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Abstract 

This paper presents a type system for logic programs 
that supports parametric polymorphism and subtypes. 
This system follows most knowledge representation and 
object-oriented schemes in that subtyping is name- 
based, i.e., +i is considered to be a subtype of 72 iff it is 
declared as such. We take this as a fundamental prin- 
ciple in the sense that type declarations have the form 
of subtype constraints. Types are assigned meaning by 
viewing such constraints as Horn clauses that, together 
with a few basic axioms, define a subtype predicate. 
This technique provides a (least) model for types and, 
at the same time, a sound and complete proof system 
for deriving subtypes. Using this proof system, we de- 
fine well-typedness conditions which ensure that a logic 
program/query respects a set of predicate types. We 
prove that these conditions are consistent in the sense 
that every atom of every resolvent produced during the 
execution of a well-typed program is consistent with its 

type. 

1 Introduction 

Type systems for logic programming languages may 
be generally classified as being either descriptive or 
prescriptive. In a descriptive system [Mis84, MR85, 
Red88, Zob87], types are automatically inferred by 
the compiler. The goal here is to derive safe upper 
bounds on the success set of predicates for the pur- 
poses of program optimisation. In 8 prescriptive sys- 
tem [MO84, YS87, DH88], on the other hand, types are 
explicitly declared by the programmer. The goal here, 
as in most conventional type systems, is to restrict the 
allowable usage of predicates for the purposes of secu- 
rity, documentation, and optimization. In all of the ref- 
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erences above, types appear only at compile-time and 
standard Prolog-like computation mechanisms may be 
used. In contrast, there are also prescriptive sys- 
tems where the underlying computation mechanisms 
are extended to support some form of typed unifica- 
tion [GM86, AKN86, Smo88]. 

This paper presents a prescriptive type system for 
logic programs, along the lines of [MO84], that sup 
ports parametric polymorphism and subtypes. This 
system follows most knowledge representation and 
object-oriented schemes in that subtyping is name- 
based, i.e., 71 is considered to be a subtype of 3 iff 
it is declared as such. We take this as a fimdamen- 
tal principle in the sense that type declerstions have 
the form of subtype constraints. As an example, the 
declarations 

FIJK 0, succ , pred. 
TYPE nat, unnat, int. 

Il8t >= 0 + rucc(n8t). 
unnat >= 0 + pred(unnat). 
int >= nat + ummt. 

introduce a type int with subtypes nat and unaat 8nd 
elements 0, succ (01, pred( 0)) succ (succ (0) ) , etc. 
Here, the function symbols 0, succ, and pred have 
fixed interpretations as type constructors and the poly- 
morphic type constructor + is predefined as follows. 

TYPE +. 
A+B >= A. 
A+B >= B. 

As a further example, the declarations 

Fmc nil, cons. 
TYPE elist, nelist, list. 

elist >= nil. 
nolist >= cons(A,list(A)). 
list(A) >= elist + nelist(A) . 

introduce a polymorphic type list (A) with subtypes 
elimt and nelist(A). epes are assigned meaning 
by viewing such declarations as Horn clauses that, to- 
gether with a few basic axioms, define a subtype pred- 
icate >=. This technique provides a (least) model for 
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types and, at the same time, a sound and complete 
proof system for deriving subtypes. 

In our type system, predicate types are used to re- 
strict the allowable usage of predicates. For example, 
the declaration 

PRED app(list(A),list(A) ,liat(A)). 
appbil,L,L). 
app(cons(X,L),M,cons(X,H)) :- app(L,M,I). 

restricts the usage of the append predicate app to lists; 
note that this rules out certain successful queries, such 
as :- app(nil,O,O). We define well-typedness con- 
ditions which ensure that a program respects a set of 
predicate types; programs that are not well-typed are 
expected to be rejected by the type checker. We prove 
that these conditions are consistent in the sense that 
every atom of every resolvent produced during the ex- 
ecution of a well-typed program is consistent with its 

type. 
Our type system is considerably more expressive 

than previous proposals of this nature, in particular, it 
supports the notion of non-uniform polymorphic types. 
As an example, given types males and females, the 
declaration 

FUNC m, f. 
TYPE id. 

id(males) >= m(nat) . 
id(f emales) >= f (nat) . 

introduces a non-uniform polymorphic type id. This 
type models the idea that a variety of different things 
have id numbers, e.g., we might work with the type 
id(vehicles) of id numbers for vehicles in some par- 
ticular circumstance. Continuing with this example, 
given the declaration 

TYPE person. 
person >= male + female. 

the type id(person) contains the elements of 
id(males) and id(f emales). This paper assigns 
meaning to all types, however, for simplicity, our well- 
typedness conditions are defined only for uniform poly- 
morphic types. 

