
Type Declarations as Subtype Constraints
in Logic Programming

Dean Jacobs
University of Southern California

Los Angeles, CA 90089-0782

Abstract

This paper presents a type system for logic programs
that supports parametric polymorphism and subtypes.
This system follows most knowledge representation and
object-oriented schemes in that subtyping is name-
based, i.e., +i is considered to be a subtype of 72 iff it is
declared as such. We take this as a fundamental prin-
ciple in the sense that type declarations have the form
of subtype constraints. Types are assigned meaning by
viewing such constraints as Horn clauses that, together
with a few basic axioms, define a subtype predicate.
This technique provides a (least) model for types and,
at the same time, a sound and complete proof system
for deriving subtypes. Using this proof system, we de-
fine well-typedness conditions which ensure that a logic
program/query respects a set of predicate types. We
prove that these conditions are consistent in the sense
that every atom of every resolvent produced during the
execution of a well-typed program is consistent with its

type.

1 Introduction

Type systems for logic programming languages may
be generally classified as being either descriptive or
prescriptive. In a descriptive system [Mis84, MR85,
Red88, Zob87], types are automatically inferred by
the compiler. The goal here is to derive safe upper
bounds on the success set of predicates for the pur-
poses of program optimisation. In 8 prescriptive sys-
tem [MO84, YS87, DH88], on the other hand, types are
explicitly declared by the programmer. The goal here,
as in most conventional type systems, is to restrict the
allowable usage of predicates for the purposes of secu-
rity, documentation, and optimization. In all of the ref-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01990 ACM 0-89791-364-7/90/0006/0165 $1.50

Proceedings of the ACM SIGPLAN’SO Conference on
Programming Language Design and Implementation.
White Plains, New York, June 20-22, 1990.

erences above, types appear only at compile-time and
standard Prolog-like computation mechanisms may be
used. In contrast, there are also prescriptive sys-
tems where the underlying computation mechanisms
are extended to support some form of typed unifica-
tion [GM86, AKN86, Smo88].

This paper presents a prescriptive type system for
logic programs, along the lines of [MO84], that sup
ports parametric polymorphism and subtypes. This
system follows most knowledge representation and
object-oriented schemes in that subtyping is name-
based, i.e., 71 is considered to be a subtype of 3 iff
it is declared as such. We take this as a fimdamen-
tal principle in the sense that type declerstions have
the form of subtype constraints. As an example, the
declarations

FIJK 0, succ , pred.
TYPE nat, unnat, int.

Il8t >= 0 + rucc(n8t).
unnat >= 0 + pred(unnat).
int >= nat + ummt.

introduce a type int with subtypes nat and unaat 8nd
elements 0, succ (01, pred(0)) succ (succ (0)) , etc.
Here, the function symbols 0, succ, and pred have
fixed interpretations as type constructors and the poly-
morphic type constructor + is predefined as follows.

TYPE +.
A+B >= A.
A+B >= B.

As a further example, the declarations

Fmc nil, cons.
TYPE elist, nelist, list.

elist >= nil.
nolist >= cons(A,list(A)).
list(A) >= elist + nelist(A) .

introduce a polymorphic type list (A) with subtypes
elimt and nelist(A). epes are assigned meaning
by viewing such declarations as Horn clauses that, to-
gether with a few basic axioms, define a subtype pred-
icate >=. This technique provides a (least) model for

165

http://crossmark.crossref.org/dialog/?doi=10.1145%2F93548.93563&domain=pdf&date_stamp=1990-06-01

types and, at the same time, a sound and complete
proof system for deriving subtypes.

In our type system, predicate types are used to re-
strict the allowable usage of predicates. For example,
the declaration

PRED app(list(A),list(A) ,liat(A)).
appbil,L,L).
app(cons(X,L),M,cons(X,H)) :- app(L,M,I).

restricts the usage of the append predicate app to lists;
note that this rules out certain successful queries, such
as :- app(nil,O,O). We define well-typedness con-
ditions which ensure that a program respects a set of
predicate types; programs that are not well-typed are
expected to be rejected by the type checker. We prove
that these conditions are consistent in the sense that
every atom of every resolvent produced during the ex-
ecution of a well-typed program is consistent with its

type.
Our type system is considerably more expressive

than previous proposals of this nature, in particular, it
supports the notion of non-uniform polymorphic types.
As an example, given types males and females, the
declaration

FUNC m, f.
TYPE id.

id(males) >= m(nat) .
id(f emales) >= f (nat) .

introduces a non-uniform polymorphic type id. This
type models the idea that a variety of different things
have id numbers, e.g., we might work with the type
id(vehicles) of id numbers for vehicles in some par-
ticular circumstance. Continuing with this example,
given the declaration

TYPE person.
person >= male + female.

the type id(person) contains the elements of
id(males) and id(f emales). This paper assigns
meaning to all types, however, for simplicity, our well-
typedness conditions are defined only for uniform poly-
morphic types.

