’ and
e’ 4 e in T; (4) no send or internal event of i
is forever-enabled in r;; and (5) no receive event
of processor i for which there is a corresponding
send event in T is forever-enabled in r;. If the first
three conditions hold of a vector r’ = (T: , . . . , rb)
of local states, then P’ is called a partial run. If r
is a total run such that r: is a prefix of local his-
tory T; for all i, then r’ is also called a consistent
cut of T.

We define a protocol in an additive fashion, so
as to separate the behavior of the protocol from
the behavior of an underlying system. Given a
system S = (Z, C, E, M), a protocol P will pro-
duce a new system P(S) = (Z,C,&‘, M’). The
events of E are called system events and the
events of E’ - & are called protocol events. Given
a sequence of protocol and system events, the
function SysEvents returns the projection of the
sequence onto the set of system events; this may
be applied to local states or local histories.

Formally, a protocol P is a function which
maps a system S = (1, C, E, M) to a new system
P(S) = (2, C, E’, M’) such that (1) & c E’ (2)
M’ = (Ad;, . ..$I&). where ilfi C_ States(El) x
El, and (3) for all total runs r’ = (r{,r.\r)
of P(S), where ri is the local history of process
i, run T = (SysEvents(r~), SysEvents(r~)) is
a total run of the original system S. We refer
to runs of this modified system as runs of the
protocol with respect to the original system. In
condition (3), we require that the projection of
a protocol run onto the set of system events be
some run of the original system. This implies
that some valid behavior of the original system
results.

We investigate the existence of consistent-cut
protocols for our systems, protocols that distin-
guish a set of local states in every run that form
a consistent cut. These differ from snapshot
[5,11] protocols in that we are not concerned with
recording the states of channels. Of course, im-
possibility results for consistent-cut protocols di-
rectly apply to protocols, such as snapshots, that

perform other tasks in addition to determining
consistent cuts. For simplicity, we consider pro-
tocols which distinguish a single consistent cut
in each run. Our results generalize in a straight-
forward manner to protocols distinguishing mul-
tiple non-intersecting consistent cuts.

Definition 1. A consistent-cut protocol (CCP)
is a protocol P which, for every system S and
every protocol run r in P(S), will create a set
of local states cut(r) = (II, . . . , IN) called cut
states, such that (1) (21, . . . , 1~) is a consistent
cut; (2) in every run r’ = (ri . . . , T&) in which 1;
is a prefix of T i, 2; will be the ith component of
cut(#), i.e. if Zi is i’s cut state in run T, then it
will be i’s cut state in all runs in which it occurs;
and (3) if r is a run of S and c is a consistent cut
of T, then there is a run T’ of P(S) which extends
c, i.e. for each i, ci is a prefix of ri.

The second condition implies that the cut state
of each process is distinguishable to that process.
In other words, each processor i “knows” [15]
that any messages sent subsequently to j will not
be received in j’s cut state, regardless of the se-
quence of steps that j may have taken. The third
condition implies that a CCP cut may occur any-
where in the run of the underlying system; this
eliminates CCPs which, for example, only dis-
tinguish a cut at the beginning of a run. We
sometimes consider CCPs in which cut(r) may
contain inconsistent protocol messages; this im-
plies that condition (1) is changed to require that
(SysEvents(II), . . . , SysEvents(ZN)) be consis-
tent.

Because of the separation of system and pro-
tocol events, our model does not allow the merg-
ing of system and protocol messages. This type
of merging occurs in piggybacking techniques, in
which protocol information is added to the con-
tents of system messages. Our results are de-
pendent upon this restriction. There are proto-
cols, utilizing piggybacking, that determine con-
sistent cuts of non-FIFO systems and are “non-
inhibitory” in a sense [10,12,14], although they
typically do not have the distinguishability char-
acteristic (condition (2) of the CCP definition).
We address this further in Section 6. Our results
show that, without piggybacking or some other

34

mechanism stronger than those of OUT model, a
CCP for non-FIFO systems cannot be attained,
even with a high degree of inhibition.

3 The Inhibition Spectrum

The definitions of this section will allow us to
characterize nine different categories of protocols
with respect to their inhibitory characteristics.