This paper is organized as follows. Section 2 intro- 
duces types and type declarations. Section 3 devel- 
ops a deterministic strategy for deriving subtypes given 
certain syntactic restrictions on type declarations, no- 
tably, that they are uniform polymorphic. Section 4 
uses this strategy to define a function match that forms 
the basis of our well-typedness conditions. match re- 
turns a most general typing for the variables of a given 
term under a given type, if such a typing exists. The 
correctness of match is proven. Section 5 introduces 
predicate types and informally discusses type checking. 
Section 6 presents the conditions under which a pro- 

gram/query is considered to be well-typed and proves 
their consistency. 

2 Types and Type Declarations 

Let the following disjoint sets of symbols be given. 

l V of variables 

l F of function symbols with given arity 

a T of type constructor symbols with given arity 

A term over a set of symbols S is either a variable or 

a symbol u/n E S applied to n terms over S. Here, 
and at several other points in this paper, we abuse the 
notation slightly by treating 0-ary symbols as if they 
were arbitrary n-ary symbols. The Herbrand Universe 
7t consists of the set of all ground terms over F. 

Definition 1 (Syntax of Types) A type T E Type 
is a term over F U T. 

Intuitively, a type represents some subset of 3t over 
which computation takes place. Function symbols 
f/n E F have a fixed interpretation as type construc- 
tors: the type f (71,. . . , TV) represents the set of all 
ground terms f (tlr . . . , tn) where ti has type ~6. Type 
symbols are defined by subtype constraints of the fol- 
lowing form. 

Definition 2 (Syntax of Subtype Constraints) 
A avbtype con&&t for c/n E T has the form 

C(Tl, . . . , Tn) >= 7 

where 71, . . . , T, and r are types such that 

V=(T) 5 V-&i, . - . , Tn)) 

We define the semantics of types under a given set 
C of subtype constraints in terms of a set lit of Horn 
clauses for an infix predicate >=. The set EC contains 
each constraint in C as a t&t, a substitution axiom 

8(%,-**, a,)>=s(& ,...) pJ :-al>=& ,...) &&>=p,. 

for each a/n E F U T, including the degenerate case 

u>=u. 

where n = 0, and the transitivity axiom 

A >= C :- A >= B, B >= C. 

We define the notion of subtype in terms of the stan- 
dard notion of SLD-resolution, e.g., see [Apt88]. Note 
that this does not imply that we intend to directly exe- 
cute type declarations in a Prolog-like manner. Rather, 
it simply gives us a convenient model for types together 
with a sound and complete proof system for deriving 
subtypes. 

Definition S (Subtypes) !Qpe ~1 has subtype PJ un- 
der a set C of subtype constnrints, denoted Tl k-c 71, 

iff there ezists an SLD-refutation of HcU{ : - ~1 ?= 73). 

166 



The semantics of types is given by the following func- 
tion MC : Type ---) P(7f). 

Definition 4 (Semantics of Types) 
M&l = {t E 3c(s kc t} 

As an example, given that C consists of the declara- 
tions appearing in the introduction, the following SLD- 
refutation shows that cons(foo,nil) E Mc[list(A)]. 

.- . 

.- . 
:- 
.- . 

.- . 

.- . 

.- . 

.- . 

.- . 

.- . 

.- . 

.- . 

.- . 

.- . 

list(A) >= cons(foo,nil). 
list(A) >= Bl, Bl >= cons(foo,nil). 
elist + nelist(A) >= cons(foo,nil). 
elist + nelist(A) >= 83, 

B3 >= cons(foo,nil). 
nelist(A) >= cons(foo,nil). 
nelist(A) >= B3, B3 >= cons(foo,nil). 
cons(A,list(A)) >= cons(foo,nil). 
A >= foe, list(A) >= nil. 
list(fo0) >= nil. 
list(foo) >= B4, B4 >= nil. 
elist + nelist(fo0) >= nil. 
elist + nelist(foo) >= B6, 86 >= nil. 
elist >= nil. 
. 

rl 2~ n is an existentially quantified statement 
about subtypes: by the soundness and completeness 
of SLD-resolution, rl kc 72 iff there exists a substitu- 
tion 8 such that (q>=~)8 is a semantic consequence 
of EC. We are also interested in universally quantified 
statements about subtypes. In particular, we view 71 
as being a more general type than n iff there exists a 
0 such that T18>= r2 is a semantic consequence of EC; 
recall that free variables in a logical sentence are im- 
plicitly universally quantified. For example, list (A) 
is more general than nelist(int) but list(int) is 
not more general than nelist(A). Such formulas can 
be derived as follows. Let 7 be 7 with each variable 
replaced by a unique constant not appearing in any 

type. 

