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Abstract—
The characteristics of wireless packet loss have been studied ex-

tensively. Most efforts focus on the temporal loss characteristics at
individual stations. For multicast protocols and applications, how-
ever, the relationship among losses at multiple nodes can directly
affect performance. In existing models, packet losses are generally
assumed to be spatially independent. In our experiments with an
IEEE 802.11 wireless LAN, however, we found that the losses at
multiple nodes can exhibit a certain degree of correlation. In this
paper, we attempt to quantify this correlation, and demonstrate its
effect on multicast communication protocols. Analysis and simu-
lation results show that conventional packet loss models do not ad-
equately capture the loss characteristics exhibited in experimental
traces. Therefore, we propose a new approach for modeling packet
losses that explicitly accounts for spatial loss correlation. The im-
proved accuracy of the new approach, compared to conventional
models, is demonstrated by comparing results of simulations and
experiments.

I. INTRODUCTION

Group-oriented network applications, such as multimedia
conferencing, military command and control, and video stream-
ing of live events, are typically constructed using underlying
multicast protocols. In a multicast protocol, a sender transmits
packets to multiple receivers simultaneously. Some multicast
protocols, such as those used to tranmit files, require strict re-
liable delivery of data [1], whereas others, such as those used
for audio/video streaming [2], are able to tolerate limited packet
loss due to the characteristics of the data stream. Error control
in multicast protocols is complicated by the fact that a particular
packet might be received by some receivers but lost at others,
due to disparate environmental conditions.

To predict the performance of multicast protocols through
simulation requires accurate models of packet loss on the con-
stituent networks. Unlike models for packet loss in unicast
communication, which focus primarily on temporal packet loss
behavior, models for multicast communication must also con-
sider spatial correlation in packet loss among the receiving
nodes. As one might expect, these models depend on the type
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of network. For example, research results show that there ex-
ists some degree of spatial packet loss correlation in wide area
networks, such as the MBONE [3]. An intuitive explanation
is, if a packet is lost somewhere in a multicast tree, all nodes in
the downstream branches will experience this loss. On the other
hand, most wired local area networks do not exhibit this “down-
stream effect,” since receivers are not organized hierarchically.
As a result, the corresponding packet loss models assume losses
of multicast packets are spatially independent.

In the past few years, wireless local area networks (WLANs)
have become an important component of the Internet infrastruc-
ture, and their deployment is continuing at a rapid pace. In ad-
dition to supporting unicast connections for individual mobile
users, their multicast capability make WLANs well suited to
supporting group-oriented applications. Not surprisingly, how-
ever, the packet loss characteristics of WLANs differ greatly
from their wired counterparts and require a totally different
packet loss model. Of particular interest to those researchers
studying the behavior of multicast protocols, is the degree of
spatial correlation in packet loss for multicast packets.

Wireless packet losses depend on errors at the signal level,
which have been studied extensively [4, 5]. It is commonly ac-
cepted that two major factors contribute to errors on wireless
channels: the deterministic signal energy degradation, and the
random noise and fading. Since both depend on the physical re-
lationship between the receiver and the sender (often an access
point), wireless channel errors (and hence the packet losses) ob-
served by different receivers are assumed to be spatially inde-
pendent. Such losses can be simulated efficiently using finite-
state Markov models [6]. For example, the two-state Markov
model describes wireless channels to be alternatively in either
“good” or “bad” states. In good states, few if any packets will
be lost during transmission, while in bad states, many packet
losses will occur. This model offers a reasonable approxima-
tion of wireless packet losses and is widely used due in part to
its relatively low computation overhead. More recently, higher
order Markov models [7,8] have been proposed to trade compu-
tation overhead with model accuracy. at each We refer to such
models as the independent models.

To investigate the accuracy of such models, we conducted a
large number of experiments in a IEEE 802.11 WLAN testbed.
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Somewhat surprisingly, the resultant traces of multicast packet
loss clearly exhibit a degree of spatial correlation, even when
we factor out losses due to congestion at the access point. We
attribute the resulting propagation loss correlation to two phe-
nomena. First, receivers close to a common obstruction or noise
source may experience common packet losses. Second, we
conjecture that the transmission power at the sender may vary
slightly for different packets. Therefore, two receivers at ap-
proximately the same distance from the sender are both likely
to lose a “weak” packet simultaneously.

We quantify the degree of spatial correlation using a metric,
loss density, which is the fraction of receivers experiencing a
particular packet loss. Both simulation and experimental results
show the value of loss density has significant impact on the per-
formance of multicast protocols. Based on these results, we ar-
gue that a realistic multicast packet loss model should account
for spatial correlation. Although approaches have been pro-
posed to model spatial loss correlation at the signal level [9,10],
these methods are computationally intensive and hard to inte-
grate with existing packet-level loss models used in network
simulation.

In this paper we propose an efficient multi-stage modeling
strategy to account for loss density in wireless multicasting. In
Section 2, we discuss prior work in modeling wireless losses
and multicast losses, respectively. We also formally define the
concept of loss density and demonstrate its effect on multicast
protocols. In Section 3, we introduce our experimental envi-
ronment and our trace collection procedure. We analyze the
packet traces and quantify the loss correlation in Section 4. In
Section 5, we describe the approach for modeling correlated
packet losses, and compare the results with that of the indepen-
dent models as well as experimental traces. We conclude the
paper in Section 6, summarizing the problem and our solution,
and pointing out possible future research directions.

II. BACKGROUND

In this section we present the background of wireless packet
loss modeling as well as the related work on spatial loss correla-
tion. We also define the concept of loss density and demonstrate
its effect on multicast protocols.

A. Wireless Packet Loss Modeling

Experimental packet traces reveal that packet losses are
bursty in wireless networks [7, 11]. In a loss burst, most of
the transmitted packets will be lost, while in a loss-free burst,
there are few or no packet losses. It is straightforward to use
a two-state Markov chain to model the behavior of a wireless
channel. The Gilbert-Elliot model [12, 13] is well known and
widely used in the research community.

In this model, each channel maintains a channel status flag,
which can be either “good” or “bad”. While the channel is in
the good state, there is very few packet loss; while in the bad
state, most packets are lost. The model has several parameters:
temporal error correlation, probabilities of a good or bad chan-
nel, and the probabilities of error given that the channel is in
the good or the bad state. To mitigate the computational com-
plexity, a simplified version of the Gilbert-Elliot model is also

in use. In this version, if a packet loss occurs while the chan-
nel is in the good state, the channel immediately switches to
the bad state. Similarly, whenever a packet is received success-
fully while the system is in the bad state, the channel switches
to the good state. Let us assume the probabilities of staying
in the good state and the bad state are � and

�
, respectively.

The probability of any packet loss occurring in the good state is����� ��� , and the probability of any successful packet delivery in
the bad state is

�	�
� � � . The model is depicted in Figure 1. We
refer the Gilbert-Elliot model to this simplified version in this
work.

