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Abstract 

The use of randomization in the design and analysis of algorithms promises simple and efficient algorithms 
to difficult problems, some of which may not have a deterministic solution. This gain in simplicity, efficiency 
and solvability results in a tradeoff of the traditional notion of absolute correctness of algorithms for a more 
quantitative notion: correctness with a probability between 0 and 1. The addition of the notion of parallelism 
to the already unintuitive idea of randomization makes reasoning about probabilistic parallel programs all 
the more tortuous and difficult. 

In this paper, we address the problem of specifying and deriving properties of probabilistic parallel pro- 
grams that either hold deterministically or with probability one. We present a proof methodology based on 
existing proof systems for probabilistic algorithms, the theory of the predicate transformer and the theory of 
UNITY. Although the proofs of probabilistic programs are slippery at best, we show that such programs can 
be derived with the same rigor and elegance that we have seen in the derivation of sequential and parallel 
programs. By applying this methodology to derive probabilistic programs, we hope to develop tools and 
techniques that would make randomization a useful paradigm in algorithm design. 

*This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 00365SO65 
and by the OEice of Naval Research, Contract NOOOl4-90-J-1640. 

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 

0 1990 ACM-0-89791-404-X/90/0008/0247 $1.50 

241 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F93385.93427&domain=pdf&date_stamp=1990-08-01


Contents 

0 Introduction 
0.1 Motivation . . . . . . . . . . . . . . . 
0.2 Contributions . . . . . . . . . . . . . . 
0.3 Plan of Paper . . . . . . . . . . . . . . 

1 Notation and Terminology 
1.1 Proof Format . . . . . . . . . . . . . . 

2 The Computational Model 
2.1 Deterministic Statements . . . . . . . 
2.2 Probabilistic Statements . . . . . . . . 

2 
3 

3 
4 
4 

3 Reasoning about Safety 5 

4 UNITY and Progress: ensures and H 5 

5 The weakest probabilistic precondition 5 

6 Relating wp and wpp 6 

7 Reasoning about Progress 6 
7.1 upto. . . . . . . . . . . . . . . * . . . 6 
7.2 entails . . . . . . . . . . . . . . . . . 7 
7.3 The relation w . . . . . . . . . . . . . 8 
7.4 Probabilistic Leads-to: b . . . . . . 9 

8 An Induction Principle for Probabilistic 
Leads-to 

9 Substitution Axiom 

10 On program composition 
10.1 Composition by union . . . . . . . . . 
10.2 Conditional Properties . . . . . . . . . 
10.3 Superposition . . . . . . . . . . . . . . 

9 

9 

9 
10 
10 
10 

11 Comments on Soundness and Complete- 
ness 

12 Examples 

13 Acknowledgement 

References 

0 Introduction 

0.1 Motivation 

10 

11 

14 

14 

Ever since Michael Rabin’s seminal paper on Proba- 
bilistic Algorithms [Rab76], it has been widely rec- 
ognized that introducing randomization in the de- 
sign and analysis of algorithms has several advan- 
tages. Often these algorithms are simpler and more 

efficient - in terms of time, space and communica- 
tion complexity - than their deterministic’ coun- 
terparts [Rab76; Rab82b; Rab82a; Her89; BGS88]. 
With the advent of multi-processing and distributed 
computing, it has been realized that for certain prob- 
lems, it is possible to construct a probabilistic al- 
gorithm where no deterministic one exists. This is 
true especially for problems involving the resolution 
of symmetry. In the last decade several such algo- 
rithms for synchronization, communication and coor- 
dination between parallel programs have appeared in 
the literature [FR80; IR81; LR81; CLP84; Her89]. 

This gain in simplicity, efficiency and solvability 
is not without a price. An integral part of algorithm 
design is a proof of correctness and for probabilistic 
algorithms, one has to sacrifice the traditional notion 
of correctness for a quantitative notion - correctness 
with a probability between 0 and 1. 

In this paper, we address this problem of correct- 
ness for probabilistic parallel programs. Since the 
term probabilistic has been used with various conno- 
tations, we begin with an informal definition of the 
class of algorithms of interest. We are interested in 
those algorithms which in addition to the usual de- 
terministic transitions permit coin-dossing as a legal 
transition. Informally, we allow transitions of the 
form 

2 := outcome of the toss of a fair coin 

This simple addition enables us to concisely express 
many known probabilistic algorithms. 

We distinguish between two notions of correct- 
ness - deterministic and probabilistic. The former is 
defined to capture the traditional notion of absolute 
correctness of our algorithms. For the latter, rather 
than specify a quantitative measure, we reason about 
the more qualitative notion - correctness with prob- 
abiliiy 1. Informally, a property is said to hold with 
probability 1, if for all schedules, the measure of the 
set of execution sequences in which the property is at- 
tained is 1. In the sequel, properties of interest will be 
classified as deterministic or holding wi-th probability 
1 depending on the notion of correctness used. Note 
that even probabilistic programs have deterministic 
properties. 

Erring on the side of caution, we require safe@ 
properties to hold deterministically. For progress, we 
are interested in proving a restricted class of proper- 
ties, namely those that are attained with probability 
1. Furthermore, we are interested in those progress 
properties that are independent of the actual prob- 
ability values attached to the individual alternatives 

OWe use the term determinislic to mean non-probabilislic. 
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of a probabilistic transition: the only assumption we 
allow ourselves is that these values are non-zero and 
the sum of the values over a given transition is 1. 
Proofs of even such a constrained class of properties 
can be quite tenuous and tricky’ : a suggestion for 
a proof principle for such properties first appeared in 
[HSP83]. The proof principle was shown to be sound 
and complete for a class of finite state programs - 
that is programs with a fixed number of processes 
and variables ranging over finite domains. The proof 
principle provided the basis for a decision procedure 
for mechanically determining whether a program sat- 
isfied a progress property with probability 1. 

This proof principle has been the essence of sev- 
eral proof systems proposed since then. In [LS82], the 
authors generalize the temporal propositional logic 
of linear time to handle random events as well. In 
[HS84], two propositional probabilistic temporal log- 
its based on temporal logics of branching time are 
presented. However, they do not address the method- 
ological question of designing probabilistic programs. 

In [Pnu83], Pnueli introduced the concept of ez- 
treme fairness. One of the results of the paper shows 
that a property that holds for all extremely fair com- 
putations would hold with probability 1. Thus, ex- 
treme fairness is a sufficient condition to be satis- 
fied by a scheduler in executing probabilistic pro- 
grams. A proof rule based on extreme fairness and 
linear time temporal logic was presented. This proof 
rule has been used to prove some difficult algorithms 
in [Pnu83; PZ84; PZSG]. Though this method was 
the first to tackle sizeably complex probabilistic pro- 
grams, it has been shown to be incomplete. That is, 
there exist properties expressible in linear time tem- 
poral logic that hold with probability 1 but do not 
hold on some extremely fair computation. Also, the 
proof rule is so complicated that the authors resort 
to pictorial representations. Some of the complexity 
stems from the interplay of randomization and par- 
allelism but their methodology does little to alleviate 
it. In [Zuc86], Zuck introduced o-fairness and showed 
that temporal logic properties that hold with proba- 
bility 1 for a finite state program are precisely those 
that hold over all o-fair computations of the program. 