Definition 5 (More General Type) ~1 is more 
general than Q ifi71 F-C F. 

The correctness of this definition follows from Clark’s 
generalization of the completeness of SLD-resolution 
[Cla79]. This result states that for every correct answer 
substitution there is a computed answer substitution 
that is more general. Thus, there exists a 9 such that 
~16 )= ra is a semantic consequence of HC iff there exists 
an SLD-refutation of Hc U { :- q >= ~$1 in which no 
variables of n art instantiated. 

3 Deriving Subtypes 

In the previous section, we presented a proof system for 
deriving subtypes. In this section, we develop a dtter- 
ministic strategy for applying the rules in this system to 

carry out such derivations. In particular, we show how 
to select the appropriate clause from Hc to apply at 
each step in an SLD-refutation of Hc U { : - TI>= n}. 
To simplify this task, we introduce two syntactic re- 
strictions on type declarations, one that ensufes uni- 
form polymorphism and one that ensures that recur- 
sive type definitions are uguarded”. The results of this 
section are collected together as an algorithm in the 
next. section, where we define a function match that 
forms the basis of our well-typedness conditions. 

Our strategy will be to select clauses from Hc on 
the basis of the outermost symbol of the supertype. 
As a first step, we handle the cast where this symbol 
is a function symbol. In the proof% below, we omit 
discussions of 0-ary symbols where they art simply a 
degenerate form of the more general n-ary cast. In the 
following, T; and u; range over types. 

Theorem 1 (Refutation Strategy for f E F) Let 
C be a set of subtype constraints. 

1. Thee is no SLD-refutation of 

l&u{ :-f(q)..., Tn)>=s(ul I...) urn)) 

wheres ETUF\{f}. 

2. There ia an SLD-refutation of 

i,Sr there is one darting with an application of the 
sub&don axiom for f. 

Proof: 

1. By induction over the length of the derivation. For 
the base case, since no fact can be immediately ap 
plied, there is no refutation of length one. For the 
inductive step, transitivity is the only axiom that 
can be applied initially, leading to the resolvent 

:-f(q,..., 7,) >= a, CY >= 8( a, ) . . . ) a,). 

Without loss of generality, assume the leftmost 
atom here is selected. Another application of 
transitivity at this point will not make significant 
progress. The only choice left is an application of 
substitution for f, leading to the rtsolvtnt 

:-T1>=pl,...,Tn>=pn, 

f(& . . . . p+=d(ul)...) a,). 

By the inductive hypothesis, there is no SLD- 
refutation of the last atom in this clause. 

2. By induction over the length of the derivation. In 
the base case, n = 0 and the substitution axiom 
for f is a fact that can be directly applied. For 
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the inductive step, it suffices to show that for any 
refutation starting with an application of transi- 
tivity there is one starting with an application of 
substitution for f. Following the reasoning as in 1 
above, a refutation starting with transitivity will 
eventually lead to the resolve& 

--71>=pI,...,Ti,>=p,, . 

f(Pl, . ..( &)>=f(q )..., a,). 

Assume the rightmost atom here is selected. By 
the inductive hypothesis, we may assume that sub- 
stitution for f is applied, leading to the resolvent 

:-Tl >=a, “.) rn>=&p,>=u* ,...I p*>=un. 

This same resolvent can also be obtained from the 
original clause by starting with an application of 
substitution for f, to produce the resolvent 

followed by an application of transitivity for each 
individual atom. 

cl 

We now develop a similar strategy for the case where 
the outermost symbol of the supertype is a type con- 
structor. To accomplish this, we introduce our first re- 
striction on type declarations. This restriction ensures 
that polymorphism is used in a uniform manner. 

Definition 6 (Uniform Polymorphic) 
A uniform polymorphic subtype constmint has the form 

C(Q1, . . . , a,) >= T where each ai is a distinct variable. 
A set C of dubtype constmints ia uniform polymorphic 
iff each of its members is uniform polymorphic. 

The following definition introduces a notion of the 
‘two-step application” of a uniform polymorphic sub- 
type constraint. 

Definition 7 (Two-Step Application) 
Two-step application of con&mint c(al, . . . , a,,) >= r to 
resolvent 

consists of an application of tmnsitivity to pmduce 

* - 4% . . . . . 7,)>=a,a>=s(ul,..., urn). 

followed by an application of the condmint to produce 

l -r{a1 HT-l,...,af&f+ 7n}>=~(~l,...,Q??J . 