Fig. 1. The simplified Gilbert-Elliot model.

In this model, packet losses are temporally independent.
Therefore, both the loss burst and loss-free burst lengths are
geometrically distributed. As a result, the good-to-bad transi-
tion probability

����� ��� is set to the reciprocal of the average
loss-free burst length, as measured in a real network, and the
bad-to-good transition probability

����� � � is set to the recip-
rocal of the average loss burst length [14]. When generating a
trace from the model, the length of each (good or bad) burst is
given by


�� ������������������������ � ,
where ! is a uniformly distributed random variable with values
between 0 and 1, " is the good-to-bad or bad-to-good transition
probability, depending on whether it is the loss burst or loss-free
burst that is under calculation.

The Gilbert-Elliot model is simple to implement. However,
the distributions of loss or loss-free burst length are usually
more complicated in real traces. In particular, it is difficult to
use one distribution to model the bursts. In [15], Nguyen et
al. collected a large number of packet traces in a 2Mbps Lu-
cent WaveLAN network. Based on the traces, the burst length
distribution is split into several segments. In each segment the
distribution is set to a modified exponential or Pareto function
with parameters set to best match the real trace in that segment.
The values of the parameters are obtained by applying linear
regression. The authors showed that this composite model is
more realistic than the simple Gilbert-Elliot model in terms of
cumulative distribution function of the burst length distribution.
An alternative approach is to use higher order Markov process
to model packet losses [7, 8]. This method is usually more ac-
curate than the two-state model at the expense of higher com-
putational overhead. Since our focus is on loss density and not
on the model for losses at individual receivers, we adopt the
simplified Gilbert-Elliot model in this work as the individual
loss model for wireless receivers. However, our basic approach
could be used in combination with other individual loss models.
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B. Spatial Loss Correlation

The multicast packet loss correlation in wide area networks
has been addressed in a number of research works. In [3],
Yajnick et al. collected packet traces at multiple sites in the
MBONE multicast network. They calculated the loss covari-
ance in each pair of traces and observed certain degree of spa-
tial loss correlation among multicast sites. In [16], the impact
of loss correlation is addressed. The authors studied group loss
probabilities in shared loss multicast communications for the
design of forward error correction algorithms. They presented
the cumulative distribution function of successful delivery in a
multicast tree, as well as the expected value of packet loss burst
length and other properties.

For local area networks, however, spatial loss correlation has
not been studied extensively. One reason is that the packet loss
rate is extremely low in wired LANs, while the demand for
multicast applications in relatively high-loss wireless LANs is
still relatively small. With the advent of mobile and ubiquitous
computing era, this situation is likely to be changed. Collabo-
rative and interactive learning in the classroom, with temporary
wireless LANs comprising students’ laptop computers, is one
example of wireless multicast applications. Other examples in-
clude management of factories and military installations, com-
munication aboard ships, temporary disaster relief sites, and so
forth.

The spatial correlation of wireless losses has been well stud-
ied at the signal propagation level. It is discovered that the sig-
nal strength at multiple antennas is correlated if the antennas are
close to each other [10,17]. Since the wireless signal strength is
modeled as random variables, and filtering an uncorrelated ran-
dom process usually leads to a correlated random process, the
modeled signal strength array with a desired covariance matrix
can be generated by multiplying the uncorrelated process with
any square root of this matrix [18]. Different from these works,
we focus on modeling spatial correlation at the packet level in
this study. Moreover, we noticed there exists loss correlation
even between stations that are well separated.

C. Effects of Loss Density

To quantify the significance of the spatial loss correlation,
we introduce the concept of loss density, which defines the per-
centage of the receivers that lose a particular packet. Formally,
let � be the total number of receivers, and �

��� � the number of
receivers that lose packet

�
. Then the loss density for packet

�

is, simply:

�� ��� � ��� �
	��� .

Loss density is a function of packet number and hence of
time. Its value reflects the overall correlation of packet losses
among all multicast group members at a particular point in
time. Loss density greatly affects the performance of multi-
cast protocols. For example, in NACK-based reliable multicast
protocols [1], each receiver sends retransmission request to the
sender when a packet loss is detected. The number of receivers
sending retransmission request, or equivalently the loss density,
will determine the intensity of this feedback traffic. Since the
feedback shares the communication channel with the forward

data traffic in wireless LANs, the intensity of the feedback will
affect the throughput of the reliable multicast protocol. More-
over, in the IEEE 802.11 infrastructure mode [19], the uplink
feedback traffic will cause queueing losses at the Access Point
(AP) if the sender is located on a connected wired network [20].

In Figure 2, we plot the simulation results of data packet ser-
vice time (the time needed to acquire the channel and transmit
a packet) at the AP versus the number of feedback-sending re-
ceivers. In the simulation, the packet size is set to 1400 bytes
and the receivers send aggregated feedback for every group of
20 packets. The figure clearly shows the data packet service
time will increase as more receivers lose packets and send feed-
back simultaneously. The slowdown of the data traffic is caused
by the increasing degree of channel contention imposed by the
feedback traffic at the AP. Clearly, high loss density can dra-
matically affect communication performance.
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Fig. 2. Effect of feedback traffic on AP service time.

If the sender is located on a wired network, as in many proxy
systems [21, 22], the increased service time can cause not only
slowdown, but also queueing losses at the AP. If the sender is
slow to adjust the data rate, the incoming data packets will soon
use up all the buffer space at the AP. We observed this phe-
nomenon in our experiments, in which we configured a wired
sender to multicast packets to six wireless receivers. We divide
the transmission into nine continuous stages, each of which is
approximately 5 minutes long. In statges 1, 3, 5, 7, and 9, none
of the receivers sends feedback to the sender. In stage 2, one
receiver sends feedback by unicasting. In stage 4, one receiver
sends feedback, but using multicast instead of unicast. In stages
6 and 8, five receivers send feedback by unicasting and mul-
ticasting, respectively. We plot the average loss rate in each
stage in Figure 3, which shows that packet loss is exacerbated
when more receivers start sending feedback packets. Moreover,
multicasting feedback causes more data packet losses than uni-
casting does [20]. These results indicate that the loss density,
which directly affect the amount of feedback from receivers,
has significant impact on the performance of reliable multicast
protocols in wireless LANs.

III. DATA COLLECTION

In this section we describe the data collection procedure used
in this study. Our experimental environment, depicted in Fig-
ure 4, consists of a wired LAN and a wireless LAN. The wired
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Fig. 3. Effect of feedback traffic on packet loss.

LAN is a 100Mbps Fast Ethernet that connects several worksta-
tions. The wired LAN is extended by a Cisco Aironet wireless
LAN through a Cisco Aironet 340 Series Base Station. The
wireless stations include desktop computers and Dell laptop
computers, each configured with a Cisco Aironet 340 or 350
Series Wireless Card. The Aironet network is IEEE 802.11b
compatible, using CSMA/CA access control and operating at
2.4GHz. The maximum raw bit rate is 11Mbps, although the
achievable thoughput is much lower in practice [23].