This paper is organized as follows. Section 2 intro-
duces types and type declarations. Section 3 devel-
ops a deterministic strategy for deriving subtypes given
certain syntactic restrictions on type declarations, no-
tably, that they are uniform polymorphic. Section 4
uses this strategy to define a function match that forms
the basis of our well-typedness conditions. match re-
turns a most general typing for the variables of a given
term under a given type, if such a typing exists. The
correctness of match is proven. Section 5 introduces
predicate types and informally discusses type checking.
Section 6 presents the conditions under which a pro-

gram/query is considered to be well-typed and proves
their consistency.

2 Types and Type Declarations

Let the following disjoint sets of symbols be given.

l V of variables

l F of function symbols with given arity

a T of type constructor symbols with given arity

A term over a set of symbols S is either a variable or

a symbol u/n E S applied to n terms over S. Here,
and at several other points in this paper, we abuse the
notation slightly by treating 0-ary symbols as if they
were arbitrary n-ary symbols. The Herbrand Universe
7t consists of the set of all ground terms over F.

Definition 1 (Syntax of Types) A type T E Type
is a term over F U T.

Intuitively, a type represents some subset of 3t over
which computation takes place. Function symbols
f/n E F have a fixed interpretation as type construc-
tors: the type f (71,. . . , TV) represents the set of all
ground terms f (tlr . . . , tn) where ti has type ~6. Type
symbols are defined by subtype constraints of the fol-
lowing form.

Definition 2 (Syntax of Subtype Constraints)
A avbtype con&&t for c/n E T has the form

C(Tl, . . . , Tn) >= 7

where 71, . . . , T, and r are types such that

V=(T) 5 V-&i, . - . , Tn))

We define the semantics of types under a given set
C of subtype constraints in terms of a set lit of Horn
clauses for an infix predicate >=. The set EC contains
each constraint in C as a t&t, a substitution axiom

8(%,-**, a,)>=s(& ,...) pJ :-al>=& ,...) &&>=p,.

for each a/n E F U T, including the degenerate case

u>=u.

where n = 0, and the transitivity axiom

A >= C :- A >= B, B >= C.

We define the notion of subtype in terms of the stan-
dard notion of SLD-resolution, e.g., see [Apt88]. Note
that this does not imply that we intend to directly exe-
cute type declarations in a Prolog-like manner. Rather,
it simply gives us a convenient model for types together
with a sound and complete proof system for deriving
subtypes.

Definition S (Subtypes) !Qpe ~1 has subtype PJ un-
der a set C of subtype constnrints, denoted Tl k-c 71,

iff there ezists an SLD-refutation of HcU{ : - ~1 ?= 73).

166

The semantics of types is given by the following func-
tion MC : Type ---) P(7f).

Definition 4 (Semantics of Types)
M&l = {t E 3c(s kc t}

As an example, given that C consists of the declara-
tions appearing in the introduction, the following SLD-
refutation shows that cons(foo,nil) E Mc[list(A)].

.- .

.- .
:-
.- .

.- .

.- .

.- .

.- .

.- .

.- .

.- .

.- .

.- .

.- .

list(A) >= cons(foo,nil).
list(A) >= Bl, Bl >= cons(foo,nil).
elist + nelist(A) >= cons(foo,nil).
elist + nelist(A) >= 83,

B3 >= cons(foo,nil).
nelist(A) >= cons(foo,nil).
nelist(A) >= B3, B3 >= cons(foo,nil).
cons(A,list(A)) >= cons(foo,nil).
A >= foe, list(A) >= nil.
list(fo0) >= nil.
list(foo) >= B4, B4 >= nil.
elist + nelist(fo0) >= nil.
elist + nelist(foo) >= B6, 86 >= nil.
elist >= nil.
.

rl 2~ n is an existentially quantified statement
about subtypes: by the soundness and completeness
of SLD-resolution, rl kc 72 iff there exists a substitu-
tion 8 such that (q>=~)8 is a semantic consequence
of EC. We are also interested in universally quantified
statements about subtypes. In particular, we view 71
as being a more general type than n iff there exists a
0 such that T18>= r2 is a semantic consequence of EC;
recall that free variables in a logical sentence are im-
plicitly universally quantified. For example, list (A)
is more general than nelist(int) but list(int) is
not more general than nelist(A). Such formulas can
be derived as follows. Let 7 be 7 with each variable
replaced by a unique constant not appearing in any

type.