Theorem 2 (Refutation Strategy for c E 2’) Let 
C be a uniform polymorphic set of subtype con&mints. 

1. Them is an SLD-refutation of 

a, u { : - c(q, . . . ) 7,) >= U(Ul, 1 I . ) urn)} 

where 8 E F U 2’ \ {c} i;tT there is one start- 
ing with the two-step application of a constraint 

c(al,..., am)>=TE c. 

2. Them is an SLD-refutation of 

&U{ :-C(Tl)...) Tn)>=c(ul (..., a,)} 

ifi there is one starting with either an application 
of the substitution aziom for c or the two-step ap- 
plication of a con&mint c(a1,. . . , a,) >= 7 E C. 

Proof: 

1. By induction over the length of the derivation. In 
the base case, a constraint c(al, . . . , a,) >= 7 E C 
can be directly applied. Note that this implies that 
T{al w q,. . . ,aR I+ 7,) and s(ui, . . . ,u,,,) can 
be unified. Two-step application of the constraint 
will produce 

--r{al i+ q,..., a, t+ 7.}>=S(u1,...,u~). . 

It can be shown that if& and tt are unifiable, then 
21 kc ts, thus the desired result follows. In the in- 
ductive step, the only choice possible initially is an 
application of transitivity, leading to the resolvent 

--+l, . . . . . r..)>=a,a>=s(ul,.. .,a,). 

Assume the leftmost atom here is selected. An- 
other application of transitivity at this point will 
not make significant progress. Thus, it suffices to 
show that for any refutation beginning with an 
application of substitution for c there is one be- 
ginning with an application of a constraint for c. 
Suppose substitution is applied, leading to the re- 
solvent 

l -71>=&,...,7,>=& . 
4pl )...) &J>=s(q (..., a,). 

Assume the rightmost atom here is selected. 
By the inductive hypothesis, we may assume 
that the two-step application of a constraint 

C(Q1, . . . , a,,) >= 7 E C occurs, leading to the re- 
solvent 

'-q>=/?l,...,r~>=/3nr . 

T{al -Ed,..., a, c) pm} >= d(u1,. . . , urn). 

Assume all but the last atom here are processed, 
leading to the resolvent 
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where ri 2,~ 4 for 1 5 i 5 n. Returning now to 
the point of comparison, if the constraint for c is 
directly applied, the resolvent 

.- . T{cYl I-+ Tl,..., a, H 7,) >= s(u1,. * . ,a,). 

will be produced. It can be shown that if ri kc 4 
for 1 < i 5 n then ~{a1 t-t 71,. . . , a, I+ T,,} kc 
T{cYl H <,..., a, H f-}, thus the desired result 
follows. 

2. The proof is omitted since this case is not needed 
in this paper. 

cl 

Our second restriction on type declarations ensures 
the termination of our iterative strategy for deriving 
subtypes. This restriction requires that recursively de- 
fined types “guard” their recursion by an outermost 
function symbol. As examples, given f E F and c E T, 
the constraint c >= f(c) . is acceptable but the con- 
straints c >= c. and c(A) >= c(f (A)). are not. This 
restriction applies to mutually recursive types as well, 
for example, given b E T, 

c(A) >= b(f(A)). 
b(B) >= c(f(B)). 

is not acceptable. It also applies to recursion occurring 
through the use of polymorphism, for example, 

b(A) >= A. 
c >= b(c). 

is not acceptable. To define this restriction, we intro- 
duce the notion of “direct dependence” between type 
constructors. 

Definition 8 (Direct Dependence) Let C be a und 
form polymorphic set of subtype constraints. c E T 
directly depends on d E T iff 

1. theTe is a constmint c(cy1, . . . , a,) >= 7 E C and an 
occurrence of d in r that is not in an argument to 
a fanction symbol, or 

2. c directly depends on b E T and b directly depends 
on d. 

Definition 9 (Guarded) A uniform polymorphic set 
C of subtype constraints is guarded iff there is no c E T 
which directly depends on itself. 

Theorem 8 (Correctness of Guarding) 
Let C be a uniform polymorphic, guarded set of 
subtype constraints. Given any initial resokent 
:-c(7~,...,Tn)>=d(ul (..., a,,,). where c E T, every 
sequence of two-step applications of constraints in C 
eventuaZZy reaches a resolvent : - T’ >= s(q, . . . , q,,). 
where the outermost symbol off is not a type con- 
stTuctor. 