Fig. 4. Experimental environment.

The workstations are mainly Dell desktop computers with
1GHz Pentium III CPU and 512MB memory. The laptop com-
puters have either a 1GHz Pentium III CPU or a 300MHz CPU,
and 256MB memory. Both the desktop and laptop comput-
ers are configured with either Windows NT or Windows 2000.
We built two programs using the Windows socket interface: a
sender program and a receiver program. In the experiments we
configured the sender process on a wired workstation, while the
receivers were located on laptop computers or on desktop com-
puters with wireless network interface cards. This is a typical
scenario for content distribution applications involving wireless
stations, where the sender might be a proxy redirect the multi-
cast flow from other remote senders.

We conducted a series of experiments and collected packet
traces. The sender program transmits data packets at a specified
rate to the set of receivers by multicasting. Each data packet
is assigned a unique sequence number. The receiver program
checks the sequence number of the received packets and records
the sequence numbers of lost packets. The program saves these
data into packet trace files together with information on corre-
sponding loss burst lengths. From a saved trace we can calcu-
late the average loss burst length, average loss-free burst length,

standard deviations and burst length distributions. These values
reflect the basic characteristics of packet loss patterns.

Packet losses in a wireless LAN can be caused by reasons
other than wireless propagation errors, for example, conges-
tion. Congestion can happen at the access point when the data
rate of the wired network is greater than the bandwidth of the
wireless network, and at receiver when the receiver program
is not running fast enough to process packets and empty ker-
nel buffers before new packets arrive. We have observed very
high packet losses when packets are transmitted without flow
control [20]. Such losses are very likely caused by buffer over-
flow. Since we are interested in modeling propagation losses, it
is important to exclude these “non-propagation” and protocol-
dependent losses from the trace files.

Applying flow control is an effective approach to reduce con-
gestion and queueing losses. Taking into account the theoreti-
cal saturation throughput of approximately 7Mbps in an IEEE
802.11b network [23], we use flow control at the sender to
limit sending rate at 6Mbps. In case no other traffic exists on
the wireless channel, this action will greatly reduce the packet
losses caused by congestion. We also collected packet traces
at much lower sending rates, such as 2Mbps. At such sending
rate, our receiver programs are always able to keep up with data
arrivals.

In the experiment, we set up ten wireless receivers, including
laptops and wireless card installed desktop computers. They
were scattered around the AP, from within 2 meters to about
30 meters away. The configuration and location of the receivers
are shown in Figure 5 and Figure 6. Between the two rooms and
between the room and the corridor are concrete walls. There are
partitions in each room that separate the receivers. We collected
16 packet traces, each 15 minutes long. The packet size is 1400
bytes. The sending rate was set to either 6Mbps or 2Mbps, and
there was no other traffic in the wireless LAN.

As mentioned earlier, a critical prerequisite in developing a
propagation loss model is to remove any queueing losses from
packet traces. Although we inserted inter-packet delays at the
sender to limit the sending rate below 6Mbps, and there was no
other traffic in the wireless channel, we cannot guarantee that
queueing loss does not sometimes occur. One possible cause of
queueing loss is the irregular time-consuming operations taking
place at the access point, such as the transmission and process-
ing of management packets [19]. Since our focus is to model
the wireless multicast propagation losses, and since the amount
of queueing losses in packet traces will affect the distribution of
loss density, we need to exclude all queueing losses to generate
an accurate model. A queueing loss will produce high loss den-
sity value (in fact, it will equal 1 for any packets lost). That is
to say, a queueing loss at the access point will lead to a packet
missing at every receiver. Therefore, only a packet loss shared
by all receivers could be a queueing loss. We use this prop-
erty to guarantee that queueing losses are eliminated from the
packet traces.

Let us assume packet losses are spatially independent. We
can easily show how likely it is that a propagation loss common
to all nodes will occur. Let � be the number of receivers, "�� be
the packet loss rate at receiver

�������	��
 � . The probability
that a common propagation loss occurs is " �
�

� " � . (Plugging
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 node1 node2 node3 node4 node5 node6 node7 node8 node9 node10 

Type D L D D L L L D L L 

CPU(MHz) 2*400 1000 1000 1000 300 1000 1000 2*800 1000 1000 

Memory(MB) 256 256 512 512 256 256 256 256 256 256 

Distance(m) 2 2 4 5 5 10 10 10 20 30 

D: Desktop, L:Laptop 
 

Fig. 5. Receiver configurations.
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Fig. 6. Receiver locations.

in the average loss rates from our traces, as shown in the next
section, and setting � � � �

, we obtain the probability to be
almost 0.)

The occurrence probability of a common propagation loss
is extremely low in a typical multicast wireless LAN environ-
ment (where ����� � "�� 
 ��� �

). Consequently, it seems safe
for us to take all occurrences of such common losses as queue-
ing losses and exclude them from the packet traces. In reality,
however, packet losses at multiple receivers are not indepen-
dent. A packet in propagation with weak signal power will be
probably lost at all receivers. On the other hand, the average
loss rate does not reflect the actual loss probability at a partic-
ular time point due to the burstiness of wireless losses. There-
fore, using this approach to exclude queuing losses might also
delete quite a few propagation losses. To estimate the degree
of this overkill, we calculate the distribution of loss density in
the original traces. Since all traces exhibit similar loss density
distribution, we plot only one of them in Figure 7. The fig-
ure shows the probability of a loss common to all nodes in the
trace is significantly higher than it should be if it were a prop-
agation loss, given the trend in loss density at 0.7, 0.8, 0.9 and
1. On the other hand, the figure also shows that the percentage
of losses common to most or all nodes is very small, approx-
imately 0.0001. Therefore, even if we exclude all the com-
mon losses from the traces, the burst length distribution in the
traces will not be significantly affected, while such processing
of the traces will greatly increase the accuracy of propagation
loss density estimation.

IV. DATA ANALYSIS

In this section, we examine the collected packet traces and
show the analysis results of one typical trace group. First we
choose a typical trace at one receiver to study the local packet
loss distribution. Then we calculate the temporal loss pattern
parameters at each receiver, such as average loss burst length
and loss-free burst length. The results clearly show the effect of
distance on overall packet loss rate. The spatial correlation is
then studied. We calculate the correlation coefficient for each
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Fig. 7. Loss density distribution.

pair of receivers. The results as well as the distribution of loss
density are presented.

A. Temporal Loss Characteristics

We choose a typical trace and plot it in Figure 8. In the fig-
ure, although the average loss rate is very low, the receiver ex-
periences severe losses at certain time points. The loss burst can
occasionally be as long as several hundred packets (not shown).
However, loss bursts are only several packets long on average,
and most of them are single packet losses. On the other hand,
the loss free burst, or the distance between two consecutive loss
bursts, is usually several hundred packets long. A few loss free
bursts are even longer than 10,000 packets (also not shown).
Therefore, applications running over wireless networks might
experience no packet loss at all for a long period of time, but
then lose many packets in a burst.