In [HS85], the proof principle of [HSP83] is gener- 
alized to develop conditions for the qualitative anal- 
ysis of infiniie state probabilistic programs. To the 
author’s knowledge, no proof system incorporating 
these conditions has yet been proposed. 

’ For a compelling ex ample of how linintuitive probabilistic 
reasoning can be, consider the following example: two coins 
are independently tossed ad infinitum. Is it the case that with 
probability 1, the system reaches a state in which both coins 
show heads ? For details, see Example 0 in Section 10. 

Researchers have also investigated the question 
of probabilistic model checking. That is, given a 
finite state probabilistic program and its temporal 
logic specification, do the computations of the pro- 
gram satisfy the specification with probability 1 ? 
This question was first raised in [Var85] and solved 
by automata theoretic methods extended to incorpo- 
rate probabilistic transitions. The time complexity 
of the algorithm suggested to answer this question 
is double exponential in the size of the specification. 
In [PZ89], Pnueli and Zuck develop a tableaux-based 
method to model checking and present an algorithm 
whose time complexity is single exponential in the 
size of the specification. This line of research diverges 
from ours: these methods are essentially a posteriori 
- they assume that a program is given, whereas we 
wish to derive the program from the specification. 

In [CM88], Chandy and Misra introduce UNITY 
- a formalism to aid in the specification and deriva- 
tion of parallel algorithms. Their thesis is that a 
small theory - a computation model and its asso- 
ciated proof system - is adequate for clearly stat- 
ing and reasoning about specifications and develop- 
ing programs for a variety of application areas. Our 
thesis is that probabilistic parallel algorithms can be 
specified, refined and derived with the same rigor and 
elegance that applies to parallel algorithms. By syn- 
thesizing ideas from [HSP83; Pnu83], the theory of 
predicate transformers [DS90] and UNITY [CM881 
we construct a theory to reason about probability and 
parallelism. 

0.2 Contributions 

We begin by presenting a computational model in 
which the basic elements of synchrony (modelled as a 
multiple assignment), asynchrony (modelled as non- 
deterministic choice) and probabilistic choice are cho- 
sen as primitives. Unlike state-based computational 
models, we do not reason about execution sequences: 
we choose to reason about properties of programs. In 
our model, a program is a set of probabilistic multiple 
assignment statements and an execution of a program 
proceeds by repeatedly picking a statement from the 
set and executing it, with the caveat of unconditional 
fairness - that is, in an infinite execution sequence 
every statement is executed infinitely often. While 
unconditional fairness is required in the selection of 
a statement to be executed, we require extreme fair- 
ness in the selection of an alternative of a probabilistic 
statement. 

By defining the weakest precondition for a prob- 
abilistic statement appropriately, we show that the 
UNITY relation unless and its associated theory can 
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be used to reason about the safety properties of prob- 
abilistic programs as well. This is in keeping with 
our decision to treat all safety properties determinis- 
tically. In a like manner, we show how the theory of 
the UNITY relations ensures and I+ (read, leads-to) 
can be extended to reason about progress properties 
that hold deterministically. 

To specify and verify progress properties that hold 
with probability 12, the wp-semantics are not ade- 
quate. It is necessary to define a new predicate trans- 
former wpp (read, weakest probabilistic precondition) 
to capture the inherent non-determinacy of the prob- 
abilistic construct. The wpp is the dual of wp and 
this is reflected in its properties. It turns out that 
the predicate transformer wpp alongwith the notion 
of extreme fairness provides the right generalization 
of wp (or Hoare triples, for that matter). The pred- 
icate wpp .s.X characterizes all possible states such 
that if statement s is executed infinitely often from 
such a state, then infinitely often the execution of 
s terminates in a state satisfying predicate X. Fur- 
thermore, it provides the basis for generalizing the 
relations unless, ensures and H to new relations 
upto, entails and b ( read, probabilistic leads-to) 
respectively. Using this small set of operators, we 
construct a powerful theory in which specifications 
can be clearly stated and refined using a set of in- 
ference rules: furthermore the choice of operators is 
such that they provide heuristic guidance in extract- 
ing the program text from the final specification. We 
have investigated the properties of the operators in 
detail. 

As with other proof theories, our proof theory is 
not compositional with respect to general progress 
properties. However, we have results on deriving ba- 
sic progress properties of a composite probabilistic 
program from those of its components. Specifically, 
unless, upto, ensures and entails properties com- 
pose in our model. 

One of the important features of our theory is 
that our operators are not powerful enough to reason 
about the individual state transitions of a program. 
As a consequence, we are able to avoid the incom- 
pleteness of [Pnu83]. We show that our proof system 
is sound and complete for proving properties of finite 
state probabilistic programs. 

Our proof system is novel in that it shows that 
probabilistic programs are amenable to the same pro- 
cess of specification, refinement and verification as 
sequential and parallel programs. We illustrate our 
proof system by examples from random walk and 
(two process) mutual exclusion problems. Further- 

2To see the necessity of a new operator, see Example 1 in 
Section 10 

more, our proof system allows both probabilistic and 
deterministic properties to be manipulated within a 
unified framework. This allows one to reuse proofs 
and reason in a compositional manner. The most 
complicated example that we have proved in our sys- 
tem is the paradigm of eventual determinism [RaoSO]. 

0.3 Plan of Paper 

After a short introduction to our notation and pre- 
liminary theorems in Section 1, we present the for- 
mat of a deterministic and a probabilistic statement 
and their wp-semantics in Section 2. Several prop- 
erties of the wp of these statements are derived. In 
Section 3, we use these properties of wp to extend 
the UNITY operator unless to reason about safety 
properties of probabilistic programs. Section 4 sum- 
marizes the progress operators of UNITY and shows 
how the same operators can be used to reason about 
deterministic progress properties of probabilistic pro- 
grams. Section 5 introduces the predicate transformer 
wpp. We present several theorems relating the wp 
and wpp in Section 6. In Section 7, we define oper- 
ators to reason about progress properties which hold 
with probability 1. Section 8 introduces an induction 
principle for the b. The following section intro- 
duces the Substitution Axiom. Section 10 contains a 
short exposition on program composition. In Section 
11, we address soundness and completeness issues for 
our logic. We illustrate the application of our the- 
ory by classic examples from random walks and two 
process mutual exclusion in Section 12. 

1 Notation and Terminology 

We will use the following notational conventions: the 
expression 

(&X : r.2 : t.x) 

where Q E {V, 3), denotes quantification over all t.a: 
for whEh x satisfies r.x. We call 3: the dummy, r.x 
the range and t.x the term of the quantification. 
We adopt the convention that all formulae are quan- 
tified over all free variables occurring in them (these 
are variabIes that are neither dummies nor program 
variables). 