First, we define inhibition essentially as in [17].
We take the intermediate approach of first defin-
ing the notion of disabling an event.

Definition 2. Let S = (2, C, E, M) be a sys-
tem, P be a protocol with P(S) = (2, C, E’, M’),
and r be a run of P(S). An event e; is disabledin
state 1; of r if the subsequence of system events
in 2; enables e; in the original system, but Ii does
not enable ei:

(li,ei) # M;’

Definition 3. A protocol is non-inhibitory if no
event is disabled in any run of the protocol.

A non-inhibitory protocol, then, does not inter-
fere with the running of the underlying system.
Any protocol which does disable system events
is inhibitory.

Recall that we wish to separate cases where
a protocol delays events only until some num-
ber of local actions-send or internal events-
have been performed from cases where it delays
events while waiting for communication from an-
other processor. Hence we further distinguish
two types of inhibition, local and global, for the
first time. We use the terminology that an event
may be locally or globally delayed, whereas in
doing so a protocol exhibits local or global inhi-
bition.

Definition 4. Suppose event ep is disabled by
a protocol in state I, of run r. We say ep is
locally delayed if there exists a run r’ such that
(1) T’ contains an extension Zp’ of Ip; (2) ep is not
disabled by the protocol in &‘; and (3) a,’ - Zp
contains no receive events.

Thus, the re-enabling of a locally delayed event
does not depend upon communication from an-
other processor. Local delay has the following
consequence: if events have been locally delayed
in the states of a partial run, then in some ex-
tending run, each event is re-enabled with no in-
tervening receives. TGs is formalized by th.e fol-
lowing lemma; its proof is straightforward from
the definition of local delay and is contained in
the full paper.

Lemma 1. Let r be a protocol run, (11,. . . ,!N)
be a consistent cut of T, pl, . . . , pk be a subset
of processors, and events epl,. . . , epk be locally
delayed by the protocol in states Zp1,. . . , IPk, re-
spectively. Then there is a run T’ such that

(1 1,. . ., IN) is a consistent cut of T’, and, for
2= * 1 , . . ., k, there are no receive events between
Zpi and a state in which epi is no longer disabled.

Given the definition of local delay, locally and
globally inhibitory protocols are defined in a
straightforward manner.

Definition 5. A protocol is locally inhibitory if
any event disabled ifi any run of the protocol is
delayed locally. An inhibitory protocol that does
not have this property is globally inhibitory.

This implies that, in a globally inhibitory pro-
tocol, some events are delayed while waiting for
communication.

Finally, we also consider whether or not send
events or receive events are delayed by an in-
hibitory protocol.

Definition 6. A protocol exhibits send inhibi-
tion if some (locally or globally) delayed events
are send events. Likewise, a protocol exhibits
receive inhibition if some (locally or globally) de-
layed events are receive events.

Thus, we can define three types of inhibition
based on whether send events are delayed locally,
globally, or not at all, and similarly for receive
events. This results in nine different combina-
tions of protocol capabilities. (See Figure 2 of
Section 4.) For example, a protocol exhibits lo-
cal receive inhibition and global send inhibition

35

Name Channels Inhibition Protocol Messages
Flood1 FIFO local send inconsistent
Flood2 FIFO local receive consistent
Tree non-FIFO global send consistent

Figure 1: Protocol characteristics.

if it delays both receive and send events, and no
delayed receive event requires communication to
be re-enabled.

Since a globally inhibitory protocol may both
globally and locally delay events, it follows that
global inhibition of a particular type of event
(send or receive) is at least as strong as local
inhibition of that event. Clearly, local inhibition
of a particular type of event is at least as strong
as no inhibition of that event. Thus, for exam-
ple, when other factors remain constant, global
send inhibition is at least as strong as local send
inhibition, which is at least as strong as no send
inhibition. This is independent of the type of
protocol under consideration.