We plot the average loss rate, average loss burst length and
average loss-free burst length at the 10 different receivers in
Figure 9. The traces at different receivers exhibit different
packet loss patterns. Basically, the distance from the AP de-
termines packet loss rate at a receiver. The receivers that are
more than 20 meters away from the AP exhibit poor perfor-
mance, while there is little performance difference among re-
ceivers that are located within 10 meters from the AP. From
Figure 9 we see that the average loss burst length is not corre-
lated to the distance from the AP to the receiver. On the other
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Fig. 8. Typical packet trace in wireless LAN.

hand, the average loss-free burst length is larger when the re-
ceiver is closer to the AP. In other words, loss-free burst length
is inversely proportional to loss rate. Therefore, a high loss rate
is mainly due to the high frequency of loss bursts instead of
large loss bursts.
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Fig. 9. Packet trace statistics.

Distance is not the only factor that affects the loss pattern
at a station. The environment around a station determines the
level of location-dependent random noise interference, thus it
also affects the loss pattern. Sometimes the loss caused by in-
terference may be more significant than the distance-dependent
loss. We attribute the anomalous behavior in Figure 9 (such as
the loss rates of nodes 6, 7, 8, the loss burst length at nodes 2
and 6, and the loss-free burst length at nodes 4 and 5) to such

factors.

B. Spatial Loss Correlation

As described in [24], wireless loss is caused by distance-
dependent signal degradation and location-dependent random
interference. In a multicast group, loss patterns vary at differ-
ent wireless stations because losses are distance- and location-
dependent. On the other hand, in our experiments, as well
as in all other one-to-many multicast applications, the packet
source is the same for all receivers. When packets are trans-
mitted from a wired station to wireless network through the AP,
variable conditions at the AP such as transmission power level
changes will affect the packet loss probability at receivers. Con-
sequently, those losses are likely correlated.

We developed a program to compare packet-by-packet status
(received or lost) in two traces. Let � be the total number of
packets, � be the number of losses in the first trace, � be the
number of losses in the second trace, � be the number of pack-
ets lost in both traces, we calculate the correlation coefficient of
each trace pair using the following formula:
�����	�
��� 
������������ � ��� ���� ���� � ���� ���� ��

� � ������� �"!# � �
$%������&'� # !(�)$%�(�
!*& .

In Figure 10 we plot the correlation coefficient for each pair of
traces. The figure shows that receivers located at similar dis-
tance from the AP exhibit relatively high loss correlation. This
is due to the fact that they share a large number of distance-
dependent losses. However, the absolute value of the correla-
tion coefficient is low, which implies that, besides the variation
of distance-dependent losses, there are quite a few losses that
are location-dependent random losses. On the other hand, the
receivers located at different distances from the AP exhibit very
low loss correlation. In fact, the correlation coefficient is near
zero, which means the losses are almost independent among
those receivers.
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To reflect the overall loss correlation in the group instead of
in each pair, we calculate the loss density of the traces. Ob-
viously, packet loss correlation has significant effect on this
function. To show the effect, we compare the loss density of
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the real traces with that of the traces generated by the indepen-
dent model. We first consider an ideal case. Assume temporal
packet loss distribution is Bernoulli, and spatial distribution is
IID (Identical Independent Distribution). Let the loss rate at
each receiver be " , and let the number of receivers be � . Then
the probability of � out of � receivers simultaneously suffer-
ing a loss is given by the probability mass function of Binomial
distribution:
� �

� � ��� �
� � ��� " � ��� �

� � � ��� " � � ���
� " � � � � .

Since the probability of at least one receiver suffering a loss is
	 � �
� �	� � " � � ,

the ratio of � -receiver losses to all losses is equivalent to the
conditional probability of an � -receiver loss occurrence given
the fact that a packet is lost:

� �
� � ��
�� � �

� .

This is also the probability mass function of loss density
�� . We

set " to the mean of the average loss rates across all receivers. In
Figure 11 we plot the distribution of loss density from the real
traces and compare it with that of the analytical results. (The
value corresponding to loss density 1 is absent in the real traces
since the common losses have been excluded.)
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Fig. 11. Loss density comparison.

The naive assumption of temporally even distribution in the
above analysis does not hold since we know wireless losses are
bursty. To make a more accurate comparison, we generate in-
dividual traces from the Gilbert-Elliot model for each receiver,
with the good-to-bad transition probability set to the reciprocal
of the average loss free burst length, and the bad-to-good tran-
sition probability set to the reciprocal of the average loss burst
length. We calculate the distribution of loss density from the
generated trace and also plot it in Figure 11 (simulation trace
with independent losses). The distribution shown is the average
of five runs in which the random seeds of trace generation were
varied. No values correspond to loss density above 0.4 because
no such losses occur in the generated traces.

It is clear that the independent model significantly underesti-
mates the probability of high loss density losses. Although the
absolute value of the probability for those losses is very low, a
single such occurrence may significantly affect the performance
of multicast applications. As we saw in Figure 2, the increased

service time can lead to an avalanche effect, especially when
the multicast group is large. Figure 11 also implies that the
loss density distributions are similar among the two indepen-
dent models, regardless of the actual loss models used at the
individual receivers. Therefore, the correlated model that we
will describe in next section is orthogonal to any approaches
aiming to improve modeling accuracy at individual stations.

V. MODELING SPATIAL LOSS CORRELATION

In this section we introduce our approach of integrating spa-
tial correlation constraint into the independent temporal packet
loss models. We use loss density constraint for illustration.
First we describe the general strategy. Then we present the pro-
cedure of loss density modeling. Next, three algorithms are
proposed for correlating independent packet losses. The per-
formance of these algorithms is compared and the statistics of
the resulting correlated packet losses are presented.

A. The General Strategy

To comply with the loss density constraint, packet losses at
receivers in a multicast group should not be independently mod-
eled. The basic idea of our multi-stage approach is to indepen-
dently generate packet traces for each receiver at first, using
conventional models (for example, using Gilbert-Elliot model).
The parameters of these models are set according to the loca-
tion of the receivers, as well as to the interference scenario of
the multicast transmission. The generated traces are then mod-
ified so that the overall group loss satisfies the loss density con-
straint.