Universal quantification over all program variables 
is denoted by surrounding a predicate by square brack- 
ets ([ 1, read: everywhere). This unary operator has 
a11 the properties of universal quantification over a 
non-empty range. For a detailed discussion of this 
notation the reader is referred to [Dij]. 

For an assignment statement of the form 2 := e, 
we denote the predicate wp .“z := e”.X by (Z := 

. 
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e}X. 
To summarize, angle brackets (( )) denote the 

scope of quantification, square brackets ([ 1) denote 
quantification over an anonymous state space and 
curly brackets ({ }) are reserved for the weakest pre- 
condition of an assignment. 

We write f ,g,h, to denote predicate transformers, 
X,Y,Z to denote predicates on program states and 
H, -+ etc. to denote relations on predicates. For 
relations R, S on predicates, we say that R is stronger 
than S (in formulae R + S), if and only if (VX, Y :: 
X RY j X S Y). For predicate transformers f, g, 
we say that f is stronger than g if and only if (VX :: 

1f.X * s.Xl)- 
The other operators we use are summarized below, 

ordered by increasing binding powers. 

“.” (function application) 

All boolean and arithmetic operators have their usual 
meanings. 

Next we define a number of junctivity3 properties 
for our predicate transformers. The following defini- 
tions and theorems have been taken from [DS90]. 

Definition 0 A predicate transformer f is said to be 
conjunctive over a bag of predicates V if and only if 

[f.(VX : x E v : X) E (VX : x E v : f.X)] 

Definition 1 A predicate transformer f is said to be 
disjunctive over a bag of predicates V if and only if 

[f.(3X : x E v : X) G (3X : x E v : f.X)] 

In other words, the conjunctivity of f describes the 
extent to which f distributes over universal quan- 
tification and its disjunctivity describes how it dis- 
tributes over existential quantification. The less re- 
stricted the V, the stronger the type of junctivity 
Accordingly, we can distinguish the following types 
of junctivity: 

0 universally junctive : junctive over all V. 

0 positively junctive : junctive over all non-empty 
V. 

3We use the term junctive and its noun fox-m to stand for 
either conjunctive or disjunctive. 

denumerably junctive : junctive over all non- 
empty V with denumerably many distinct pred- 
icates. 

finitely junctive : junctive over all non-empty V 
with a finite number of distinct predicates. 

and-continuous : conjunctive over all non-empty 
V, the distinct predicates of which can be or- 
dered as a monotonic sequence. 

or-continuous : disjunctive over all non-empty 
V, the distinct predicates of which can be or- 
dered as a monotonic sequence. 

monotonic : junctive over all non-empty V, the 
distinct predicates of which can be ordered as a 
monotonic sequence of finite length. 

The various types of junctivity are related by the fol- 
lowing theorem. 

Theorem 0 Relating Junctivity Properties : 

l 

l 

(universally junctivity * positive junctivity) 

(positive junctivity j denumerable junctivity) 

(denumerable conjunctivity a jinite conjunctiv- 
ity and and-continuity) 

(denumerable disjunctivity =S finite disjunctiv- 
ity and or-continuity) 

Both finite conjunctivity and and-continuous a 
monotonicity 

l Both finite disjunctivity and or-continuity + 
monotonicity 

1.1 

Most, 
sense 

Proof Format 

of our proofs will be purely calculational in the 
that they will consist of a number of syntactic 

transformations instead of semantic reasoning steps. 
For manipulating formulae of predicate calculus, we 
use a proof format that was proposed by Feijen, Dijk- 
stra and others, and that greatly facilitates this kind 
of reasoning. 

For instance, a proof that [A E D] could be ren- 
dered in our format as 

= thint why [A G I?]} 

= yhint why [B G C]} 

= Gint why [C E D]} 
D 
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We also allow other transitive operators in the left- 
most column. Among these are the more traditional 
implies (a) but also for reasons of symmetry, follows- 
from (e). For a more thorough treatment of this 
subject the reader is referred to [DS90]. 

For manipulating formulae that may depend on 
several hypotheses, we retain the same calculational 
style but introduce a different format. Each row of 
the proof format looks as follows 

<proof step # > <formula> 
, hint why the formula holds 

The advantage of this format is that if a particular 
step depends on several preceding proof steps rather 
than just the immediate predecessor then this depen- 
dence can be explicated in the hint by indicating the 
step numbers of the hypotheses. This will be partic- 
ularly useful for proving temporal properties of pro- 
grams. 

2 The Computational Model 

Our computational model is the same as that of UNITY. 
Our programs consist of three parts: a collection of 
variable declarations, a set of initial conditions and a 
finite set of statements. As in UNITY, we call these 
sections declare, initially and assign respectively. 
A basic transition in our model is a probabilistic mul- 
tiple assignment statement. This is a generalization 
of UNITY’s deterministic multiple assignment state- 
ment. 

From an operational point of view, an execution 
of our program starts from any state that satisfies the 
initial conditions and proceeds by repeatedly select- 
ing any statement from the assign set and executing 
it, with the constraint that in an infinite execution, 
each statement is picked infinitely often. This is the 
only notion of fairness - unconditional fairness - that 
is required in the selection of statements. 

We now describe the format and zveakesl precon- 
dition (wp) semantics of a multiple assigment state- 
ment as used in UNITY and a probabilistic assign- 
ment statement as used in our computational model. 

2.1 Deterministic Statements 

The only statement allowed in UNITY is the multiple 
assignment(MA). This can be informally presented 
as: 

MA :: 3: := e 

In general, r is a list of variables and e is a list of 
expressions. We restrict an expression to be a well- 
defined function of the state. Notice that this al- 
lows expressions to be defined by cases, provided that 
there is a unique, well-defined value for the expres- 
sion in each state. This is required to guarantee that 
every assignment statement is deterministic. The as- 
signment succeeds only if the numbers and types of 
variables match the corresponding expressions. 

Formally, the weakest precondition (wp) seman- 
tics of a conditional multiple assignment is clefined as 
follows. 

[wp .MA.X E {z := e}X] 

Theorem 1 The predicate transformer wp .MA is 
universally conjunctive. 

To prove the disjunctivity of wp .MA requires some 
more groundwork. We have to make use of the fact 
that the statement is deterministic. Using this, we 
can show that, 

Theorem 2 The predicate transformer wp .MA is 
universally disjunctive. 

2.2 Probabilistic Statements 

The only statement that we allow in our computa- 
tional model is the probabilistic assignment statement 
(PA). This can be informally presented as: 

PA :: ST := e.0 1 e.1 1 -+ - ( e.(k - 1) 

As in a multiple assignment statement, z is a list of 
variables and each e.i (0 < i A i < Ic) is a list of 
expressions. Again, the only restriction we impose is 
that the expression be a well-defined function of the 
state. 