Proof: We give a proof sketch. The right-hand side of 
a constraint in C consists of either 1) a variable, 2) a 
type with an outermost function symbol, or 3) a type 
with an outermost type constructor. Two-step appli- 
cation of a constraint in the second form immediately 
reaches a desired resolve& thus we need only consider 
the other two forms. Suppose we start with the re- 
solvent : - c( ~1, . . . ,7.) >= s(al, . . . , a,,,). and perform 
a sequence of two-step applications of constraints in 
the first and third forms. Constraints of the third form 
will embed the arguments r.. in terms containing type 
constructors d such that previous outermost type con- 
structors directly depend on d. Constraints of the first 
form will strip off these type constructors d. Since no 
type constructor can directly depend on itself, it’ can be 
shown that after at most a finite number of steps, some 
r; will be uncovered. If the outermost symbol of q is a 
type constructor, then the above reasoning process can 
be repeated. It can be repeated only a finite number of 
times since ri is strictly smaller than ~(71, . . . , 7,). 0 

4 Variable Typings 

In this section, we define a function match that forms 
the basis of our well-typedness conditions and prove its 
correctness. match returns a most general typing for 
the variables of a given term under a given type, if such 
a typing exists. As a first step, we introduce the notion 
of a typing for the variables in a term. 

Definition 10 (Typings) A typing for term t UndeT 

type r is a substitution 8 mapping each variable in t 

to a type such that T S-c 3, Typing 8 is respectfil if 
T kc zx 

For example, the following substitutions are typings for 
X under list(A): {X H list(A))‘, (X H neliet(A)}, 
{X w list(int)), and (X w list(B)}. Of these, only 
the first and second are respectful. As a further ex- 
ample, every substitution over {X) is a typing for f(X) 
under A, but none is respectful. The following definition 
extends the notion of more general type, as introduced 
in definition 5, to typings. 

Definition 11 (More General Typing) Qping 81 
for t is more general than typing ep for t ifl for ali 
z E var(t), z& is moTe general than ~62. 

For example, (X H list(A)} is a more general typ- 
ing for X than either (X H nelist(A)} or {X H 
list(int)}. 

Intuitively, mutch(T, t) = 8 implies that 1) 8 is a 
respectful typing for t under T and 2) 8 is more gen- 
eral than every other typing for t under 7. For ex- 
ample, match(list(A), X) = {X H list(A)]. There 
are cases where no typing of any kind is possible, e.g., 
mutch(int, cons(X, Y)). When match recognises such 
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cases, it returns the special value fail. There are 
also cases where several typings are possible but none 
is both respectful and most general. This can occur 
when a function symbol takes arguments of different 
types, e.g., match(f(int)+f(list(A)),f(X)); here both 
{X I+ int} and {X H list(A)} are respectful but nei- 
ther is most general. Note that {X H int + lirt(A)) 
is not a typing here. It can also occur when the first 
argument to match is a variable, e.g., match(A, f(X)); 
here (X 13 B) is most general but it is not respectful. In 
such cases, match returns the special value 1. There 
are also cases where match loses track of what is going 
on and simply returns the value 1. Specifically, match 
may fail to recognize that a respectful, most general 
typing exists, e.g., as in match(f(int) + f (nat), f(X)) 
and match(f(int,nat)),f(X,X)), or that no typing is 
possible, e.g., as in match(f(int,liet(A))), f(X, X)). In 
general, the problem here is that some form of name- 
based type union and intersection are required. It is 
possible to extend match to pick up some of these cases. 

Two typings, possibly for different terms, are said to 
be in agreement iff they produce equivalent types for 
common variables. Since this is a name-based system, 
type equivalence is taken to be syntactic equality. 

Definition 12 (Agreement of Typings) 
Typing8 8, and 8, are in agreement iff for all a! E 
dom(6,) n dom(Bz), a& = da. A set S of typing8 
is in agreement, denoted agree(S), ifl its elements are 
pairwise in agreement. 

In the following definition, c( 71, . . . , TV) -+c cr is 
taken to mean that u = r{ar H ~1, . . . ,am w TV} 
for some constraint c(ar, . . . , a,) >= 7 E C. 

Definition 13 (match) Let C be a uniform polymor- 
phic, guarded set of subtype constrointu. Assume x E 
V, f,gEF, andcET. 

match(r,z) = {z H T) 

match(z, f(t1,. . . , t,,)) = I 

match(g(n, . . . , TV), f(tl,. . . , tm)) = 
if g/n # f/m then fail 
elseif n = 0 then {} 
else 

let S = {match(ri, &)]I _< i 5 n} in 
if fail E S then fail 
elseif I E S or lagree(S) then I 
else US 

match(c(w . . . , Q), f (tl, . -. , tm)) = 
let S = {match(r, f(tl,. . . , tm))l 

Ch ,...,G) 4~ u} in 
if S = {faiZ) then fail 
elseif S = (6) or S = 16, fail) then 6 
else I 

Theorem 4 (Correctness of match) Let T be a type 
and t be a term over F. 