Specifically, we first determine the loss density for each
packet. Then the receivers that should experience packet loss
are explicitly selected. Our goal is to minimize the chance of
conflicts between the loss density requirement and the tempo-
ral models at individual receivers. The strategy is to rearrange
the temporal order of either loss density random process or lo-
cal packet loss bursts to avoid such conflicts. In the resulting
traces, the loss density constraint is fully satisfied and the burst
length distribution of each individual model is not significantly
changed. On the other hand, the temporal order of bursts spec-
ified by the models may be compromised. For example, an ap-
plication that is exposed to heavy losses at the beginning of its
lifetime in independent model might suffer heavy losses at the
end instead of the beginning in the correlated model due to re-
arrangement of loss bursts. However, these kinds of temporal
order changes will unlikely have more significant impacts on
the multicast applications than the loss density does. Moreover,
most wireless loss models do not specify the modeling accuracy
of loss temporal orders. Therefore, it is worthwhile to make this
trade off.

Our approach supports any modeling strategy for both loss
density and individual local packet losses. In fact, it operates
on generated traces and does not directly involve mathematical
modeling. As an example, we next describe how to generate a
loss density distribution that matches the real loss density.
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B. The Loss Density Distribution

The first step of our approach is to determine the loss density.
We plot the CDF of the loss density of our traces in Figure 12.
To find the distribution in the high loss-density section, we plot
the function (1-CDF) on a logarithmic graph in Figure 13. Since
our primary goal here is to show how the approach works, we
use a straight line to approximate the (1-CDF) function on the
logarithmic graph to avoid unnecessary complexity. Therefore,
the loss density is modeled as an exponential distribution and
the value of the parameter � is obtained by applying regression.
For this particular trace group, the value of � is 15.6404. The
resulting CDF is also plotted in Figure 12 and it matches rela-
tively well to the real data. Now we can obtain the loss density
of each packet from the formula

� � � � � ������ ,

where ! is a uniformly distributed random variable with val-
ues falling in the range of � ������� �	� � � to 1.
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Fig. 12. Loss density CDF.
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Fig. 13. log(1-CDF) of loss density.

C. Correlating Packet Losses

Next we select the receivers that are subject to loss of the cur-
rent packet. Due to the constraint of loss density, it is possible
that we have to set some receivers to loss-free state even if their
local models demand them to be in loss state, or vice versa. This
preemption of loss/loss-free state changes the length of current
burst and affects the loss/loss-free burst length distribution as
well as the local packet loss rate. Our goal is to minimize the
impact of such changes.

To illustrate the behavior of our algorithms, we use an � ��

matrix � to denote the global packet delivery status, where �
is the number of total packets transmitted, and 
 is the number

of receivers in the group. The value of the matrix element � ��

can be either 0 or 1, where 0 denotes the

�
th packet is success-

fully delivered to receiver � , while 1 means the packet is lost at
receiver � . Let another ����
 matrix ��� be the global packet
delivery status after the processing. Let �� be the loss density
vector and �� be the � � ���	� vector. In other words, �� � denotes the
loss density at the

�
th packet, and �� � and �� � � denotes the real or

expected � � ���	� , or equivalently, the number of receivers losing
the
�
th packet. Formally, �� � �����
�� � � ��
 , and �� � � � �� � � 
 .

Let �! 
 denote the number of packet losses added to receiver �
due to preemption, and let �" 
 � � �

�#� � � ��
 be the total number

of losses at receiver � . Moreover, let �$ 
 �&%')(
� be the average

packet loss rate at receiver � .
We propose three algorithms for correlating packet losses.

The first is called Sequential Processing (SP) algorithm. This
is a simple and straightforward algorithm. It processes packet
losses sequentially using only current loss status. The second
is called Loss Density Rearrangement (LDR) algorithm. This
is an enhanced version of SP algorithm. It rearranges loss den-
sity values in order to minimize the number of affected packets.
The third is called Loss Burst Rearrangement (LBR) algorithm.
It rearranges loss and/or loss-free bursts in order to minimize
the changes on burst length distributions. All these algorithms
can generate packet loss traces that satisfy the loss density con-
straint. However, each algorithm has different advantages and
disadvantages. Subsequently we describe these algorithms in
detail.

1. Sequential Processing (SP) Algorithm

The SP algorithm works as follows: at each step
�
, the algo-

rithm calculates the difference between the real and expected
width �� � and �� � � . If the real width is greater than the expected
width, then we need to select �� �

� �� � � receivers in loss state
and change their states to loss-free. Similarly, if the real width
is less than the expected width, then we need to select �� � � � �� �
receivers in loss-free state and change to loss state. We always
select the eligible receivers with higher �! 
 values for loss to
loss-free transitions and lower �! 
 values for loss-free to loss
transitions in order to minimize the changes to local packet loss
rate. The algorithm is shown in Figure 14.

Algorithm SP
begin

Initialize * , +, , +,.- , +/0 �21
while (

04365
) 7

/* loop until all packets have been processed */8:9<;
if ( +,>=4? +,.-@= ) 7

/* more receivers lost packet
0

than expected */
/* loss to loss-free transition */
for ( A �21 ; A 3 +,B=DC +, - = ; AFE6E ) 7

/* find ( +, = C +, - = ) receivers that can change to loss-free
state from loss state */

if ( GIHKJML�NPO�O Q�R�S�TVUWHXJ 84Y SZ* =\[ ] � � N^S
/* this is a loss-state receiver having not been consid-

ered */
( _`H - JML�NIO�O QaRcbdTeUWH - J 84Y �Df +/ ]	gih +/ ] Y
/* this receiver has the least number of added losses

*/ ) 7
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8 9<8 � H
/* select receiver H for state transition */

* =\[ ] �21
/* change from loss state to loss-free state */

+/I]>C C
/* update the count of added losses for this re-

ceiver – removing a loss is considered as adding a minus number
of loss */ �

/* end of if */�
/* end of for */�

/* end of if */
else if ( +,B= 3 +,>-#= ) 7

/* less receivers lost packet
0

than expected */
/* loss-free to loss transition */
for ( A �21 ; A 3 +, - = C +,B= ; A E E ) 7

/* find ( +, - = C +, = ) receivers that can change to loss state
from loss-free state */

if ( GPHXJ L�NIOWO QaR�SZTeUWHKJ 84Y S�* =c[ ] � � 1 S
/* this is a loss-free-state receiver having not been

considered */
(_ H - JML�NPO�O Q�Rcb TeUWH - J 84Y*� f +/ ]�g�� +/ ] )
/* this receiver has the largest number of added

losses */ ) 78 9<8 � H
/* select receiver H for state transition */* =\[ ] � N
/* change from loss-free state to loss state */+/ ] E E
/* update the count of added losses for this

receiver */ �
/* end of if */�

/* end of for */�
/* end of if */0 E6E /* processing the next packet */�

/* end of while */
end

Fig. 14. The Sequential Processing algorithm.

The major advantage of the SP algorithm is its simplicity. It
does not need to maintain the entire global packet delivery sta-
tus matrix � , and is fast on processing packet losses. There-
fore, the SP algorithm is the most suitable for online processing.
Its computational complexity is � �

� 
 � . However, it may sig-
nificantly change the local packet loss statistics in both packet
loss temporal order and burst length distribution. Let " be the
total number of rows where the expected width �� � � is non-zero.
Then in the worst case, there are " 
�� " packets of which the
loss state is toggled.