A probabilistic assignment is executed as follows. 
A fair, k-sided coin is tossed. The outcome of the 
coin toss determines the list of expressions e.i to be 
assigned to the list of variables z. Thus a PA can 
give rise to one of k: different assignments. Each of 
these possible assignments will be called a mode of 
the PA. 

It is important to notice the following points about 
a probabilistic assignment statement. Firstly, we do 
not attach a probability value to a mode: we only re- 
quire that each mode have a non-zero probability of 
occurrence and that the sum of probabilities over all 
the modes equal one. Secondly, in the case of only one 
mode (JG = l), a probabilistic statement specializes 
to a deterministic statement as in UNITY. 

We now formalize the notion of fairness required 
in selecting the mode to be executed (or equivalently, 
the fairness required in tossing the coin). Let X be a 
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predicate over program variables. An execution, 0, is 
extremely-fuir zuifh respect to X if for all probabilistic 
statements PA, if PA is executed infinitely often from 
states of u satisfying X, then every mode of the PA 
is executed infinitely often from states of u satisfying 
X. 

An execution is extremely fair if it is extremely fair 
with respect to all first order expressible predicates 
X. 

In [Pnu83], Pnueli established that to prove that 
a property holds with probability one, it is sufficient 
to show that it holds over all extremely-fair execu- 
tions. Thus by assuming that the execution of the 
probabilistic statements is extremely fair in our com- 
putational model, we are assured by Pnueli’s result, 
that all properties hold with probability one. 

To recapitulate, our computational model requires 
two notions of fairness - unconditional fairness in the 
selection of statements to be executed and extreme 
fairness in the execution of a statement. 

Formally, the weakest precondition (wp) seman- 
tics of a probabilistic assignment statement is defined 
as: 

[wp .PA.X G (Vi : 0 5 i A i < k : {z := e.i}X)] 

We now investigate the junctivity properties of this 
predicate transformer. 

Theorem 3 The predicate transformer wp .PA is uni- 
versally conjunctive. 

Theorem 4 The predicate transformer wp .PA is or- 
continuous. 

Theorem 5 The predicate transformer wp .PA is not 
finitely disjunctive. 

Corollary 0 The predicate transformer wp .PA is 
truth-preserving. 

[wp .PA.true G true] 

Corollary 1 (Law of the Excluded Miracle) 

[wp .PA. f alse z false] 

3 Reasoning about Safety 

In this section, our aim is to define and develop a the- 
ory to reason about the safety properties of a proba- 
bilistic program. As emphasized in the introduction, 
we require safety properties to hold deterministically. 
Since a UNITY program is a special case of a prob- 
abilistic program, we would like the relation to be a 
generalization of UNITY relation for safety, namely, 

the unless. By doing so, we hope to draw on the 
extensive repertoire of theorems of unless that have 
already been discovered. 

In UNITY, the unless relation is defined as follows : 

(Vs :: [X A 1Y * wp .s.(X v Y)]) 
(X unless Y) 

For this definition of unless to satisfy the theory of 
unless as developed in UNITY, it is sufficient for the 
predicate transformer wp .s to meet the condition of 
universal conjuncbivity. That is, 

[(Vi :: wp .s.(X.i)) z wp .s.(Vi :: X.i)] 

By Theorem 3, the predicate transformer wp .PA 
is universally conjunctive and hence we can use the 
unless relation and its theory, as developed in UNITY 
to reason about the safety properties of probabilistic 
programs as well. 

4 UNITY and Progress: ensures 
and I+ 

Probabilistic programs could have progress proper- 
ties that hold deterministically. In this section, we 
extend the machinery of UNITY to prove determin- 
istic progress properties of probabilistic programs. 

Basic progress properties in UNITY are specified 
using the ensures relation. This is defined as 

(X unless Y) A (3s :: [X A -Y =$ wp .s.Y]) 
X ensures Y 

For this definition of ensures to satisfy the theory of 
ensures as developed in UNITY, it is sufficient for 
the predicate transformer wp .s to meet the following 
conditions. 

1. Law of the Excluded Miracle 

[wp .s. f alse z false] 

2. Finite conjunctivity 

[wp .s.X A wp .s.Y G wp .s.(X A Y)] 

By Corollary 1, the predicate transformer wp .s sat- 
isfies the Law of the Excluded Miracle for all the 
statements that we allow in our probabilistic pro- 
grams. By Theorem 3, it is universally conjunctive 
and hence is finitely conjunctive as well. Thus we 
can use the ensures relation and its theory as devel- 
oped in UNITY to reason about ensures properties 
of our programs. 
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General progress properties in UNITY are defined 
using the c, (read, leads to). The H relation is de- 
fined to be the strongest relation satisfying the fol- 
lowing three conditions. 

l Base Case : 

X ensures Y 
X-Y 

0 Transitivity : 

X-Y, Y-Z 
XHZ 

l Disjunctivity : For an arbitrary set W, 

(vx:XEW:X~Y) 
(3X:XEW:X)++Y 

The theorems about H in [CM881 depend on the 
properties of the unless, ensures and the definition 
of I+. We have shown that the properties of unless 
and ensures continue to hold even with the general 
probabilistic statements of our computational model. 
Thus retaining the UNITY definition of I+, we can 
use the theory developed in [CM881 to reason about 
the deterministic progress properties in our compu- 
tational model. 

The theory of unless relation is sufficient to rea- 
son about safety properties of probabilistic programs. 
However the notions of ensures and ti are inade- 
quate to reason about progress properties that hold 
with probability 1. They can be used to prove progress 
properties that have nothing to do with probabili- 
ties.That is, there exist programs for which X Ift Y 
but X leads-to Y with probability one. This is illus- 
trated by the first example in Section 10. 

In the next three sections, we show how each of the 
unless, ensures and H can be generalized to reason 
effectively about properties that hold with probability 
1. 

5 The weakest probabilistic pre- 
condition 

The predicate transformer wp allowed us to define 
safety properties of probabilistic programs. For defin- 
ing progress properties, it turns out that wp .s is too 
restrictive. Intuitively, wp,.PA requires all modes 
of the probabilistic statement PA to behave in the 
same manner, whereas for progress, it is enough if 
there ezists a single helpful mode that establishes a 
desired property. This weaker notion is nicely cap- 
tured by the predicate transformer wpp (read, the 

weakest probabilistic precondition). 

The predicate transformer wpp is defined as follows 

[wpp.PA.X E (3 : 0 5 i A i < k : {x := e.i}X)] 

Note that for a deterministic statement s (that is, a 
statement with a single mode), the wpp .s is the same 
as wp.s. The only difference between wp .PA and 
wpp PA is in the presence of an existential quantifier 
in place of a universal one. In this sense, wpp .PA is 
the dual of wp .PA and this is reflected in its prop- 
erties. 

Theorem 6 The predicate transformer wpp .PA is 
and-continuous. 

Theorem 7 The predicate transformer wpp .PA is 
not finitely conjunctive. 

Theorem 8 The predicate transformer wpp .PA is 
universally disjunctive. 