1. mutch(T, t) = 8 impZie3 8 is u wspectful, most gen- 
eral typing for t under r. 

2. match(7, t) = fail implies the% is no typing for t 
under 7. 

Proof: We prove these two claims by simultaneous 
induction over the height of the computation tree for 
match(r, t). We first consider the base case for each of 
these claims. 

1. In the first clause for match, {CC w T} is clearly 
a respectful, most general typing for z under T. 
If n = 0 in the third clause for match, then {} 
is clearly a respectful, most general typing for f 
under f. 

2. Suppose g/n # f/ m in the third clause for match. 
By definition, 6 is a typing for t under 7 ifI there 
is an SLD-refutation of :- r >= 3. By theorem 1, 
such a refutation exists iff there is one which starts 
with an application of the substitution axiom for 
g. Since this axiom cannot be applied in this case, 
there is no such refutation and no such typing. 

There are two cases to consider for each of the in- 
ductive steps. First, suppose T is f(sr , . . . ,7,) and t is 

fVll . . . , tn) in the third clause for match. By theorem 
1, 8 is a typing for t under 7 only if it iz a typing for 
every ti under ~6. 

1. Suppose the members of S are typings that are in 
agreement. By the inductive hypothesis, the mem- 
bers of S are respectful, most general typings for 
the ti under the Ti* Therefore, their composition B 
is a respectful, most general typing for every ti un- 
der 7i. Thus, 0 is a respectful, most general typing 
for t under 7. 

2. Suppose fail E S, say, because of the i-th sub- 
term. By the inductive hypothesis, there is no 
typing for t; under Tip thus, there is no typing for 
t under 7. 

Second, suppose 7 is c(71 ,...,T.) and 2 is 

f(tt, . . . , t,) in the fourth clause for match. By the- 
orem 2, 0 is a typing for t under r iff it is a typ 
ing for t under #{ai w ~1,. . . , a,, H rn} for some 
c(al,..., a,) >= 7’ E C. 

1. Suppose S = (0) or S = (0,faiZ). By the in- 
ductive hypothesis, 0 is a respectful, most general 
typing for t under +{a1 I+ 71,. . . , a, H 7,) for 
some c(al,..., a,) >= 7’ E C. Moreover, no other 
constraints defining c can produce typings for t. 
Thus, 8 is a respectful, most general typing for t 
under 1. 
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2. Suppose S = {fail). By the inductive hypothe- 
sis, none of the constraints defining c c8n produce 
typings for t under r, thus, there is no typing for 
t under 7. 

cl 

Theorem 5 (Termination of match) mdch(7,t) 
terminates for all r and t. 

Proof: mutch(r, t) terminates directly if the siae oft 
is one. All recursive calls of match either decrease the 
size of t or leave it the same. The latter c8se occurs 
only in the fourth clause for match. By theorem 3, 
after at most a finite number of iterations here, match 
will be called with 8 first argument that is either 8 
variable or a type with an outermost function symbol. 
If it is a variable, then the csll terminates directly. If 
it is a type with an outermost function symbol, then a 
subsequent recursive c8ll will decrease the sise oft. q 

We now present several lemmas concerning mutch 
that will be used to prove the consistency of our 
well-typedness conditions. The first lemma shows 
that instantiation of type v8riables propagates through 
match. 

Lemma 1 (On Instantiation) If match(r, t) = 6 
then motch(rq t) = 8~ for any substitution v mapping 
variables of r to types. 

Proof: The lemma follows from a straight-forward in- 
ductive argument over the height of the computation 
tree for match(r, t). cl 

The second lemma shows that, under certain condi- 
tions, unification does not change the typing for vari- 
ables. Throughout this paper, we assume that most 
general unifiers are idempotent and relevant [Apt88]. 

Lemma 2 (On Unification) Let 

1. var(t1) l-l var(t2) = 8, 

2. mgu(tl, ta) = 8, 

3. naatch(q tl) = 81, and 

4. match(q ts) = 6,. 

Then for all z E var(tl) n dam(6), mutch(&, 20) is 
in agreement with 92. 