2. Loss Density Rearrangement (LDR) Algorithm

The LDR algorithm works as follows: it first sorts the real
and expected width vectors �� and �� � in descending order, then
processes packet losses in this order. At each step

�
, the algo-

rithm selects the packet (row) corresponding to �� � and adjusts
the loss status of this packet at each receiver using the same
strategy as in the SP algorithm. It terminates when both �� � and
�� � � becomes zero. The algorithm is shown in Figure 15

Algorithm LDR
begin

Initialize * , +, , +, - , +/
Sort +, and +, - in descending order, let Index(

0
) be the original

row index of the
0
th row after sorting

0 �21
while ( +,B= ? 1 S +,.-@=i? 1 ) 7

/* loop until all packets have been processed */
/* if both +, = and +,>- = are zero, then no further processing is

needed since the subsequent +, = and +,>- = are all zero */8:9<;
if ( +,B=4? +,>- = ) 7

/* more receivers lost packet
0

than expected */
/* loss to loss-free transition */
for ( A �21 ; A 3 +,B=DC +, - = ; AFE6E ) 7

/* find ( +, = C +, - = ) receivers that can change to loss-free
state from loss state */

if ( GIHKJML�NPO�O Q�R�S�TVUWHXJ 84Y SZ*	��

�
��� $�� & [ � � � N S
/* this is a loss-state receiver having not been consid-

ered */
( _`H - JML�NIO�O QaRcbdTeUWH - J 84Y �Df +/ ]	gih +/ ] Y
/* this receiver has the least number of added losses

*/ ) 78:9 8 � H
/* select receiver H for state transition */*���

����� $�� & [ � �21
/* change from loss state to loss-free state. Index(i)

returns the row index corresponding to the current value of +, = and+, - = */
+/ ] C6C

/* update the count of added losses for this receiver –
removing a loss is considered as adding a minus number of loss */�

/* end of if */�
/* end of for */�

/* end of if */
else if ( +, = 3 +,.- = ) 7

/* less receivers lost packet
0

than expected */
/* loss-free to loss transition */
for ( A �21 ; A 3 +,>- = C +, = ; AFE6E ) 7

/* find ( +, - =DC +,B= ) receivers that can change to loss state
from loss-free state */

if ( GIHKJML�NPO�O Q�R�S�TVUWHXJ 84Y SZ* ��

�
��� $�� & [ � � � 1 S
/* this is a loss-free-state receiver having not been

considered */
( _`H - JML�NIO�O QaRcbdTeUWH - J 84Y �Df +/ ]	g � +/I] )
/* this receiver has the largest number of added

losses */ ) 78:9 8 � H
/* select receiver H for state transition */

* ��

����� $�� & [ � � N
/* change from loss-free state to loss state. Index(i)

returns the row index corresponding to the current value of +, = and+,>- = */
+/I] E6E

/* update the count of added losses for this receiver
*/ �

/* end of if */�
/* end of for */�

/* end of if */0 E E /* processing the next packet */�
/* end of while */

end

Fig. 15. The Loss Density Rearrangement algorithm.

Compared with the SP algorithm, the major advantage of the
LDR algorithm is that the resulting delivery status ��� is more
similar to the original status � than that of the SP algorithm
on packet loss temporal order. In other words, the number of
packets whose loss state is toggled is minimized. This is due
to the fact that we paired off the non-zero real and expected
width in descending order so that in each row the number of
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state changes is minimized and the number of rows that are af-
fected is also minimized. On the other hand, the LDR algorithm
is not sequential. It needs to know the width of all rows before-
hand to sort the width vectors so that it is not suitable for on-
line modeling. Moreover, it needs to maintain the entire global
packet delivery status matrix � . The computational complex-
ity is � �

��������� � � 
 � .
3. Loss Burst Rearrangement (LBR) Algorithm

The LBR algorithm rearranges the temporal order of
loss/loss-free bursts in order to satisfy the loss density con-
straint. The algorithm works as follows: it maintains two
preempted-burst lists, one for loss burst and another for loss-
free burst, and two preempting-burst lists for each receiver. At
first, it scans the packet loss states and generates a loss burst and
a loss-free burst list at each receiver. Then it processes packets
row by row like in the SP and LDR algorithms. At each step

�
, it

determines how many receivers need to change their packet loss
state and selects a set of receivers. The selection strategy will
be described later. For each selected receiver, the effect of state
change is expressed as the change of bursts. If the original state
is loss, then the receiver is in a loss burst. Assume the loss burst
starts at packet � , and the length of this burst is � , By changing
the state to loss-free at

�
, we effectively replaced the loss burst

of length � by a new loss burst of length
� � � . We call the

original burst as preempted burst and the new burst as preempt-
ing burst. To maintain the burst length distribution, we need to
keep the preempted burst for later usage and match an unused
original burst to the preempting burst. On the other hand, from
the position

�
we started a new loss-free burst. We also need

to select an unused original loss-free burst as this new burst in
order to minimize the impact on burst length distribution.

We perform the burst management as follows: for the pre-
empted loss burst

�
, we scan the preempting-loss-burst list at

the receiver. If we find a burst
� � in the preempting-loss-burst

list that has the same length as the preempted burst
�

, which
means a non-original loss burst

� � with the same length has
been used somewhere and we can image it is the preempted
burst

�
being used there, then we do not need to keep the pre-

empted burst
�

(since it has been used if we take
� � as

�
), nor

we need to keep
� � anymore since it now becomes an “original”

burst. So we simply mark
�

as “used” and remove
� � from the

preempting-loss-burst list. We call this process as “neutraliza-
tion”. If no such non-original burst is found, we put

�
into the

preempted-loss-burst list.
For the preempting loss burst, we scan the preempted-loss-

burst list for the chance of neutralization. If a matching burst is
found, then it is removed from the preempted-loss-burst list and
marked as “used”, and the preempting loss burst is discarded.
Otherwise, we scan the original loss burst list for the chance
of neutralization, if the content of the entire list is available.
If no such unused original loss burst is found, then we put the
preempting loss burst into the preempting-loss-burst list.

For the new loss-free burst starting at the current position,
we take the first burst in the preempted-loss-free-burst list. We
remove this burst from the list, and use it as the new loss-free
burst. We do not mark it as “used” at this time since it may be
preempted again at the next step. If the preempted-loss-free-

burst list is empty, then we take the first unused burst in the
original loss-free burst list, and use it as the new loss-free burst.
The whole processing is similar if we need to change the state
from loss-free to loss at step

�
.

We can see from the above description, that the preempted-
burst lists contain bursts that should have been used but have not
been really used yet. On the other hand, the preempting-burst
lists contain bursts that should not be used but have anyway
been used somewhere. In order to maintain the burst length
distribution, we should keep the size of the lists as small as
possible. Therefore, we always select the receivers at each step
that can reduce the size of their lists through the processing at
this step. If no such receivers exist, then we select the receivers
of which the sum of the size of the four lists is minimum in
order to avoid buffer overflow. The LBR algorithm is shown in
Figure 16.