4 Protocols

In this section we give three CCPs and discuss
their inhibitory characteristics. The first two are
flooding algorithms, in which messages are sent
along every channel in the system [7,5]. Flood1 is
essentially the Chandy and Lamport checkpoint-
ing algorithm [5]. Flood.2 is similar to that of
[171, with the indivisible receive-send mechanism
replaced by local receive inhibition. The third
algorithm, Tree, is a two-phase spanning tree
protocol from [17]; it is similar to protocols in
[9,1]. Properties of these CCPs are summarized
in Figure 1, namely: (1) whether they work for
non-FIFO channels, or only FIFO, (2) the type
of inhibition used, and (3) the consistency of the
resulting cut with respect to protocol messages.
We leave a discussion of message complexity to
Section 6.

In both Flood1 and Flood2, messages are sent
along every channel in the system beginning with
a distinguished initiator I. A consistent cut

occurs because any system message sent after
the protocol messages must arrive after the cut
due to FIFO channels. Additionally, either the
sending or receiving of system messages must be
inhibited during the interval in which protocol
messages are sent. In Floodl, in which the cut is
reached at the beginning of that interval, system
messages sent to a neighbor prior to the protocol
message could be inconsistent and are therefore
inhibited. In Flood2, the cut is reached at the
end of the interval. Consequently, it is the re-
ception of system messages which could cause
inconsistency and must be inhibited. In both
protocols, the inhibition is only local because a
sequence of send events ends the disabling, with
no necessary communication from another pro-
cessor .

Each (*) below indicates a state in the consis-
tent cut. We assume that an internal protocol
event, denoted “start CCP,” begins each initia-
tor’s protocol execution. A proof of correctness
of Flood1 is contained in [5]. Flood2 is proved
correct almost identically to the protocol in [l7].

Protocol 1. Flood1 (FIFO channels, local
send inhibition):

l Initiator I, at any time :
Start CCP; (*) Send(cut,l,j) to
each neighbor j before sending new
system messages to j.

l Other processors i, immediately upon
first receiving a message of the form
(cut, k, i) :
(*) Send(cut, i, j) to each neighbor
j # k before sending new system
messages to j.

Protocol 2. Flood2 (FIFO channels, local re-
ceive inhibition):

36

0 Initiator I, at any time :
Start CCP; Send(c&,l,j) to each
neighbor j before receiving new
messages. (*)

l Other processors i, immediately upon
first receiving a message of the form
(cut, 5, i) :
Send(cut, i, j) to all neighbors j # k
before receiving new messages. (*)

Protocol 3 uses a two-phase method. A span-
ning tree of the network, assumed to be known
in advance, is used to minimize communication.
Again there is a distinguished initiator I. Three
messages, Prepare&t, i&t, and Resume are sent
respectively down, up, and back down the span-
ning tree. System send events are disabled as
Cut messages move up the tree and re-enabled
as Resume messages move down the tree. Since
a message chain from the initiator is required to
re-enable the send events, this is an example of
global send inhibition. A proof of the correctness
of this protocol is contained in [17]. In sum, any
inconsistent message sent after the cut-and af-
ter the re-enabling of system send events-would
have to be received before being sent, due to
causal chains from the receiver to the initiator
and from the initiator to the sender.

Protocol 3. Tree (non-FIFO channels, global
send inhibition):

Let 2’ be a spanning tree of the network
rooted at I.

Let parent(i) and children(i) be the
parent and children of i in 2’.

(1) Initiator I: Start CCP; Send
PrepareCut to chiZdren(I).

(2) Each internal node i, after receiving
PrepareCut: Send PrepareCut to
children(i).

(3) Leaf nodes i, after receiving
PrepareCut: Disable system sends;
Send Cut to parent(i). (*)

(4) Each internal node i, after receiving
Cut from children(i): Disable sys-
tem sends; Send Cut to parent(i).

(*I

(5) Initiator I, after receiving Cut from
children(i): (*) Send Resume to
children(I).

(6) Internal nodes i, aft& receiv-
ing Resume from parent(i): Send
Resume to children(i); Enable dis-
abled system sends.

(7) Leaf nodes i, after receiving
Resume from parent(i): Enable
disabled system sends.

