A Semisupervised Learning Method to
Merge Search Engine Results

LUO Sl and JAMIE CALLAN
Carnegie Mellon University

The proliferation of searchable text databases on local area networks and the Internet causes
the problem of finding information that may be distributed among many disjoint text databases
(distributed information retrieval). How to merge the results returned by selected databases is an
important subproblem of the distributed information retrieval task. Previous research assumed
that either resource providers cooperate to provide normalizing statistics or search clients down-
load all retrieved documents and compute normalized scores without cooperation from resource
providers.

This article presents a semisupervised learning solution to the result merging problem. The
key contribution is the observation that information used to create resource descriptions for re-
source selection can also be used to create a centralized sample database to guide the normaliza-
tion of document scores returned by different databases. At retrieval time, the query is sent to
the selected databases, which return database-specific document scores, and to a centralized sam-
ple database, which returns database-independent document scores. Documents that have both a
database-specific score and a database-independent score serve as training data for learning to
normalize the scores of other documents. An extensive set of experiments demonstrates that this
method is more effective than the well-known CORI result-merging algorithm under a variety of
conditions.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—search process; H.3.4 [Information Storage and Retrieval]: Systems and
Software—distributed systems; information networks

General Terms: Algorithm, Design, Experimentation

Additional Key Words and Phrases: Distributed information retrieval, semisupervised learning
method, resource ranking, resource selection, server selection, results merging

This research was supported by National Science Foundation (NSF) grants EIA-9983253 and
11S-0118767.

Any opinions, findings, conclusions, or recommendations expressed in this article are the authors’,
and do not necessarily reflect those of the sponsor.

Authors’ address: Language Technologies Institute, School of Computer Science, Carnegie Mellon
University, 5000 Forbes Avenue, 4502 Newell Simon Hall, Pittsburgh, PA 15213-3890; email:
Isi@cs.cmu.edu; callan@cs.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2003 ACM 1046-8188/03/1000-0457 $5.00

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003, Pages 457—-491.

458 o L. Siand J. Callan

1. INTRODUCTION

The problem of finding information that is scattered among many text
databases has become more serious as the number of searchable databases
on local area networks and the Internet has increased. The goal is to provide
a single, uniform search interface that provides access to all of the searchable
text databases available at a given moment. This problem of distributed in-
formation retrieval, sometimes also called federated search, involves building
resource descriptions for each database, choosing which databases to search
for a particular information need, translating the information need into a form
suitable for each selected database, and merging of retrieved results into a
single result list that a person can browse easily [Callan 2000].

There are many variants of the general problem, depending upon the degree
of cooperation that can be assumed among the service providers. For example,
each text database in a small company may run the same software and may
cooperate closely to provide an integrated search experience (the single engine-
type case). In a larger organization, there may be several types of search engine
software, but it may be known which databases use which types of software,
and there may be limited cooperation among search engines. On the Internet
it may not be known which type of software a database uses, and it is unlikely
that different service providers will cooperate except in the most rudimentary
manner (the multiple engine-types case). Each of these environments offers
different possibilities and difficulties for a distributed search solution, but all
are instances of the more general problem.

In this article, we focus mainly on environments that contain multiple types
of independent, uncooperative search engines. This type of environment is
found on the Internet and in large organizations. In such an environment one
can only assume that individual search engines will run unstructured (“bag of
words”) text queries and return a list of documents that can be downloaded.
One cannot assume that databases will provide any other information about
their contents or capabilities.

Distributed information retrieval is commonly viewed as consisting of four
subproblems, described below.

—Resource Description. How to learn and describe the topics covered by each
different database.

—Resource Selection. Given an information need (a query) and a set of re-
source descriptions, how to select a set of resources (text databases) to search.

—Query Translation. Given an information need in some base representa-
tion, how to map it automatically to representations (query languages and
vocabularies) appropriate for the selected databases.

—Result Merging. After result lists have been returned from the selected
databases, how to integrate them into a single ranked list.

Each of these problems has been addressed to varying degrees in prior re-
search. We survey the prior research in Section 2.

This article presents a solution to the result merging problem. Result merg-
ing has received limited attention in prior research, in part because of an

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 459

assumption that it is similar to the meta-search problem. In meta-search, multi-
ple retrieval algorithms are applied to a single database or to similar databases,
producing multiple result lists; the multiple result lists are merged to create a
single result list [Aslam and Montague 2001; Lee 1997; Manmatha et al. 2001].
We argue that meta-search and result merging are actually distinct problems.!
Meta-search solutions depend on the fact that there are multiple scores for a
single document, that is, that all of the retrieved lists contain many of the same
documents. In contrast, result merging algorithms for distributed IR are ap-
plied in environments where there is little or no overlap in the contents of the
selected databases, and where it is unusual for two independent search engines
to return the same document.