Corollary 2 The predicate transformer wpp .PA is 
truth preserving. 

[wpp .s.true E true] 

Corollary 3 The predicate transformer wpp .PA is 
strict. 

[wpp .s. f alse E false] 

Remark: In introducing the notion of the weakest 
precondition, Dijkstra defines wp .s.X as characteriz- 
ing all possible states, such that ifs is executed from 
a state satisfying wp.s.X, then the execution of s 
terminates in a state in which X is true. 

The predicate transformer wpp .s.X considered 
along with the notion of extreme fairness generalizes 
this idea. It characterizes all possible states such that 
ifs is executed infinitely often from a state satisfy- 
ing wpp.s.X, then infinitely often the execution of 
s terminates in a state in which X is true. (End of 
Remark) 

6 Relating wp and wpp 

Jn this section, we present theorems relating the pred- 
icate transformers wp and wpp. 

Theorem 9 For all statements s, 

[wp .s.x * wpp .s.X] 
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Theorem 10 For all statements s, 

[wp .s.X A wpp .s.Y 3 wpp .s.(X A Y)] 

Theorem I1 For all statements s, 

[wp .s.(X v Y) * wp .s.x v wpp .s.Y] 

7 Reasoning about Progress 

In this section, we develop a relation to reason about 
progress with probability one. The predicate trans- 
former, wpp allows us to generalize the UNITY re- 
lations unless to upto and ensures to entails. We 
then introduce the u (read, prompts), as the reflex- 
ive, transitive closure of entails. These relations pro- 
vide the basis for defining b - the probabilistic ana- 
log of the H. 

7.1 upto 

We begin by generalizing the relation unless. Con- 
sider the definition of unless. 

(Vs :: [X A -Y * wp .s.(X v Y)]) 
X unless Y 

We use Theorem 11 to weaken this definition to ob- 
tain the definition of upto. 

(Vs :: [X A -Y * wp .s.x v wpp .s.Y]) 
x upto Y 

Intuitively, X upto Y captures the following idea : 
If X holds at any point during the execution of a 
program, then either 

1. Y never holds and X continues to hold forever, 
or 

2. Y holds eventually (it may hold initially when 
X holds) and X continues to hold unti1 Y holds, 
or 

3. X continues to hold until -X holds eventually; 
the transition from X to -JX being made by a 
statement that could have taken it to a state 
satisfying Y. 

The interesting (third) case arises when a probabilis- 
tic statement PA is executed in a state satisfying 
X A -Y. Suppose not all modes of the PA when ex- 
ecuted lead to a state satisfying X and furthermore 
there exists a mode which will take it to a state sat- 
isfying Y. Since there are no guarantees on which 
mode will be executed, execution of PA can lead to a 

state satisfying TX, even though there exists a mode 
that can take it to Y. 

One of the consequences of this definition is that 
in general upto includes unless and if all statements 
are deterministic (i.e. multiple assignments) the def- 
inition of upto reduces to unless. 

Theorem 12 The upto is a generalization ofunless. 

(X unless Y) * (X upto Y) 

Furthermore for a program consisting of only deter- 
ministic statements, 

(X udess Y) E (X upto Y) 

The relation upto is weaker than unless and accord- 
ingly it enjoys a smaller set of properties. 

1. Reflexivity and Anti-Reflexivity : 

x upto x 

x upto 1x 

2. Consequence Weakening : 

XuptoY,Y*Z 

x upto 2 

3. Partial Conjunction : 

x upto Y, 
X’ upto Y’ 

(X A X’) upto ((X’ A Y) v Y’) 

4. Simple Conjunction and Simple Disjunction : 

x upto Y 
X’ upto Y’ 

(X A X’) upto (Y V Y’) , simple conjunction 
(X V X’) upto (Y V Y’) , simpledisjunction 

5. Conjunction with unless : 

X unless Y 
X’ upto Y’ 

(X A X’) upto (X A Y’) V (x’ A Y) V (I’- A I”) 

Many of the properties of unless are not inherited by 
upto. In particular, conjunction, disjunction, general 
conjunction and general disjunction [CM881 do not 
hold for upto. Furthermore the rule of cancellation 

x upto Y, 
Y upto 2 

(X v Y) upto z 

does not hold for upto. This is not a problem as 
upto is almost never used for specifications; its utility 
lies in defining operators for progress. There will be 
few manipulations involving upto. 
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7.2 entails 

We propose a new relation entails to generalize ensures. 
Consider the definition of ensures. 

(X unless Y) A (3s :: [X A -Y +- wp .s.Y]) 
X ensures Y 

We use Theorem 9 to weaken this definition to obtain 
the definition of entails. 

(X upto Y) A (3s :: [X A 1Y 3 wpp .s.YJ) 
X entails Y 

The intuitive meaning of (X entails Y) is that if X 
is infinitely often true in a computation, then Y is 
infinitely often true. The claim that Y is infinitely 
often true is justified as follows. Let an X-state be a 
state satisfying predicate X. Suppose X A -Y holds 
at some point in the execution of the program. By 
the first conjunct the only way a program can reach 
a -X-state, is to execute a statement that may lead 
to a Y-state. Note that the second conjunct assures 
us of the existence of such a statement s which has 
a mode, whose execution in a (X A TY)-state, would 
lead to a Y-state. By unconditional fairness, s must 
be executed, causing the program to transit to a TX- 
state. If X is infinitely often true then each time the 
transition from an X-state to a -X-state is made, it is 
done by executing a statement whose execution could 
have resulted in a Y-state. From the finiteness of the 
set of statements, some statement t whose execution 
could have lead to a Y-state is executed infinitely 
often from X-states. By extreme fairness, every mode 
of t is executed infinitely often from X-states. In 
particular, the mode leading to a Y-state is executed 
infinitely often. It follows that Y is infinitely often 
true. 

The ideas introduced in our computational model 
- unconditional fairness and extreme fairness - were 
all intended to justify this definition of the entails re- 
lation. The relation entails plays an important role 
in the design of probabilistic programs. Besides be- 
ing the keystone of the proof theory of progress prop- 
erties, it has a methodological significance as well. 
In extracting a program from a specification, each 
entails property can usually be translated to a sin- 
gle probabilistic statement. This will be illustrated 
by an example in a later section. 

Theorem 13 The entails generalizes ensures 

(X ensures Y) $ (X entails Y) 

Furthermore for a program consisting only of deter- 
ministic statements, 

(X ensures Y) S (X entails Y) 

Since entails is a generalization of ensures, it enjoys 
a smaller set of properties. 

1. Reflexivity : 

X entails X 

2. Consequence Weakening : 

X entails Y, Y * 2 
X entails 2 

3. Impossibility : 

X entails false 
1X 

4. Conjunction with unless : 

X entails Y 
X’ unless Y’ 

(X A X’) entails (X A Y’) V (X’ A Y) V (Y A Y’) 

5. Conjunction with upto : 

X entails Y 
X’ upto Y’ 

(X A X’) entails (X’ A Y) V Y’ 

6. Disjunction : 

X entails Y 
(XV 2) entails (Y V 2) 

Of all the properties of ensures, the conjunction rule 
[CM88], does not hold for entaiIs. 