Figure 2 illustrates which CCPs are success-
ful under varying system and protocol charac-
teristics. For every case in which none of these
protocols can be used, we can demonstrate im-
possibility as designated by IMP. Specific impos-
sibility results for the IMP+ cases are presented
in the following section; the remaining impossi-
bilities are immediate consequences of those re-
sults.

Recall that we do not assume that processors
can choose to receive some messages but not oth-
ers on a single channel; the appropriateness of
this capability depends on the level of software
being modeled. Also, the behavior of “selec-
tive receive” is ambiguous in the case of FIFO
channels. If this mechanism is allowed in non-
FIFO systems, then there is a protocol symmet-
ric to Tree, in which receives are globally dis-
abled rather than sends; it is successful regard-
less of send inhibition and protocol message con-
sistency. This case is less interesting from the
standpoint of understanding the precise limita-
tions on attaining CCPs.

5 Impossibility theorems

In this section we present impossibility results for
the IMPt cases in Figure 2. To cover the non-
FIFO cases, we assume global receive inhibition
and local send inhibition and show that these
are not enough to produce cuts in which system
messages are guaranteed to be consistent. The
remaining non-FIFO cases then follow immedi-
ately.

Theorem 1. With global receive inhibition and
local send inhibition, there is no CCP for non-

37

Figure 2: Consistent-cut protocols and impossibilities in the inhibition spectrum.

FIFO systems. Moreover, this is true even if we
require only that system messages be consistent.

In the proof we will show that, for any CCP as
described, there is necessarily a run with the fol-
lowing property: for some two processors, there
is causal circularity between the last states pre-
ceding their respective cuts in which they are
willing to receive messages from each other. We
commence by presenting two lemmas from [17].

The first lemma states that the event
receive(m) may occur on a processor j as soon
as all events of j which happen-before send(m)
have occurred.

Lemma 2. Let r be a run such that Zi . ci is
a prefix of ri and Zj . send(m) is a prefix of rj,
where m is a message from j to i. Suppose that
receive(m) is enabled by Zi and that m has not
been received in Zi. Then if ci does not happen-
before send(m), there is a run T’ such that Ii .
send(m) is a prefix of r$ and 2; . receive(m) is a
prefix of ri.

If an event ci of i happens-before an event cj of j,
then if cj is not a receive, ei must happen-before
the event immediately preceding cj as well. This
is the conclusion of the second lemma.

Lemma 3. Let r be a run, ci a non-receive event
. .

occurring m Ti, and e: the event occurring imme-
diately before ei in Ti. Then for any event ej, if
ej 4 e; it must be the case that ej 4 e!,.

In order to prove Theorem 1, we need only
prove that, for any protocol satisfying the condi-
tions of the theorem, in some run of the protocol
with respect to some system, the cut produced
by the protocol is inconsistent. We can therefore
make any worst-case assumptions about the en-
abling relations on sequences of system events.

Proof of Theorem 1: Given a run r of the
protocol, let I, - eP be the cut state of p in T for
each processor p. Let i be any processor. Let
Ii’ be the last proper prefix of i’s cut state in
which receives from some processor are enabled
and e! be the event following 1;’ in T. Let j be
any processor whose receives are enabled in 1;‘;
from the manner in which Ii’ was chosen, there
must be at least one such processor. Let Zj’ be
the last proper prefix of j’s cut state in which
receives from some processor are enabled and ei
be the event following Zj’ in T. Let Zj” be the last
proper prefix of Z$. e[i in which receives from i
are enabled and ey be the event following lj”.
(See Figure 3. Note that some of the receive-
free intervals may be empty; e.g., it may be that

ei = I?;‘.)
Let send(mij) be a send event from i to j that

is enabled by the subsequence of system events
in Ii *ci. Let scnd(mji) be a send event from j
to i that is enabled by the subsequence of system
events in Ij - ej. The protocol may inhibit the oc-
currence of send(m;j) in Ii e ei and of send(mj;)
in Zj . ej. However, since this inhibition can only

38

ei SeTid(mij)

FUU T’

j
-w-----e

e!j
ei Se?Jd(mj;)

Figure 3: Proof of Theorem 1. Dashed lines are intervals in which no receive events occur, arrows
represent happens-before, and ‘X’ marks cut states. (A),(B) f lI o ow from Lemma 2. (C),(D) then follow
from Lemma 3. (D) and absence of (E) imply (F).

be local, by Lemma 1 there is a run r’ in which
Zp - ep is a prefix of T; for each p, and no receive
events occur between 2; 0 e; (respectively Zj * ej)
and the state in which scnd(m;j) (respectively
scnd(mj;)) is re-enabled. We can also assume
that send(mij) and scnd(mji) occur as soon as
they are re-enabled. We consider T’.