Definition 5 (More General Type) ~1 is more
general than Q ifi71 F-C F.

The correctness of this definition follows from Clark’s
generalization of the completeness of SLD-resolution
[Cla79]. This result states that for every correct answer
substitution there is a computed answer substitution
that is more general. Thus, there exists a 9 such that
~16)= ra is a semantic consequence of HC iff there exists
an SLD-refutation of Hc U { :- q >= ~$1 in which no
variables of n art instantiated.

3 Deriving Subtypes

In the previous section, we presented a proof system for
deriving subtypes. In this section, we develop a dtter-
ministic strategy for applying the rules in this system to

carry out such derivations. In particular, we show how
to select the appropriate clause from Hc to apply at
each step in an SLD-refutation of Hc U { : - TI>= n}.
To simplify this task, we introduce two syntactic re-
strictions on type declarations, one that ensufes uni-
form polymorphism and one that ensures that recur-
sive type definitions are uguarded”. The results of this
section are collected together as an algorithm in the
next. section, where we define a function match that
forms the basis of our well-typedness conditions.

Our strategy will be to select clauses from Hc on
the basis of the outermost symbol of the supertype.
As a first step, we handle the cast where this symbol
is a function symbol. In the proof% below, we omit
discussions of 0-ary symbols where they art simply a
degenerate form of the more general n-ary cast. In the
following, T; and u; range over types.

Theorem 1 (Refutation Strategy for f E F) Let
C be a set of subtype constraints.

1. Thee is no SLD-refutation of

l&u{ :-f(q)..., Tn)>=s(ul I...) urn))

wheres ETUF\{f}.

2. There ia an SLD-refutation of

i,Sr there is one darting with an application of the
sub&don axiom for f.

Proof:

1. By induction over the length of the derivation. For
the base case, since no fact can be immediately ap
plied, there is no refutation of length one. For the
inductive step, transitivity is the only axiom that
can be applied initially, leading to the resolvent

:-f(q,..., 7,) >= a, CY >= 8(a,) . . .) a,).

Without loss of generality, assume the leftmost
atom here is selected. Another application of
transitivity at this point will not make significant
progress. The only choice left is an application of
substitution for f, leading to the rtsolvtnt

:-T1>=pl,...,Tn>=pn,

f(& p+=d(ul)...) a,).

By the inductive hypothesis, there is no SLD-
refutation of the last atom in this clause.

2. By induction over the length of the derivation. In
the base case, n = 0 and the substitution axiom
for f is a fact that can be directly applied. For

167

the inductive step, it suffices to show that for any
refutation starting with an application of transi-
tivity there is one starting with an application of
substitution for f. Following the reasoning as in 1
above, a refutation starting with transitivity will
eventually lead to the resolve&

--71>=pI,...,Ti,>=p,, .

f(Pl, . ..(&)>=f(q)..., a,).

Assume the rightmost atom here is selected. By
the inductive hypothesis, we may assume that sub-
stitution for f is applied, leading to the resolvent

:-Tl >=a, “.) rn>=&p,>=u* ,...I p*>=un.

This same resolvent can also be obtained from the
original clause by starting with an application of
substitution for f, to produce the resolvent

followed by an application of transitivity for each
individual atom.

cl

We now develop a similar strategy for the case where
the outermost symbol of the supertype is a type con-
structor. To accomplish this, we introduce our first re-
striction on type declarations. This restriction ensures
that polymorphism is used in a uniform manner.

Definition 6 (Uniform Polymorphic)
A uniform polymorphic subtype constmint has the form

C(Q1, . . . , a,) >= T where each ai is a distinct variable.
A set C of dubtype constmints ia uniform polymorphic
iff each of its members is uniform polymorphic.

The following definition introduces a notion of the
‘two-step application” of a uniform polymorphic sub-
type constraint.

Definition 7 (Two-Step Application)
Two-step application of con&mint c(al, . . . , a,,) >= r to
resolvent

consists of an application of tmnsitivity to pmduce

* - 4% 7,)>=a,a>=s(ul,..., urn).

followed by an application of the condmint to produce

l -r{a1 HT-l,...,af&f+ 7n}>=~(~l,...,Q??J .

Theorem 2 (Refutation Strategy for c E 2’) Let
C be a uniform polymorphic set of subtype con&mints.

1. Them is an SLD-refutation of

a, u { : - c(q, . . .) 7,) >= U(Ul, 1 I .) urn)}

where 8 E F U 2’ \ {c} i;tT there is one start-
ing with the two-step application of a constraint

c(al,..., am)>=TE c.

2. Them is an SLD-refutation of

&U{ :-C(Tl)...) Tn)>=c(ul (..., a,)}

ifi there is one starting with either an application
of the substitution aziom for c or the two-step ap-
plication of a con&mint c(a1,. . . , a,) >= 7 E C.