Algorithm LBR
begin

Initialize * , +, , +, - , +/
Generate a loss burst list and a loss-free burst list for each

receiver0 �21
while (

04365
) 7

/* loop until all packets have been processed */8:9<;
if ( +, = ? +, - = ) 7

/* more receivers lost packet
0

than expected */
/* loss to loss-free transition */
for (each receiver H ) 7

/* check receivers one by one to see if it is eligible for
state transition */

if ( TeUWHXJ 84Y S��
	���
���������������U��\b�� Y S (
/* this is a loss-state receiver having not been consid-

ered */
PringB(H ) J PredLBList(H ) �
/* the current preempting burst is found in the preempted

loss-burst list */
PredB(H ) J PringLBList(H ) �
/* the current preempted burst is found in the preempting

loss-burst list */
( _`H - JML�NIO�O QaRcbdTeUWH - J 84Y SiH�� � H - �Df! 0#"%$ 8 0#& � UWH Y h 0#"'$ 8 0(& � UWH - Y )
/* this receiver has the least number of in-list (sus-

pended) bursts */
) 78:9 8 � H

/* select receiver H for state transition */�
/* end of if */

if ( ) 8 ) � � +,B=DC +, - = ) break
/* found enough receivers */�

/* end of for */
for (each receiver HXJ 8 ) 7

/* process each selected receiver */
if (PringB(H ) J PredLBList(H )) 7

/* the current preempting burst is found in the preempted
loss-burst list */

PredLBList(H ) 9 PredLBList(H )- PringB(H )
/* remove the current preempting burst from the

preempted loss-burst list */�
else 7
/* the current preempting burst is a new burst not in

the preempted loss-burst list */
PringLBList(H ) 9 PringLBList(H ) � PringB(H )
/* add the current preempting burst to the preempting

loss-burst list */
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�
/* end of if */

if (PredB(H ) J PringLBList(H )) 7
/* the current preempted burst is found in the preempting

loss-burst list */
PringLBList(H ) 9 PringLBList(H )- PredB(H )
/* remove the current preempted burst from the pre-

empting loss-burst list */�
else 7
/* the current preempted burst is not in the preempt-

ing loss-burst list */
PredLBList(H ) 9 PredLBList(H ) � PredB(H )
/* add the current preempted burst to the preempted

loss-burst list */�
/* end of if */

if (PredLFBList(H ) ==
;
) 7

/* the preempted loss-free-burst list is empty */
CurLFB(H ) 9 LFB(H ).next()
/* select the next loss-free busrt from the original burst

list */ �
else 7
/* the preempted loss-free-burst list is not empty */
CurLFB(H ) 9 PredLFBlist(H ).pop()
/* remove the first burst from the preempted loss-free-

burst list, and use it as the next loss-free burst */�
/* end of if */

Update( +, )
/* update the row width vector since the selected burst

may have changed the status of subsequent rows */�
/* end of for */�

/* end of if */

else if ( +, = 3 +, - = ) 7
/* less receivers lost packet

0
than expected */

/* loss-free to loss transition */
for (each receiver H ) 7

/* check receivers one by one to see if it is eligible for
state transition */

if ( TeUWHKJ 8iY S��#	 � 
 ��� � �����%����������U��\b�� Y S (
/* this is a loss-free-state receiver having not been

considered */
PringB(H ) J PredLFBList(H ) �
/* the current preempting burst is found in the preempted

loss-free-burst list */
PredB(H ) J PringLFBList(H ) �
/* the current preempted burst is found in the preempting

loss-free-burst list */
(_ H - JML�NPO�O Q�Rcb TeUWH - J 84Y S H�� � H - � f  0#"'$ 8 0(& � UWH Y h 0#"'$ 8 0(& � UWH - Y )
/* this receiver has the least number of in-list (sus-

pended) bursts */
) 78 9<8 � H

/* select receiver H for state transition */�
/* end of if */

if ( ) 8 ) � � +,>- = C +,B= ) break
/* found enough receivers */�

/* end of for */
for (each receiver HKJ 8 ) 7

/* process each selected receiver */
if (PringB(H ) J PredLFBList(H )) 7

/* the current preempting burst is found in the preempted
loss-free-burst list */

PredLFBList(H ) 9 PredLFBList(H )- PringB(H )
/* remove the current preempting burst from the

preempted loss-free-burst list */�
else 7
/* the current preempting burst is a new burst not in

the preempted loss-free-burst list */
PringLFBList(H ) 9 PringLFBList(H ) � PringB(H )

/* add the current preempting burst to the preempting
loss-free-burst list */�

/* end of if */
if (PredB(H ) J PringLFBList(H )) 7

/* the current preempted burst is found in the preempting
loss-free-burst list */

PringLFBList(H ) 9 PringLFBList(H )- PredB(H )
/* remove the current preempted burst from the pre-

empting loss-free-burst list */�
else 7
/* the current preempted burst is not in the preempt-

ing loss-free-burst list */
PredLFBList(H ) 9 PredLFBList(H ) � PredB(H )
/* add the current preempted burst to the preempted

loss-free-burst list */�
/* end of if */

if (PredLBList(H ) ==
;
) 7

/* the preempted loss-burst list is empty */
CurLB(H ) 9 LB(H ).next()
/* select the next loss busrt from the original burst list */�

else 7
/* the preempted loss-burst list is not empty */
CurLB(H ) 9 PredLBlist(H ).pop()
/* remove the first burst from the preempted loss-burst

list, and use it as the next loss burst */�
/* end of if */

Update( +, )
/* update the row width vector since the selected burst

may have changed the status of subsequent rows */�
/* end of for */�

/* end of if */

0 E E /* processing the next packet */�
/* end of while */

end

Fig. 16. The Loss Burst Rearrangement algorithm.

We illustrate the LBR processing in Figure 17. In the exam-
ple, the loss density constraint demands exactly two out of the
three receivers lose the current packet. However, only receiver1
is currently in loss state. In this case, our algorithm selects an-
other receiver , say receiver2, and preempts the current loss-free
burst with a newly generated loss burst (with length 4). The ex-
pected and actual length of the loss-free burst are recorded in
the preempted and preempting burst list at receiver2 (5 and 2
respectively). As a result of the preemption, the current packet
will be lost at both receiver1 and receiver2. Next time when re-
ceiver2 needs a new loss-free burst, it will pick up the recorded
burst (with length 5) and remove it from the preempted loss-free
burst list. When the list becomes empty and receiver2 needs a
loss-free burst again, it will use its local model to generate a
new burst. If the length of the generated burst happens to be
2, the recorded burst with length 2 in the preempting loss-free
burst list will be removed and the generated burst be discarded.
In this case receiver2 will use the local model to generate a new
burst again.