We know that mji is not received in 2:; if
it were, the cut would be inconsistent. We
also know that receivc(mj;) is enabled by Zj, by
definition of r!. Suppose that e: f, send(mji).
Lemma 2 then implies that there is some run T”

in which 2: . receiue(m+) is a prefix of T:. In
this run, neither Zi nor any prefix of 1: can be
i’s cut state: if it were, the same local state
would be i’s cut state in run T’ (by condition
(2) of the definition of CCP), which is not the
case. In sum, T” is a possible run in which the
message mji is sent after j’s cut state and re-
ceived before i’s, and the cut produced by the
protocol is inconsistent. Thus the assumption
that el + scnd(mj;) in run r’ leads us to a con-
tradiction. Therefore it must be the case that
e: ---f scnd(mj;). A symmetric argument estab-
lishes that ey + scnd(m;j). (See arrows (A) and
(B) in Figure 3).

Recall that all receive events are disabled
between e: and ej, and that none occur be-
tween ej and scnd(mj;). By repeatedly applying
Lemma 3, we have that e{ --) sc&(mj;) implies
that ei -+ e>. Similarly, e; -+ ei. (See arrows (C)
and (D) in Figure 3.)

We claim that there can be no message se-
quence starting between e: and ci and ending

39

between ey and e$ (the cancelled arrow (E) in
Figure 3). If we can show this, then e: -+ e$
implies e! --) ey (arrow (F)) and the partial or-
der will be violated. So suppose there is such
a sequence. It must have length at least two,
since receives from i are disabled at j in the
interval of interest. Suppose the first event of
the message sequence is ey = send(m) to pro-
cessor k. The event receive(m) must occur
in k’s cut state; otherwise, the remainder of
the message sequence will contain an inconsis-
tent message. We can assume that either the
event immediately after scnd(m;j) is a system
send event send(m;k) to k or that sends to k
have been disabled by the protocol in the state
1; * e; * . . . * send(m;j). In the latter case, we can
consider (by Lemma 1) a run which is identi-
cal to r’ UP through send(mij), scnd(mj;) and
k’s cut state, and in which there are no re-
ceive events occurring between scnd(mij) and
the state in which some send to k is re-enabled.
Assume that the event following this state is
send(m;k) to k. In either case-send(m;k)
immediately following the cut state, or after
a sequence of non-receive events-necessarily
receive(m) f, send(mik). Otherwise, since there
are no receive events between er = send(m) and
SfSZCZ(m;k), receive(m) + send(m;r,) would im-
ply (by Lemma 3) that receive(m) 4 ey =
send(m), resulting in circular causality. Now,
since receive(m) ft Send(mi~), we can apply
Lemma 2 and produce a run in which mik is in-
consistent. Therefore, by contradiction, there is
no message sequence beginning between e: and

e; and ending between e: and e>.
Thus e: + e: implies e: + ey. We have al-

ready shown that e: --f e; and that e? + e:; con-
sequently, there is causal circularity in run T’. 1

Our remaining results deal with FIFO systems.
The proofs of these theorems are fairly similar:
Theorem 2 is proven in [8]; a slight variation
of that argument, presented in the full paper,
proves Theorem 3. In both, we assume the ex-
istence of a CCP with the required characteris-
tics and derive a contradiction. The proofs differ
in that in the non-inhibitory case, one can as-
sume that the event immediately following a cut
state is a system send, while in the presence of
local send inhibition, one cannot. The proof in
[S] produces a possible run in which one of these
system messages is inconsistent. The proof of
Theorem 3 also produces a possible run in which
there is an inconsistent message; however, due to
local send inhibition, this message can be made
to be a protocol message. This is the intuition
behind Floodl.