Proof:

1. By induction over the length of the derivation. In
the base case, a constraint c(al, . . . , a,) >= 7 E C
can be directly applied. Note that this implies that
T{al w q,. . . ,aR I+ 7,) and s(ui, . . . ,u,,,) can
be unified. Two-step application of the constraint
will produce

--r{al i+ q,..., a, t+ 7.}>=S(u1,...,u~). .

It can be shown that if& and tt are unifiable, then
21 kc ts, thus the desired result follows. In the in-
ductive step, the only choice possible initially is an
application of transitivity, leading to the resolvent

--+l, r..)>=a,a>=s(ul,.. .,a,).

Assume the leftmost atom here is selected. An-
other application of transitivity at this point will
not make significant progress. Thus, it suffices to
show that for any refutation beginning with an
application of substitution for c there is one be-
ginning with an application of a constraint for c.
Suppose substitution is applied, leading to the re-
solvent

l -71>=&,...,7,>=& .
4pl)...) &J>=s(q (..., a,).

Assume the rightmost atom here is selected.
By the inductive hypothesis, we may assume
that the two-step application of a constraint

C(Q1, . . . , a,,) >= 7 E C occurs, leading to the re-
solvent

'-q>=/?l,...,r~>=/3nr .

T{al -Ed,..., a, c) pm} >= d(u1,. . . , urn).

Assume all but the last atom here are processed,
leading to the resolvent

168

where ri 2,~ 4 for 1 5 i 5 n. Returning now to
the point of comparison, if the constraint for c is
directly applied, the resolvent

.- . T{cYl I-+ Tl,..., a, H 7,) >= s(u1,. * . ,a,).

will be produced. It can be shown that if ri kc 4
for 1 < i 5 n then ~{a1 t-t 71,. . . , a, I+ T,,} kc
T{cYl H <,..., a, H f-}, thus the desired result
follows.

2. The proof is omitted since this case is not needed
in this paper.

cl

Our second restriction on type declarations ensures
the termination of our iterative strategy for deriving
subtypes. This restriction requires that recursively de-
fined types “guard” their recursion by an outermost
function symbol. As examples, given f E F and c E T,
the constraint c >= f(c) . is acceptable but the con-
straints c >= c. and c(A) >= c(f (A)). are not. This
restriction applies to mutually recursive types as well,
for example, given b E T,

c(A) >= b(f(A)).
b(B) >= c(f(B)).

is not acceptable. It also applies to recursion occurring
through the use of polymorphism, for example,

b(A) >= A.
c >= b(c).

is not acceptable. To define this restriction, we intro-
duce the notion of “direct dependence” between type
constructors.

Definition 8 (Direct Dependence) Let C be a und
form polymorphic set of subtype constraints. c E T
directly depends on d E T iff

1. theTe is a constmint c(cy1, . . . , a,) >= 7 E C and an
occurrence of d in r that is not in an argument to
a fanction symbol, or

2. c directly depends on b E T and b directly depends
on d.

Definition 9 (Guarded) A uniform polymorphic set
C of subtype constraints is guarded iff there is no c E T
which directly depends on itself.

Theorem 8 (Correctness of Guarding)
Let C be a uniform polymorphic, guarded set of
subtype constraints. Given any initial resokent
:-c(7~,...,Tn)>=d(ul (..., a,,,). where c E T, every
sequence of two-step applications of constraints in C
eventuaZZy reaches a resolvent : - T’ >= s(q, . . . , q,,).
where the outermost symbol off is not a type con-
stTuctor.

Proof: We give a proof sketch. The right-hand side of
a constraint in C consists of either 1) a variable, 2) a
type with an outermost function symbol, or 3) a type
with an outermost type constructor. Two-step appli-
cation of a constraint in the second form immediately
reaches a desired resolve& thus we need only consider
the other two forms. Suppose we start with the re-
solvent : - c(~1, . . . ,7.) >= s(al, . . . , a,,,). and perform
a sequence of two-step applications of constraints in
the first and third forms. Constraints of the third form
will embed the arguments r.. in terms containing type
constructors d such that previous outermost type con-
structors directly depend on d. Constraints of the first
form will strip off these type constructors d. Since no
type constructor can directly depend on itself, it’ can be
shown that after at most a finite number of steps, some
r; will be uncovered. If the outermost symbol of q is a
type constructor, then the above reasoning process can
be repeated. It can be repeated only a finite number of
times since ri is strictly smaller than ~(71, . . . , 7,). 0

4 Variable Typings

In this section, we define a function match that forms
the basis of our well-typedness conditions and prove its
correctness. match returns a most general typing for
the variables of a given term under a given type, if such
a typing exists. As a first step, we introduce the notion
of a typing for the variables in a term.