Compared with the SP and LDR algorithms, the major ad-
vantage of the LBR algorithm is that the burst length distribu-
tion in the resulting packet traces does not change much. This
implies that a receiver will experience similar bursts as it would
do using the original packet loss trace. Moreover, the packet
loss rate at each receiver is almost the same as in the original
packet loss scenario. However, this algorithm does not aim to
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Fig. 17. Example of burst preemption in the correlated model.

maintain the temporal order of packet losses. Consequently, the
resulting packet trace may look very different from the orig-
inal trace although they may have the same burst length dis-
tribution and packet loss rate. Let � � be the size of the pre-
empted/preempting burst lists, and ��� be the number of original
bursts, then the computational complexity of LBR algorithm is
� �

� 
�� � � � 
���� � if it scans the original burst list for preempt-
ing burst neutralization, and � �

� 
�� � � if it does not.

D. Evaluation

We evaluate the performance of our approach by compar-
ing the loss density, average loss rate, average burst length, and
burst length distribution before and after the processing. We
also calculate the correlation coefficient between the original
and processed traces. Our results show the processed traces can
satisfy the loss density constraint while reasonably preserving
the temporal characteristics in the original traces. Among the
three algorithms, LBP is the best in preserving burst length dis-
tributions. On the other hand, LDP is good at achieving high
temporal similarity with the original traces. Applications can
choose different algorithms according to their specifications.

To conduct the evaluation, we first generate 10 independent
loss traces using Gilbert-Elliot model. The state transition prob-
abilities are obtained from the real traces. Then we run our
algorithms to process the traces. After that, we compare the
characteristics of the resulting traces with the original ones.

1. Loss Density

Our approach guarantees the resulting loss density matches
the exponential distribution described in the previous section.
This is verified by our resulting traces. The comparison of the
loss density distribution is shown in Figure 18. In fact, all the
three algorithms generated packet traces with exactly the same
loss density distribution as expected. Therefore we only show
the results from one algorithm. From the figure we can see that,
even if we simply use an exponential curve to approximate the

loss density distribution, the resulting model is much closer to
the real traces, for high loss density values, than in the indepen-
dent model.
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Fig. 18. Comparison of loss density distribution.

2. Average Loss Rate and Burst Length

To satisfy the loss density constraint, our algorithms have to
frequently change the packet loss status at individual receivers.
Therefore, the resulting average loss rate as well as the aver-
age loss/loss-free burst lengths may be different from that in
the original traces. Figure 19 and Figure 20 quantify the effects
on loss rate and burst length respectively. Figure 19 shows the
impact on loss rate is insignificant, especially for the SP and
LBR algorithms. The LBR algorithm processes packet traces
by rearranging loss/loss-free bursts, therefore it does not re-
ally add or remove packet losses to the traces. Accumulatively
the number of packet losses should be the same, as verified
in the figure. Interestingly, SP has good performance on loss
rate while LDP does not. It seems LDP tends to add packet
losses to high-quality receivers while remove losses from those
experiencing high losses. This is probably caused by the fact
that LDP processes packets in the descending order of their
loss density values. In this way, the high loss density rows are
likely to be always paired with a higher expected loss density
requirement. Therefore there should be more rows that need to
add losses rather than remove losses. A high-quality receiver is
more likely to be chosen for loss addition. On the other hand,
it is also more likely to be chosen for loss removal if a receiver
has already added a loss, since both the SP and LDR algorithms
maintain an addition counter for each receiver. The random SP
algorithm achieves good addition/removal balance for each re-
ceiver. However, if there are more additions than removals, as in
the LDR algorithm, the high-quality receivers will have lower
chance to counter-react to the added losses.

Figure 20 shows the reciprocal of average loss/loss-free burst
length for each algorithm. Again the LBR algorithm is good at
preserving the trace property of average burst length. The SP
and LDR algorithms tend to produce shorter loss bursts, since a
long burst is easily to be interrupted by these algorithms. Gen-
erally the LDR algorithm has better performance than the SP
algorithm, especially at high-loss receivers.

3. Burst Length Distribution
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Fig. 19. Comparison of average packet loss rate.
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Fig. 20. Comparison of average loss/loss-free burst length.

Figure 21 shows the effects of our algorithms on the loss
burst length distribution and the loss-free burst distribution. The
presented data is for ��� � � � � . Once again the LBR algorithm is
proved to have good performance. The LDR algorithm also has
comparable performance for loss burst length, but it seems the
algorithm generated a few long loss-free bursts. This is proba-
bly due to the fact that LDR is less likely to split a long loss-free
burst when compared to SP, where the random loss-free to loss
transitions may generate a large number of small bursts, which
can be observed in the figure. Generally speaking, although the
burst length distribution might be slightly changed after the pro-
cessing, the impact is not significant especially when the local
model itself does not perform well on the burst length distribu-
tion modeling.

4. Temporal Similarity

 

Fig. 21. Comparison of burst length distribution.

We calculate the correlation coefficient between the original
and processed traces to show the temporal similarity between
the pair. A higher correlation coefficient value denotes better-
preserved temporal similarity. We can imagine this metric as
the matched section proportion of two temporal loss curves.
Figure 22 shows the correlation coefficient values correspond-
ing to the three algorithms. It shows the LDR algorithm can
achieve high temporal similarity, especially for high-loss re-
ceivers. This is expected since the algorithm only affects the
loss status of a relatively small number of packets. On the con-
trary, the LBR algorithm does not have good performance on
this metric. The burst rearrangement re-shuffles the loss status
so that the temporal loss curve may be totally changed. The SP
algorithm performs somewhere between LDR and LBR algo-
rithms.
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Fig. 22. Comparison of correlation coefficient between original and processed
traces.
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VI. CONCLUSION

In this paper we described our experience in measuring and
modeling multicast packet losses in an IEEE 802.11 wireless
LAN. We collected a large number of packet traces. When com-
paring the packet loss characteristics among traces in the same
group, we observed that the packet losses at multiple receivers
are often correlated. We introduced the concept of loss density,
which we use to measure the degree of the correlation. Lastly,
we proposed an approach to model multicast packet losses in
wireless LANs that takes this spatial loss correlation into ac-
count. This approach is likely orthogonal to other approaches
that aim to improve the modeling accuracy for individual sta-
tions. Simulation results show the proposed approach is more
accurate than the conventional independent loss approach in
modeling multicast packet losses. This approach can also be
applied in other environments where both temporal and spatial
packet loss characteristics should be considered.

While the improvement in modeling accuracy is shown for
the collected traces, the significance and the validity of the ap-
proach in networks with different configurations needs to be
evaluated. The modeling of the loss density distribution could
be further enhanced (for example, split the loss density curve
into two segments and use different exponential distribution to
model them). Finally, the effect of the improved model on per-
formance evaluation of real multicast applications requires in-
vestigation.
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