Theorem 2. There is no non-inhibitory CCP
for FIFO systems, even if protocol messages are
not required to be consistent.

Theorem 3. There is no CCP for FIFO systems
using local send inhibition and no receive inhibi-
tion if protocol messages are required to be con-
sistent .

6 Conclusions and Related
Work

In this work we have distinguished local versus
global inhibition for the first time, and conse-
quently defined a spectrum of protocol capabili-
ties with respect to inhibition. We have given a
complete analysis of the existence of consistent-
cut protocols as a function of these capabilities,
while also considering the FIFO or non-FIFO
nature of channels and whether or not protocol
messages are allowed to be inconsistent with re-
spect to a cut. We have shown that local inhibi-
tion is necessary and sufficient to develop a CCP
for FIFO systems, while global inhibition of send

events is necessary and sufficient for non-FIFO
systems.

Many issues are subjects of related research.
One such issue is that of piggybacking. Non-
FIFO channels in which messages can be “pig-
gybacked” differ from the pure non-FIFO case,
because an order is imposed on messages that are
packaged together. The “red-white” algorithm of
[12,14] is an example of a protocol which piggy-
backs a protocol marker onto system messages
in order to determine consistent cuts. In that
protocol, a color-either white or red-is asso-
ciated with each processor at each point in its
local history. A processor starts out white, but
may spontaneously turn red, after which it adds
a red marker to each message it sends to a neigh-
bor. Any white processor about to receive a red
marker turns red immediately before doing so.
The white states of the processors form a consis-
tent cut.

Our definition of “inhibitory” assumes a model
in which system and protocol events are distinct,
therefore it is difficult to apply it to the red-white
protocol. However, since the protocol only adds
to, and does not impede, the sending or recep-
tion of any system message, it could reasonably
be considered “non-inhibitory.” Thus one could
take the viewpoint that the red-white protocol
is a non-inhibitory, consistent-cut protocol for
non-FIFO systems; although, as we will observe
below, it does not quite satisfy our conditions
on CCPs. Regardless, we have shown in The-
orem 1 that without allowing piggybacking or
some other mechanism stronger than those in our
model, such a protocol is not possible to attain.

The red-white protocol, while certainly deter-
mining consistent global states, does not sat-
isfy the “distinguishability” requirement (condi-
tion (2)) of our definition of a CCP. A partic-
ular local state may be the cut state of proces-
sor p in one run (because the next event at p in
that run is the reception of a red message) but
not in another (because the following event is,
say, some internal event enabled by that local
state). In effect, the protocol designates a previ-
ous state as a processor’s cut state; the processor
does not know until after the fact that it was at
the cut. Alternatively, one could assume that

40

a processor is able to “peek” at the contents of
arriving messages. Then a processor could, im-
mediately before the reception of a red message,
designate its current state as the cut state. This
requires stronger capabilities for processors than
those granted in our model.

Another approach is to model the reception of
a piggybacked message in the red-white protocol
as two separate but consecutive receive events,
the first of the marker and the second of the
system message. The red-white algorithm could
then be modified to designate the state ending
with the reception of the red marker as a pro-
cessor’s cut state. This protocol satisfies condi-
tion (2) of our CCP definition, and has inconsis-
tent protocol messages. However, if we do model
the reception of piggybacked messages as dis-
tinct receive events, guaranteeing their consec-
utive reception would seem inherently to require
some form of inhibition. This becomes more
acute if one looks at a final approach to design-
ing CCPs using piggybacking: that of simulating
FIFO channels by including the entire message
history with every message. Note that this also
requires unbounded message size. In sum, the
modeling of piggybacked messages, and their in-
teraction with distinguishability and inhibition,
involves many subtle issues.