Definition 10 (Typings) A typing for term t UndeT

type r is a substitution 8 mapping each variable in t

to a type such that T S-c 3, Typing 8 is respectfil if
T kc zx

For example, the following substitutions are typings for
X under list(A): {X H list(A))‘, (X H neliet(A)},
{X w list(int)), and (X w list(B)}. Of these, only
the first and second are respectful. As a further ex-
ample, every substitution over {X) is a typing for f(X)
under A, but none is respectful. The following definition
extends the notion of more general type, as introduced
in definition 5, to typings.

Definition 11 (More General Typing) Qping 81
for t is more general than typing ep for t ifl for ali
z E var(t), z& is moTe general than ~62.

For example, (X H list(A)} is a more general typ-
ing for X than either (X H nelist(A)} or {X H
list(int)}.

Intuitively, mutch(T, t) = 8 implies that 1) 8 is a
respectful typing for t under T and 2) 8 is more gen-
eral than every other typing for t under 7. For ex-
ample, match(list(A), X) = {X H list(A)]. There
are cases where no typing of any kind is possible, e.g.,
mutch(int, cons(X, Y)). When match recognises such

169

cases, it returns the special value fail. There are
also cases where several typings are possible but none
is both respectful and most general. This can occur
when a function symbol takes arguments of different
types, e.g., match(f(int)+f(list(A)),f(X)); here both
{X I+ int} and {X H list(A)} are respectful but nei-
ther is most general. Note that {X H int + lirt(A))
is not a typing here. It can also occur when the first
argument to match is a variable, e.g., match(A, f(X));
here (X 13 B) is most general but it is not respectful. In
such cases, match returns the special value 1. There
are also cases where match loses track of what is going
on and simply returns the value 1. Specifically, match
may fail to recognize that a respectful, most general
typing exists, e.g., as in match(f(int) + f (nat), f(X))
and match(f(int,nat)),f(X,X)), or that no typing is
possible, e.g., as in match(f(int,liet(A))), f(X, X)). In
general, the problem here is that some form of name-
based type union and intersection are required. It is
possible to extend match to pick up some of these cases.

Two typings, possibly for different terms, are said to
be in agreement iff they produce equivalent types for
common variables. Since this is a name-based system,
type equivalence is taken to be syntactic equality.

Definition 12 (Agreement of Typings)
Typing8 8, and 8, are in agreement iff for all a! E
dom(6,) n dom(Bz), a& = da. A set S of typing8
is in agreement, denoted agree(S), ifl its elements are
pairwise in agreement.

In the following definition, c(71, . . . , TV) -+c cr is
taken to mean that u = r{ar H ~1, . . . ,am w TV}
for some constraint c(ar, . . . , a,) >= 7 E C.

Definition 13 (match) Let C be a uniform polymor-
phic, guarded set of subtype constrointu. Assume x E
V, f,gEF, andcET.

match(r,z) = {z H T)

match(z, f(t1,. . . , t,,)) = I

match(g(n, . . . , TV), f(tl,. . . , tm)) =
if g/n # f/m then fail
elseif n = 0 then {}
else

let S = {match(ri, &)]I _< i 5 n} in
if fail E S then fail
elseif I E S or lagree(S) then I
else US

match(c(w . . . , Q), f (tl, . -. , tm)) =
let S = {match(r, f(tl,. . . , tm))l

Ch ,...,G) 4~ u} in
if S = {faiZ) then fail
elseif S = (6) or S = 16, fail) then 6
else I

Theorem 4 (Correctness of match) Let T be a type
and t be a term over F.

1. mutch(T, t) = 8 impZie3 8 is u wspectful, most gen-
eral typing for t under r.

2. match(7, t) = fail implies the% is no typing for t
under 7.

Proof: We prove these two claims by simultaneous
induction over the height of the computation tree for
match(r, t). We first consider the base case for each of
these claims.

1. In the first clause for match, {CC w T} is clearly
a respectful, most general typing for z under T.
If n = 0 in the third clause for match, then {}
is clearly a respectful, most general typing for f
under f.

2. Suppose g/n # f/ m in the third clause for match.
By definition, 6 is a typing for t under 7 ifI there
is an SLD-refutation of :- r >= 3. By theorem 1,
such a refutation exists iff there is one which starts
with an application of the substitution axiom for
g. Since this axiom cannot be applied in this case,
there is no such refutation and no such typing.

There are two cases to consider for each of the in-
ductive steps. First, suppose T is f(sr , . . . ,7,) and t is

fVll . . . , tn) in the third clause for match. By theorem
1, 8 is a typing for t under 7 only if it iz a typing for
every ti under ~6.