7.3 The relation - 

The relation entails is tied closely to the program. 
We abstract from this by defining the relation Q 
(read, prompts) to be the reflexive, transitive closure 
of entails. 

l Base Case : 

(X entails Y) 

(X-Y) 

l Transitivity : 

X-Y, Y-Z 
x-z 

The definition of Q satisfies the following properties. 
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1. Implication : 

2. Impossibility : 

X*Y 
X-Y 

X -4 false 
-X 

3. Disjunction : 

(X-Y) 
(XVZ)-(YVZ) 

4. Finite Disjunction : 

5. Cancellation : 

u-vvw, w-x 
u-vvx 

6. PSP (Progress-Safety-Progress) : 

X w Y, U unless V 

7. Completion : 
For any finite set of predicates, X.i, Y.i, 0 5 
i < N: 

(Vi :: x.i - Y.i v 2) 
(Vi :: Y.i unless 2) 

(Ai :: Xi) - (Ai :: Y.i) v 2 

7.4 Probabilistic Leads-to: b 

In this paper, we shall express all probabilistic progress 
properties using the b (read, probabilislic leads-to). 
A program has the property X b Y if once X be- 
comes true, Y will become true with probability one. 
The b is defined to be the strongest relation satis- 
fying 

l 

. 

the following three axioms. 

Base Case : 

X unless Y, X w Y 

xl-y 

Transitivity : 

XI-Y, yl-2 
xl-2 

l Disjunctivity : For an arbitrary set W, 

According to the first axiom, if X is true at any point 
in the execution of a program, by X unless Y it re- 
mains true indefinitely or,until Y becomes true. In 
the former case, X is infinitely often true and by 
X ti Y, Y is infinitely often true. In either case, 
Y becomes true. The second axiom ensures that b 
is transitively closed and the third axiom ensures that 
h is disjunctively closed. 

Probabilistic leads-to is a generalization of the UNITY 
leads-to. That is, 

Theorem 14 (X wy)*(xl-y) 

The probabilistic leads-to (b) enjoys 
properties of H. 

1. 

2. 

3. 

4. 

5. 

6. 

Implication : 
X*Y 

x+y 

Impossibility : 

X b false 
1X 

General Disjunction : 

(Vm : m E w : X.m b 

many of the 

Y.m) 
(3m : m E W : X.m) C-, (3m : m E W : Y.m) 

Cancellation : 

u+wvw, w+Fx 
u+wvx 

PSP (Progress-Safety-Progress) : 

X +s Y, U unless V 
(XAU)~(YAU)VV 

Completion : 
For any finite set of predicates, X.i, Y.i, 0 5 
i -e N: 

(Vi :: X.i +$ Y.i V 2) 
(Vi :: Y.i unless 2) 

(Ai :: X.i) b (Ai :: Y.i) V 2 
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8 An Induction Principle for 
Probabilistic Leads-to 

An interesting property of b is its transitivity; and 
one can use this to formulate a principle of induction 
over well-founded sets. 
Let (W, 4) be a well-founded set. Let M be a metric 
mapping the states of the program to W. Then the 
induction principle states 

xl=+y 

Intuitively, the hypothesis of the induction principle 
states that from any program state in which X holds, 
execution of the program leads to a state in which 
either Y is true or the value of the metric is decreased. 
Since the range of the metric is a well-founded set, the 
metric cannot decrease indefinitely. It follows that a 
state satisfying Y is attained. 

9 Substitution Axiom 

The substitution axiom has been introduced in UNITY 
as a generalization of Leibniz’s principle of substitu- 
tion of equals for equals. Informally, if 2 = y, then 
z can be substituted for y in all program properties. 
Of particular importance is the case where a program 
invariant I can be substituted by true and vice versa. 
This is because [I - true]. 

The importance of the substitution axiom is twofold. 
Firstly, it is necessary for the completeness of our 
proof system. Secondly, it allows us to abbreviate 
cumbersome notation. 

10 On program composition 

We use the same notions of program composition as 
UNITY, namely, union and superposition. 

10.1 Composition by union 

The union of two programs is the union of the sets 
of statements in the assign sections of the two pro- 
grams. The union of programs F and G is written 
as F 0 G. Like set union, it is a symmetric and 
associative operator. We assume that there are no 
inconsistencies in the declarations and initializations 
of the variables in the two programs. 
The study of program composition by union is fa- 
cilitated by the the union theorem. An important 
condition on all cases of the theorem is that any ap- 
plication of the substitution axiom in the proof of a 

property of either the component or the composite 
program can only use an invariant of the composite 
program. 

Theorem 15 Union Theorem: 

l (X unless Y in F A X unless Y in G) F 
(X unless Y in F 0 G) 

l (X ensures Y in F A X unless Y’ in G) V 
(X unless Y in F A X ensures Y in G) 

E (X ensures Y in F 0 G) 

l (X upto Y in F A X upto Y in G) - 
(XuptoY in F 0 G) 

l (X entails Y in F A X upto Y in G) V 
(X upto Y in F A X entails Y in G) 

3 (X entails Y in F 0 G) 

l (X entails Y in F A X unless Y in G) V 
(X unless Y in F A X entails Y in G) 
j (X entails Y in F 0 G) 

10.2 Conditional Properties 

The union theorem illustrates that basic progress prop- 
erties compose, that is, the property holds of the com- 
posite program if its holds of the components. This 
is not the case with LC*, H and +. 

To address this shortcoming, we resort to condi- 
tional properties as in UNITY. All program proper- 
ties seen thusfar have been expressed using one or 
more relations - unless, ensures, upto, entails; 
these properties are called unconditional properties. 
A conditional property has two parts - a hypothe- 
sis and a conclusion, each of which is a set of un- 
conditional properties. Both the hypothesis and the 
conclusion can be properties of the F, G or F jj G, 
where G is a generic program. The meaning of a con- 
ditional property is as follows : Given the hypothesis 
as a permise, the conclusion can be proven from the 
text or specification of F. Thus in proving proper- 
ties, a conditional property is used as an inference 
rule. The interested reader is referred to [CM881 for 
further elucidation. 

10.3 Superposition 

The second structuring operator that we employ in 
our proofs is the superposition operator. This is ex- 
actly the same operator as in UNITY. We recapitu- 
late the salient details. 

Unlike program union, program superposition is 
an asymmetric operator. Given an underlying pro- 
gram (whose variables will be called underlying vari- 
ables), superposition allows it to be transformed by 
the application of the following two rules. 
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Augmentation Rule. A statement s in the un- 
derlying program may be transformed to the 
statement ~11~ where r is a statement that does 
not assign to the underlying variables and is ex- 
ecuted in synchrony with s. 

Restricted Union Rule. A statement r may be 
added to the underlying program provided that 
r does not assign to the underlying variables. 