Another important issue is the relative com-
plexities of CCPs. It appears that results of
[17] can be extended to show that any CCP for
FIFO systems using up to local send and receive
inhibition requires one message per full-duplex
channel. Since CCPs using global send inhi-
bition can use as little as 3(N - 1) messages,
as in Protocol 3, this illustrates a trade-off be-
tween global inhibition and message complexity,
A lower bound for protocols using global inhi-
bition is unknown. Related work [l] examines
message versus time complexity trade-offs in a
class of protocols, called synchronizers, which re-
semble CCPs although they differ somewhat in
their causal constraints. A message-complexity
lower bound for synchronizers is given as a de-
creasing function of time complexity. However,
in that work inhibition is not considered directly,
although it is a potential source for increasing the
time complexity of protocols.

7 Acknowledgements

We wish to thank Prakash Panangaden for in-
valuable discussions during the development of
this work.

References

PI

PI

PI

PI

PI

PI

171

PI

PI

Baruch Awerbuch. Complexity of network
synchronization. J.A.C.M., 32(4), October
1985.

Ken Birman and Thomas Joseph. Reli-
able communication in the presence of fail-
ures. A.C.M. Transactions on Computer
Systems, 5(l), February 1987.

L. Bough and N. Francez. A compositional
approach to superimposition, In Proceed-
ings of the A. C. M. Symposium on Prin-
ciples of Progmmming Languages, January
1988.

G. Bracha and S. Toueg. Distributed
deadlock detection, Distributed Computing,
2(3):127-138, 1987.

M. Chandy and L. Lamport. Find-
ing global states of a distributed system.
A.C. M. Transactions on Computer Sys-
tems, 3(1):63-75, 1985.

M. Chandy and J. Misra. How pro-
cesses learn. In Proceedings of the Fifth
A. C. M. Symposium on Principles of Dis-
tributed Computing, pages 204-214,1985.

E.J.H. Chang. Echo algorithms: depth
parallel operations on graphs. I.E.E.E.
Transactions on Software Engineering, SE-
8(4):391400, 1982.

Carol Critchlow. On inhibition and atom-
icity in asynchronous consistent-cut proto-
cols * Technical Report 89-1069, Cornell
University Department of Computer Sci-
ence, December 1989.

N. Francez. Distributed termination.
A. C. M. Transactions on Programming Lan-

41

guages and Systems, 2(1):42-55, January
1980.

Editors, pages 280-291. Springer-Verlag,
1989.

[lo] E. Gafni. Perspectives on distributed net-
work protocols: A case for building blocks.
In Proceedings of Milcom ‘86, Monterrey,
CA, 1986.

[18] Glynn Winskel. Event structures. Tech-
nical Report 95, University of Cambridge,
Computer Laboratory, 1986.

[ll] Richard Koo and Sam Toueg. Checkpoint-
ing and rohback-recovery for distributed
systems. IEEE Transactions On Softsuare
Engineering, SE-13(1):23-31, January 1987.

[12] T.H. Lai and T.H. Yang. On distributed
snapshots. Information Processing Letters,
25:153-158, 1987.

[13] Leslie Lamport. Time, clocks, and the or-
dering of events in a distributed system.
Communications of the A. C. M., 21(7) :558-
565, 1977.

[14] Friedemann Mattern. Virtual time and
global states of distributed systems. In Par-
allel and Distributed Algorithms (Proceed-
ings of the International Workshop on Par-
allel and Distributed Algorithms, Chateau
de Bonas, France, October 1988), M. Cos-
nard, Y. Robert, P. Quinton, and M. Ray-
nal, Editors, pages 215-226. Elsivier Science
Publishers (North-Holland), 1989.

.5] P. Panangaden and K. Taylor. Concur-
rent common knowledge: A new definition
of agreement for asynchronous systems. In
Proceedings of the Seveth A. C.M. Sympo-
sium on Principles of Distributed Comput-
ing, pages 197-209,1988.

[16] D. L. Russell. Process backup in producer-
consumer systems. In Proceedings of the
A. C, M. Symposium on Operating Systems
Principles, November 1977.

1 ‘1 Kim Taylor. The role of inhibition in
asynchronous consistent-cut protocols. In
Lecture Notes in Computer Science 392:
Distributed AZgorithms (Proceedings of the
Third International Workshop on Dis-
tributed Algorithms, Nice, France, Septem-
ber 1989), J.-C. Bermond and M. RaynaI,

42