Proof: Compare the computation tree 7’1 of 
match(q tl) with the computation tree Ts of 
mutch(T, ta). Since tl and. ta can be unified, these 
trees 8re identical up to their leaves that are variables. 
Consider any such variable z E var(&) n dam(6). Tl 
records 8 type, say T’, for z while Ta makes a recur- 
sive call match(s’, ~0). The typings returned at this 
point appear directly in 81 and 02, thus, 8& = 7’ and 
match(f, ~0) is in agreement with 192. The lemma fol- 
lows directly. cl 

A corollary of the above lemma is that mutch(T, tl@), 
match(r, tl), and match(r, tl) are in agreement. 

5 Predicate ‘Types 

In this section, we define predicate types and informally 
discuss type cheching. As a first step, we review the 
syntax of logic programs and queries. Let 8 set P of 
predicate symbols with given arity, disjoint from V, F, 
and T, be given. An atom is a predicrte symbol p/n 
applied to n terms over F. A program clause has the 
form h :-b. where h is au atom, called the head, and 
b is a list of atoms, called the body. A logic program 
consists of 8 sequence of program clauses. A negative 
clause, or query, has the form : - b. where b is a list of 
atoms. 

The following definition introduces the notion of 8 
predicate type. 

Definition 14 (Predicate Types) A predicate type 
forp~ P haa the formp(n ,..., q,) where q ,..., q, 
are types. 

DeAnition 15 (Type of an Atom) Let 7Y be a fized 
set of predicate types, one for each p E P. FOT any 
atom A, @pe(A) is the member of V crsaociated with 
the predicate symbol of A. 

Predicate types are ‘intended to restrict the allowable 
usage of predicates. In particular, we define well- 
typedness conditions which ensure that a program re- 
spects 8 set of predicate types; programs that are not 
well-typed are expected to be rejected by the type 
checker. These conditions ensure that every atom of 
every resolvent produced during execution is consistent 
with its type. 

To ensure this property, we require that every sari- 
able in 8 clause appear in exactly one ?ype context”. 
As 8n example of the problems that can arise if this 
restriction is not observed, consider the following dec- 
larations. 

PIlED p(int) . 
PRED q(list(A)). 

Under these declarations, the query :- p(X), q(X). 
can lead to ill-typed resolvents such 8s :- q(o). The 
problem here is that X appears 8s both 8n int and a 
list (A). Similarly, the predicates 

PRED r(list(A)). 
r(X) :- p(X). 

and 

PRRD s(int,list(A)). 
s(X,X). 
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can lead to ill-typed resolvents because X appears as 
both an int and a list(A). Thus, we require that the 
type checker reject programs where a variable appears 
in more than one type context in the same clause. 

We also place requirements on the circumstances in 
which type variables can be instantiated. In particu- 
lar, an invocation of a polymorphic predicate may make 
commitments regarding its type variables, however, a 
defining clause for the predicate may not. As an exam- 
ple, consider the predicates 

PRED p(list(A)). 
PRED q(list(int)). 

The query : - p(X), q(X) is acceptable since X may be 
assigned the type list (int). However, the program 
clause 

p(cone (nil ,nil) 1. 

must be rejected because, for example, it would allow 
the above query to lead to the ill-typed resolvent :- 
q(cons(nil,nil)). 

6 Well-Typed Programs 

A program/query is well-typed ifF each of its clauses is 
well-typed. Intuitively, a clause is well-typed iff a typ 
ing can be found for each of its atoms and these typings 
are in agreement. In the following definition, we treat 
predicate symbols as function symbols so mutch can be 
applied to atoms. 

Deflnition 16 (Well-typed Clauses) 
A prognrm clause & :- AI, . . . , Ah. is well-typed iff 
there exist substiZutions m, . . . , a such that 

~tch(tz/pe(Ao), &) 

and 
m&h(type(A&, &) 15 i 5 le 

are in agreement. A negative clause : - AI,. . . , At. is 
well-typed iff the above conditions ezcluding & hold. 

The substitutions n, . . . , m above allow the body 
atoms to make commitments regarding type variables. 

The following theorem shows the consistency of our 
well-typedness conditions. 

Theorem 6 (Consistency) Every resolvent of a 
well-typed negative clause and a well-typed program 
clause is well-typed. 

Proof: Let 

1. N = :-Br,..., Bjs be a well-typed negative 
clause, in particular, let match(typ(Bi)&, Bi) 1 5 
i 2 j be in agreement, 

2. 

3. 