By adhering to the discipline of superposition, it is 
ensured that every property of the underlying pro- 
gram is a property of the transformed program. This 
is also called the superposition theorem. 

11 Comments on Soundness and 
Completeness 

In [Pnu83], Pnueli presents a theorem that shows that 
every property that holds of all extremely fair execu- 
tions holds with probability 1 for the program. In our 
computational model, all executions are extremely 
fair. Any property that we prove in our computa- 
tional model, holds for all such executions and thus 
holds with probability 1. 

In this section, we informally argue that our logic 
is complete for finite state programs. By the results 
of [HSP83], if a property that expresses reachability 
holds with probability 1 for a finite state program, it 
induces a decomposition on the (finite) set of states 
that can be visited before the goal states are reached. 
Each partition of this decomposition satisfies certain 
conditions. These conditions guarantee that in any 
unconditionally fair and extremely fair computation 
the property is attained. This shows that our model is 
sound and complete for proving properties that hold 
with probability 1 of finite state programs. 

Let C be the set of states of the program. Let s be 
an initial state and let X(X C C) be the set of final 
states of the program, with s @ X. Define f as the 
set of all states that can be reached (with a non-zero 
probability) from s before a state in X is reached, 
using any finite sequence of processes. I” includes s 
and is disjoint from X. Furthermore, let K be the 
set of processes of the program and let p/J be the 
probability of process k taking the system fkom state 
i to any state in set J. One of the main results of 
[HSP83] is that assuming s, X, C and f as above and 
assuming f is finite, the following two conditions are 
equivalent. 

l There exists a decomposition of f into disjoint 
sets 1r,1~, . . ., I,,, such that, if we put Jm = 

U~!-J,, m = 0, 1, . . . ,n, with 1s = X, then 
foreachm = 1,2,..., n we have the following: 

- For each i E I,,,, k E K, if PtJm-, = 0, 

then PtIm = 1. 

- There exists k E k(m) E K such that, for 
each i E Im, PilfjtiSl > 0 

The first part of the second condition says that if 
process k can transfer the system from a state in Irn to 
a state outside I,,, , then some k-transitions (with non- 
zero probability) move the system “down” the chain 
{Ir}, towards the goal 100; the second part ensures the 
existence of at least one process that would do this 
for all states in 1,. 

Thus given that some progress property holds in 
a model with probability one, we are guaranteed that 
the chain {L} exists. Clearly, i unless 10 holds by 
the definition of f and unless. For each element of 
the chain, we can show Iv entails Jr-l. By using 
transitivity of Q we can show, I,4 le. Using finite 
disjunction property of *, one can conclude that 1~ 
I,-,. The proof follows from the unless property, the 
-W property and the definition of b. 

12 Examples 

Note that in all examples if a common boolean guard 
applies to all the modes of a probabilistic assignment, 
it has been pulled out and written once. This has 
been done in the interests of brevity. 

Example 0: (An Unintuitive Example) 

To show how unintuitive, reasoning about probabilis- 
tic algorithms can be, consider the following program. 

declare 2, y : (heads, tails) 
assign x := heads 1 tails 

0 Y := heads 1 tails 
end 

It can be shown that the property 

true b (z = heads) A (y = heads) 

does not hold for the given program. This is because 
it is possible for the execution of the program to be 
unconditionally fair with respect to the selection of 
the coin to be tossed and extremely fair in the toss- 
ing of the coins, without reaching a state in which 
both coins turn up heads. Abbreviating heads by H 
and tails by T, consider the following segment u of 
state transformations: (the state is denoted by the 
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ordered pair giving the values of E and y). 

(H, r> z:=zds tH, rl c:=ta!‘ls tT, rj y:=toils 

(T, T) y:==ds cT, Hj y:==ds 

The sequence ~7 iterated indefinitely gives an execu- 
tion sequence which is uncondi1ionally fair and ex- 
fremely fair, One way of ensuring that a state satis- 
fying [(z = heads) A (y = heads)] is reached is to use 
extreme fairness in the scheduling of the statements, 
rather than unconditional fairness, as illustrated by 
the program below. This also illustrates the power of 
extreme fairness over unconditional fairness. 

declare x’Y:(fw) 
assign X’Y := H)H 1 H)TJ T)HJT)T 
end 

(End of Example) 

Example 1: (From [Pnu83]) 

Consider the UNITY program : 

declare b : integer 
init ially b=O 
assign b:=b+l if (bmod3) 5 1 

0 b:=b+2 if (bmod3) 5 1 
end 

For this program, it is not the case that 

true w (bmod3 = 2) 

Consider the execution sequence in which the two 
statements are alternately executed, leading tg the 
following sequence of values for b: 

0, 1, 3, 4, 6, 7, . . . 

This execution sequence is unconditionally fair with 
respect to the two statements but no state of the ex- 
ecution satisfies (bmod3 = 2). Thus the program 
does not satisfy the progress property deterministi- 
caliy. 

Now consider the probabilistic program. 

declare b : integer 
init ially b=O 
assign b:=b+lIb+2 if (bmod3) 5 1 
end 

We show that the required property is achieved 
with probability one, that is 

true b (b mod 3 = 2) 

By applying the definition of wpp .s it can be shown 
that 

= 

= 

0. 

1. 

2. 

3. 

4. 

wpp .i.(( b mod 3) = 2)] evaluates to true. Thus 

(3s :: [true A -(b mod 3 = 2) 
a wpp .s.((b mod 3) = 2)]) 

{predicate calculus} 
[-(b mod 3 = 2) =+- true] 
{predicate calculus) 
true 

(3s :: [true A l(bmod3 = 2) G- 
wpp .s.(bmod3 = 2)]) 

,From above 
true upto (b mod 3 = 2) 

,Tautology for upto 
true entails (b mod 3 = 2) 

,From 0, 1 and the definition of entails 
true unless (b mod 3 = 2) 

,Tautology for unless 
true b (b mod 3 = 2) 

,From 2,3 and the definition of b 

(End of Example) 

Example 2: (Random walk4 problems) 

At any instant of time a particle inhabits one of the 
integer points of the real line. At time 0, it starts 
at the specified point and at each subsequent, “clock- 
tick”, it moves from its current position to the new 
position according to the following rule: with proba- 
bility p it moves one step to the right, and with prob- 
ability q = 1 - p, it moves one step to the left; the 
moves are independent of each other. 

For the random walk problem with no barriers on 
the real line, it is possible to show that the particle 
returns to 0 with probability one only if p = q. This 
is also called the symmetric random walk problem. 
Although this property holds with probability one, it 
is not possible to prove it in our proof system. This 
is because the property depends on the values of the 
probabilities of the transition, i.e. p = q. 