1. Suppose the members of S are typings that are in
agreement. By the inductive hypothesis, the mem-
bers of S are respectful, most general typings for
the ti under the Ti* Therefore, their composition B
is a respectful, most general typing for every ti un-
der 7i. Thus, 0 is a respectful, most general typing
for t under 7.

2. Suppose fail E S, say, because of the i-th sub-
term. By the inductive hypothesis, there is no
typing for t; under Tip thus, there is no typing for
t under 7.

Second, suppose 7 is c(71 ,...,T.) and 2 is

f(tt, . . . , t,) in the fourth clause for match. By the-
orem 2, 0 is a typing for t under r iff it is a typ
ing for t under #{ai w ~1,. . . , a,, H rn} for some
c(al,..., a,) >= 7’ E C.

1. Suppose S = (0) or S = (0,faiZ). By the in-
ductive hypothesis, 0 is a respectful, most general
typing for t under +{a1 I+ 71,. . . , a, H 7,) for
some c(al,..., a,) >= 7’ E C. Moreover, no other
constraints defining c can produce typings for t.
Thus, 8 is a respectful, most general typing for t
under 1.

170

2. Suppose S = {fail). By the inductive hypothe-
sis, none of the constraints defining c c8n produce
typings for t under r, thus, there is no typing for
t under 7.

cl

Theorem 5 (Termination of match) mdch(7,t)
terminates for all r and t.

Proof: mutch(r, t) terminates directly if the siae oft
is one. All recursive calls of match either decrease the
size of t or leave it the same. The latter c8se occurs
only in the fourth clause for match. By theorem 3,
after at most a finite number of iterations here, match
will be called with 8 first argument that is either 8
variable or a type with an outermost function symbol.
If it is a variable, then the csll terminates directly. If
it is a type with an outermost function symbol, then a
subsequent recursive c8ll will decrease the sise oft. q

We now present several lemmas concerning mutch
that will be used to prove the consistency of our
well-typedness conditions. The first lemma shows
that instantiation of type v8riables propagates through
match.

Lemma 1 (On Instantiation) If match(r, t) = 6
then motch(rq t) = 8~ for any substitution v mapping
variables of r to types.

Proof: The lemma follows from a straight-forward in-
ductive argument over the height of the computation
tree for match(r, t). cl

The second lemma shows that, under certain condi-
tions, unification does not change the typing for vari-
ables. Throughout this paper, we assume that most
general unifiers are idempotent and relevant [Apt88].

Lemma 2 (On Unification) Let

1. var(t1) l-l var(t2) = 8,

2. mgu(tl, ta) = 8,

3. naatch(q tl) = 81, and

4. match(q ts) = 6,.

Then for all z E var(tl) n dam(6), mutch(&, 20) is
in agreement with 92.

Proof: Compare the computation tree 7’1 of
match(q tl) with the computation tree Ts of
mutch(T, ta). Since tl and. ta can be unified, these
trees 8re identical up to their leaves that are variables.
Consider any such variable z E var(&) n dam(6). Tl
records 8 type, say T’, for z while Ta makes a recur-
sive call match(s’, ~0). The typings returned at this
point appear directly in 81 and 02, thus, 8& = 7’ and
match(f, ~0) is in agreement with 192. The lemma fol-
lows directly. cl

A corollary of the above lemma is that mutch(T, tl@),
match(r, tl), and match(r, tl) are in agreement.

5 Predicate ‘Types

In this section, we define predicate types and informally
discuss type cheching. As a first step, we review the
syntax of logic programs and queries. Let 8 set P of
predicate symbols with given arity, disjoint from V, F,
and T, be given. An atom is a predicrte symbol p/n
applied to n terms over F. A program clause has the
form h :-b. where h is au atom, called the head, and
b is a list of atoms, called the body. A logic program
consists of 8 sequence of program clauses. A negative
clause, or query, has the form : - b. where b is a list of
atoms.

The following definition introduces the notion of 8
predicate type.

Definition 14 (Predicate Types) A predicate type
forp~ P haa the formp(n ,..., q,) where q ,..., q,
are types.

DeAnition 15 (Type of an Atom) Let 7Y be a fized
set of predicate types, one for each p E P. FOT any
atom A, @pe(A) is the member of V crsaociated with
the predicate symbol of A.

Predicate types are ‘intended to restrict the allowable
usage of predicates. In particular, we define well-
typedness conditions which ensure that a program re-
spects 8 set of predicate types; programs that are not
well-typed are expected to be rejected by the type
checker. These conditions ensure that every atom of
every resolvent produced during execution is consistent
with its type.