We 

Ah. be a well-typed program 
~a~ef~‘&k~l*& let mat&( type( A& Ao) and 
mutch(type(Ai)Q, Ai) 1 5 i 5 k be in agreement, 
and 

~~t=o~;~i ikt;i,“;, - - . , Bj-)@ be WY .red- 
= mgu(B1, Ao); mthout 

loss of generality we assume the leftmost atom is 
always selected. 

will prove the resolvent N’ is well-typed by 
showing mutch(typ(~)q&, 40) 1 5 i 5 k and 
mutch(type(Bi)Ci, B#) 2 5 i 5 j are in agreement. 

BY lemma 1, ~tch(type( Ao)C, &) 
and match(type(Ai)q&, Ai) 1 5 i 5 Ic are in agree- 
ment. For any 1 5 i 5 k, compare the computa- 
tion tree !Z’l of match(type(Ai)~&, Ai) with the com- 
putation tree T-2 of match(type(A&&, A#). These 
trees are identical up to the leaves of 2’1, which 
consist of variables z E var(C). For each vari- 
able z E var(C) \ dam(e), the trees are identical 
and therefore record the same type for z. Thus, 
mutch(type(&)r)i&, A#) 1 ,< i 5 k are in agreement 
for all variables in var(C) \ dam(O), in particular, 
they are in agreement with match(type(Ao)<l, 4) and 
match(type(Ai)q&, Ai) 1 5 i 5 le. For each vari- 
able a E var(C) n dam(e), on the other hand, T.1 
records a type, say T, for a while Ts makes a recur- 
sive call mutch(r, zg) where var(&) E var(B1). Since 
7 was also recorded for z by match(type(A~)~~, Ao), 
we can apply lemma 2 and conclude that match(r, zg) 
is in agreement with match(type(B1)&, B1). Thus, 
mutch(type(&)q&,~g) 1 5 i 5 k are in agreement 
for all variables in var(&), in particular, they are in 
agreement with match(type(Bl)&, BI). 

By a similar argument, match(type(Bi)&, Bill) 2 5 
i < j are in agreement with match(type(B;)&, Bi) 
1 5 i 5 j for all z E var(N) \ dam(0) and in 
agreement with match(type(A&, A,-,) for all z E 
var(&). Thus, mutch(type(A&& A#) 1 5 i 5 k 
and mtch(typ(Bi)[i, Big) 2 < i 5 j are in agreement 
arid N’ is well-typed. cl 

As a final comment, note that a corollary of the above 
theorem is that every answer substitution computed by 
a well-typed program is type consistent. 

7 Concluding Remarks 

This paper hss presented a prescriptive type system for 
logic programs that supports parametric polymorphism 
and name-based subtypes. We introduced the notion of 
predicate types and defined well-typedness conditions 
which ensure that a program respects a set of predicate 
types. We are currently implementing a type checker 
that determines whether a program satisfies these con- 
ditions. The only non-effective part of these conditions 
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is the substitutions m, . . . , m, occurring in the defini- 
tion of well-typed clauses, that allow the body atoms to 
make commitments regarding type variables. To deal 
with this problem, our type checker uses a modified 
version of match that returns constraints on variables 
in its first argument. The constraints generated by the 
atoms in a clause are collected together and solved. 

In our future work, we plan to more fully explore 
the use of subtypes in our system. Generally speaking, 
the introduction of subtypes into logic programming 
is somewhat problematic. As v example, given the 
declarations 

PRED p(nat). 
PRED q(int). 

we would like to allow queries such 88 : - p(X), q(X) . 
where information flows from the subtype to the super- 
type, as in the resolvent : - q(succ (0) 1. However, due 
to the non-directional nature of logic programming, in- 
formation may also flow the other way, as in the incon- 
sistent resolvent : - p(pred(0)). Note that this prob- 
lem cannot be solved simply by keeping track of the 
order in which goals execute. In the above example, p 
might execute first but leave X uninstantiated, in which 
case q could instantiate I to prod(O). Here, a type in- 
consistent answer substitution would be produced. 

One solution to this problem, proposed in [DH88], 
is to require input/output modes which ensure that 
information flows in the appropriate direction, e.g., 

PRED p(OUT nat). 
PRRTI q(Ili int) . 

Another alternative, possible only in a system that sup- 
ports typed unification [GM86, AKN86, Smo88], is to 
constrain X to be a nat, e.g., :- p(X), X:nat, q(X). 

In the type system of this paper, the only way 
to formulate the above query is to explicitly define 
and use a “type conversion” predicate, e.g., :- p(X) , 
int%at(X,Y), q(Y). where 

PRKD int&at(int,nat). 
int2nat(O,O). 
int2nat(succ(X) ,succ(X)). 

This predicate filters out all ints that are not nats. 
We are currently exploring a more general solution to 
this problem based on this notion of filtering. 
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