There are a class of random walk problems whose 
progress properties are independent of the values of 
the probabilities of the transition. As our first ex- 
ample, we consider random walk with two absorbing 
barriers at, 0 and M. This means that that the in- 
stant, the particle reaches a barrier it is trapped. The 

‘In general, random walks can be in many dimensions and 
the step size can be arbitrary. For ease of exposition we restrict 
oursehes to one dimension and a step size of 1. 
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movement of the particle is modelled by the following 
program. 

declare x: [O...M] 
assign z:=z-1(z+l if (O<zA2:<M) 
end 

For this program we prove that 

true b (x = 0) V (z = M) 

We assume, without proof, that 

invariant (0 2 z) A (z < M) 

Assume that the range of k is given by 0 < kr\ k < M. 

0. (Vk :: (z = k) entails (z = k - 1)) 
,From the program text 

1. (Vk :: (z = k) w (z = 0)) 
,Transitivity of v 

2. (3k :: (z = k)) w (z = 0) 
,Finite disjunction for v 

3. (3k :: (z = k)) w (z = M) 
,Proof similiar to 2 

4. (Elk :: (x = k)) - (z = 0) V (z = M) 
,Finite Disjunction using 2 and 3 

5. (x=O)V(x=M)-(x=O)V(z=M) 
,Implication for cr* 

6. (3k :: (x = k)) v (z = 0) V (z = M) 
cr+ (2 = 0) v (x = M) 

,Disjunction of 4 and 5 
7. true - (x = 0) v (x = M) 

,predicate calculus and substitution axiom 
,using invariant above 

8. true unless (x = 0) V (z = M) 
,Tautology for unless 

9. true b (x = 0) V (z = M) 
,From 7, 8 and the definition of w 

As our second example iIlustrating random walk, con- 
sider two reflecting barriers to be placed at 0 and M. 
This means that when the particle reaches the bar- 
rier at 0 (or M) it bounces back to 1 (or M - 1) 
with probability one. The movement of the particle 
is modelled by the following program. 
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declare t: [O-M] 
assign z:=t-llz+l if (O<zr\z<M) 

0 2:=1 if (z=O) 
0 r:=M-1 if (z=M) 

end 

For this program, it is easy to show that 

invariant (0 5 2~) A (LT < M) 

The range of k is assumed to be 0 < k A k 2 M. We 
show that 

true b (z = 0) 

0. (Vk :: (z = k) entails (zc = k - 1)) 
,From program text 

1. (Vk :: (z = k) cr, (z = 0)) 
,Transitivity of u 

2. (3k :: (z = k)) LCA (z = 0) 
,Finite Disjunction of ‘u 

3. true Q (z = 0) 
,predicate calculus and substitution axiom 
,using the invariant above 

4. true unless (z = 0) 
,Tautology for unless 

5. true b (3~ = 0) 
, From 3,4 and the definition of b 

As our third example we consider the case of an ab- 
sorbing barrier at 0 and a reflecting barrier at M. The 
movement of the particle would be modelled by the 
following program. 

declare t: [O...M] 
assign X*-X- .- lltfl if (O<zAx<M) 

0 t:=M-1 if (z=M) 
end 

For this program, we assume, without proof, that 

invariant (0 5 z) A (x < M) 

The range of k is assumed to be 0 < k A k 5 M. We 
show that 

true w (z = 0) 

0. (Vk :: (z = k) entails (z = k - 1)) 
,From program text 

1. (Vk :: (z = k) v (z = 0)) 
,Transitivity of Q 

2. (3k :: (ST = k)) cc* (z = 0) 
,Finite Disjunction of cu 

3. (x = 0) - (x = 0) 
,Implication Rule of cu 

4. (3k :: (CC = k)) v (z = 0) ti (z = 0) 
,Finite Disjunction using 2 and 3 

5. true cr, (z = 0) 
,predicate calculus and substitution axiom 
,using the invariant above 

6. true unless (z = 0) 
,Tautology for unless 

7. true +S (z = 0) 
7 From 5,6 and the definition of b 

(End of Example) 

Example 3: (Two process mutual exclusion) 

In this example, we give a brief overview of specifi- 
cation refinement. The example is designed to give a 
flavor of proof machinery at work. 



Specifically, we consider the problem of mutual ex- 
clusion between two processes - u, V. Each process 
u has a variable u.dine, which can take one of three 
values t, h or e, corresponding to thinking, hungry 
or eating. We abbreviate by u-t, u.h and u.e, the ex- 
pressions u.dine = t, u.dine = h and u.dine = e 
respectively. We assume that every thinking pro- 
cess eventually becomes hungry. A hungry process 
remains hungry till it eats. An eating process eats 
for a finite time and then transits to thinking. 

Specification of Program mute32 

(04 invariant -(u.e A v.e A u # v) 

(9 u.h t=~ 2r.e 

Properties of mutez 

PO) u.h unless 21.e 

Pl) u.t - u.h 

Our first refinement will consist of the introduc- 
tion of a twosided coin that can take on values u and 
TI such that if the process u is eating then the coin 
has the value u 

Specification 1 : 

(la) invariant (u.e 3 coin = u) 

(lb) u.h b we 

It is easy to show that (la) =+ (Oa). Our next 
refinement is to ensure that the progress property is 
met. We propose that if a process u is hungry and if 
the coin has value u then the process be allowed to en- 
ter the critical section. To avoid starvation, we need 
to ensure that the coin eventually takes the value of 
every process. Thus our next specification reads: 

Specification 2 : 

invariant (u.e * coin = u) 
u.h A (coin = u) H u.e 
coin = u + coin = v 

We show that specification 2 implies specification 
1. 

0. (coin = v) b (coin = u) 
,From 2c 

1. u.h unless u.e 
,Property DO of mutez 

2. (u.h A coin = v) b (u.h A coin = u) V u.e 
,PSP Theorem on 0 and 1 

3. (u.h A coin = v) b u.e 
,Cancellation on 2 and 2b 

4. u.h b u.e 
,Disjunction on 3 and 2b 

To implement the progress properties of Specification 
2, we propose the following refinement. 

Specification 3 : 

(34 invariant (u.e * coin = u) 

[ib) 
u.h A (coin = u) ensures u.e 

C u.e entails coin = 21 

We show that specification 3 implies specification 2. 

0. (coin = U) unless (coin = v) 
,Tautology for unless 

1. u.t -+u.h 
,Property Dl and 3a 

2. (u-t A coin = u) -A (u.h A coin = u) V (coin = v) 
,PSP on 0 and 1 

3. u.h A (coin = u) entails u.e 
,Generalizing ensures in 3b to entails 

4. u.e A (coin = u) entails (coin = v) 
,From 3a and 3c 

5. (coin = u) - (coin = v) 
,Properties of Q on 2, 3, 4 

6. (coin = u) b (coin = v) 
,From 0, 5 and definition of b 

The final specification suggests the following program. 

declare coin : (u, v) 

initially u.dine, v-dine := t, t 

assign 

( 0 x : x E (u, v) : 
u.dine := h if u.t 
u-dine := e if u.hh (coin = u) 
u-dine, coin := t,u 1 t, v if u.e 

> 
end 

(End of Example) 
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