To ensure this property, we require that every sari-
able in 8 clause appear in exactly one ?ype context”.
As 8n example of the problems that can arise if this
restriction is not observed, consider the following dec-
larations.

PIlED p(int) .
PRED q(list(A)).

Under these declarations, the query :- p(X), q(X).
can lead to ill-typed resolvents such 8s :- q(o). The
problem here is that X appears 8s both 8n int and a
list (A). Similarly, the predicates

PRED r(list(A)).
r(X) :- p(X).

and

PRRD s(int,list(A)).
s(X,X).

171

can lead to ill-typed resolvents because X appears as
both an int and a list(A). Thus, we require that the
type checker reject programs where a variable appears
in more than one type context in the same clause.

We also place requirements on the circumstances in
which type variables can be instantiated. In particu-
lar, an invocation of a polymorphic predicate may make
commitments regarding its type variables, however, a
defining clause for the predicate may not. As an exam-
ple, consider the predicates

PRED p(list(A)).
PRED q(list(int)).

The query : - p(X), q(X) is acceptable since X may be
assigned the type list (int). However, the program
clause

p(cone (nil ,nil) 1.

must be rejected because, for example, it would allow
the above query to lead to the ill-typed resolvent :-
q(cons(nil,nil)).

6 Well-Typed Programs

A program/query is well-typed ifF each of its clauses is
well-typed. Intuitively, a clause is well-typed iff a typ
ing can be found for each of its atoms and these typings
are in agreement. In the following definition, we treat
predicate symbols as function symbols so mutch can be
applied to atoms.

Deflnition 16 (Well-typed Clauses)
A prognrm clause & :- AI, . . . , Ah. is well-typed iff
there exist substiZutions m, . . . , a such that

~tch(tz/pe(Ao), &)

and
m&h(type(A&, &) 15 i 5 le

are in agreement. A negative clause : - AI,. . . , At. is
well-typed iff the above conditions ezcluding & hold.

The substitutions n, . . . , m above allow the body
atoms to make commitments regarding type variables.

The following theorem shows the consistency of our
well-typedness conditions.

Theorem 6 (Consistency) Every resolvent of a
well-typed negative clause and a well-typed program
clause is well-typed.

Proof: Let

1. N = :-Br,..., Bjs be a well-typed negative
clause, in particular, let match(typ(Bi)&, Bi) 1 5
i 2 j be in agreement,

2.

3.

We

Ah. be a well-typed program
~a~ef~‘&k~l*& let mat&(type(A& Ao) and
mutch(type(Ai)Q, Ai) 1 5 i 5 k be in agreement,
and

~~t=o~;~i ikt;i,“;, - - . , Bj-)@ be WY .red-
= mgu(B1, Ao); mthout

loss of generality we assume the leftmost atom is
always selected.

will prove the resolvent N’ is well-typed by
showing mutch(typ(~)q&, 40) 1 5 i 5 k and
mutch(type(Bi)Ci, B#) 2 5 i 5 j are in agreement.

BY lemma 1, ~tch(type(Ao)C, &)
and match(type(Ai)q&, Ai) 1 5 i 5 Ic are in agree-
ment. For any 1 5 i 5 k, compare the computa-
tion tree !Z’l of match(type(Ai)~&, Ai) with the com-
putation tree T-2 of match(type(A&&, A#). These
trees are identical up to the leaves of 2’1, which
consist of variables z E var(C). For each vari-
able z E var(C) \ dam(e), the trees are identical
and therefore record the same type for z. Thus,
mutch(type(&)r)i&, A#) 1 ,< i 5 k are in agreement
for all variables in var(C) \ dam(O), in particular,
they are in agreement with match(type(Ao)<l, 4) and
match(type(Ai)q&, Ai) 1 5 i 5 le. For each vari-
able a E var(C) n dam(e), on the other hand, T.1
records a type, say T, for a while Ts makes a recur-
sive call mutch(r, zg) where var(&) E var(B1). Since
7 was also recorded for z by match(type(A~)~~, Ao),
we can apply lemma 2 and conclude that match(r, zg)
is in agreement with match(type(B1)&, B1). Thus,
mutch(type(&)q&,~g) 1 5 i 5 k are in agreement
for all variables in var(&), in particular, they are in
agreement with match(type(Bl)&, BI).

By a similar argument, match(type(Bi)&, Bill) 2 5
i < j are in agreement with match(type(B;)&, Bi)
1 5 i 5 j for all z E var(N) \ dam(0) and in
agreement with match(type(A&, A,-,) for all z E
var(&). Thus, mutch(type(A&& A#) 1 5 i 5 k
and mtch(typ(Bi)[i, Big) 2 < i 5 j are in agreement
arid N’ is well-typed. cl

As a final comment, note that a corollary of the above
theorem is that every answer substitution computed by
a well-typed program is type consistent.

7 Concluding Remarks

This paper hss presented a prescriptive type system for
logic programs that supports parametric polymorphism
and name-based subtypes. We introduced the notion of
predicate types and defined well-typedness conditions
which ensure that a program respects a set of predicate
types. We are currently implementing a type checker
that determines whether a program satisfies these con-
ditions. The only non-effective part of these conditions

172

is the substitutions m, . . . , m, occurring in the defini-
tion of well-typed clauses, that allow the body atoms to
make commitments regarding type variables. To deal
with this problem, our type checker uses a modified
version of match that returns constraints on variables
in its first argument. The constraints generated by the
atoms in a clause are collected together and solved.

In our future work, we plan to more fully explore
the use of subtypes in our system. Generally speaking,
the introduction of subtypes into logic programming
is somewhat problematic. As v example, given the
declarations

PRED p(nat).
PRED q(int).

we would like to allow queries such 88 : - p(X), q(X) .
where information flows from the subtype to the super-
type, as in the resolvent : - q(succ (0) 1. However, due
to the non-directional nature of logic programming, in-
formation may also flow the other way, as in the incon-
sistent resolvent : - p(pred(0)). Note that this prob-
lem cannot be solved simply by keeping track of the
order in which goals execute. In the above example, p
might execute first but leave X uninstantiated, in which
case q could instantiate I to prod(O). Here, a type in-
consistent answer substitution would be produced.

One solution to this problem, proposed in [DH88],
is to require input/output modes which ensure that
information flows in the appropriate direction, e.g.,

PRED p(OUT nat).
PRRTI q(Ili int) .

Another alternative, possible only in a system that sup-
ports typed unification [GM86, AKN86, Smo88], is to
constrain X to be a nat, e.g., :- p(X), X:nat, q(X).

In the type system of this paper, the only way
to formulate the above query is to explicitly define
and use a “type conversion” predicate, e.g., :- p(X) ,
int%at(X,Y), q(Y). where

PRKD int&at(int,nat).
int2nat(O,O).
int2nat(succ(X) ,succ(X)).

This predicate filters out all ints that are not nats.
We are currently exploring a more general solution to
this problem based on this notion of filtering.

References

[AKN86] H. Ait-Kaci and R. Nasr. Login: A logic
programming language with built-in inheri-
tance. Journal of Logic Programming, 3: 185-
215, 1986.

[Apt881 K. R. Apt. Introduction to logic program-
ming. Technical Report TR-87-35, Depart-
ment of Computer Sciences, University of
Texas, Austin, 1988.

[Cla79] K.L. Clark. Predicate logic as a compu-
tational formalism. Technical Report DOC
79/59, Department of Computing, Imperial
College, 1979.

[DH88] Roland Dietrich and Frank Hagl. A polymor-
phic type system with subtypes for prolog. In
Proc 2nd European Symposium on Prugram-
ming, Springer-Verlag LNCS 300, 1988.

[GM861 J.A. G g o uen and J. Meseguer. Eqlog: equal-
ity, types, and generic modules for logic pro-
gramming. In D. DeGroot and G. Lindstrom,
editors, Logic Programming: Functions, Re-
lations, and Equations. Prentice-Hall, Engle-
wood Cliffs, 1986.

[Mis84] P. Mishra Towards a theory of types in
prolog. In Proc of the International Sympo-
sium on Logic Pmgmmming, pages 289-298.
IEEE, 1984.

[MO841 A. Mycroft and R. A. O’Keefe. A polymor-
phic type system for prolog. Artificial Intel-
ligence, 23:295-307, 1984.

[MR85] P. M’ h 1s ra and U.S. Reddy. Declaration-free
type checking. In Proc Symposium on Princi-
ples of Progmmming Languages, pages 7-21.
ACM, 1985.

[Red881 Uday S. Reddy. Notions of polymorphism for
predicate logic programs. In Proc of the 5th
International Symposium on Logic Progmm-
ming. IEEE, 1988.

[Smo88] Gert Smolka. Logic programming with poly-
morphically order-sorted types. In Proceed-
ings 1st International Workshop on Alge-
braic and Logic Pmgmmming, 1988. Gaussig,
GDR.

[YS87] Eyal Yardeni and Ehud Shapiro. A type sys-
tem for logic programs. In Ehud Shapiro,
editor, Concurrent Prolog Vol. 2. MIT Press;
1987.

[Zob87] J. Zobel. Derivation of polymorphic types for
prolog programs. In Proc of the 4th Inter
national Symposium on Logic Prognrmming,
pages 817-838. IEEE, 1987.

173