The result-merging problem is difficult because document scores returned
by different databases cannot be compared directly. There are two reasons
that different databases produce incomparable scores: (i) each database may
be searched by a different search algorithm, and (ii) the corpus statistics (e.g.,
average document length, inverse document frequency, etc.) used to calculate
document scores are usually quite different in different databases. If the same
document appeared in each database, no two databases would assign it the
same score.

Result merging algorithms are usually compared to a single-database base-
line; the goal is for a result merging algorithm to produce a single ranked list
that is comparable to what would have been produced if the documents from
all available databases were combined into a single database. Solutions that
depend upon exchanging corpus statistics among available databases and solu-
tions that depend upon downloading documents and calculating new, normal-
ized document scores are essentially trying to estimate the scores that would
have been produced by this single-database baseline.

In this article, we discuss an approach to result merging based on semisu-
pervised learning. Our approach adaptively learns to map the database-specific
document scores returned from different databases to normalized document
scores that approximate single-database baseline document scores. Those
scores are directly comparable and can be used to merge the results from dif-
ferent databases into a single ranked list.

This article revisits and extends preliminary research reported in Si and
Callan [2002]. In particular, this article includes additional experiments that
explore the effectiveness of the semisupervised approach to result merging un-
der conditions that more closely simulate what might be expected in operational
or “real world” environments. These experiments are intended to address the
criticism that the preliminary efforts required too much transfer of data to be
practical in many environments. The results reported here demonstrate that
the method is effective even with moderate amounts of transferred data. We
also demonstrate that the resource selection and supervision required by the

1Some authors define meta-search more broadly, as a unified search interface that queries multiple
resources that may or may not overlap. This broader definition subsumes what we call meta-search
and some aspects of distributed information retrieval, although it usually assumes that all available
resources are searched (i.e., no resource selection).

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

460 o L. Siand J. Callan

algorithm can be provided by more than one type of resource selection and
ad-hoc retrieval algorithm.

The next section reviews prior research on distributed information retrieval.
Section 3 describes the semisupervised result merging algorithm in more detail.
Section 4 explains our experimental methodology. Sections 5 and 6 present
experimental results for the multiple search engine types and single search
engine type cases. Section 7 demonstrates that the method does not depend on
using any particular algorithm for resource selection or ad-hoc search. Section 8
investigates how varying the amount of training data affects the accuracy of
the merged result list. Section 9 introduces a new version of the algorithm that
requires much less training data at the cost of downloading a few documents
from selected databases. Section 10 concludes.

2. PRIOR RESEARCH

There has been considerable research on distributed information retrieval dur-
ing the last decade. We survey the prior research in this section, with an em-
phasis on prior result-merging research and on algorithms that are important
to the semisupervised learning solution that we will present later in this paper.

The first problem one faces in developing a distributed IR or federated search
system is describing the available resources. STARTS [Gravano et al. 1997]
is a protocol for acquiring and describing database contents from cooperative
resource providers. It specifies how resource providers should describe the con-
tents of their databases, primarily by providing vocabulary and term frequency
information. The STARTS protocol assumes that all providers will identify and
count terms in a consistent manner, and not intentionally misrepresent their
contents.

When databases are controlled by multiple parties, query-based sampling is
a more effective method of acquiring resource descriptions. Resource descrip-
tions are created by sending simple queries to each resource provider and ex-
amining the returned documents [Callan and Connell 2001]. Prior research has
focused on resource descriptions consisting of vocabulary and term frequency
information, but in principle any kind of resource description can be learned.
Query-based sampling assumes that databases will run queries and return doc-
uments, but no other form of cooperation is assumed. Experiments have shown
that under a wide variety of conditions accurate resource descriptions can be
learned using about 75 queries to obtain about 300 documents [Callan 2000;
Callan and Connell 2001; Craswell et al. 2000].

About a dozen resource selection algorithms have been described in the liter-
ature, including GIOSS [Gravano et al. 1999], gGIOSS/vGIOSS [Gravano et al.
1994], CORI [Callan 2000; Callan and Connell 2001], RDD [Voorhees et al.
1995], query clustering [Voorhees et al. 1995], CVV [Craswell et al. 2000], query
probing [Hawking and Thistlewaite 1999], and a KL-divergence algorithm [Xu
and Croft 1999]. GIOSS, gGlOSS/vGIOSS, CORI, CVV, and the KL-divergence
algorithm are based on query-independent resource descriptions that are cre-
ated in advance of seeing any particular query. Query probing is based on ob-
taining short, query-specific resource descriptions from each database after a

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 461

query is received. RDD and query clustering rely on resource descriptions that
consist in part of a set of training queries and relevance judgments indicating
which databases are the best choices for each training query. Ipeirotis’s and
Gravano’s Hierarchical Database Sampling and Selection algorithms [Ipeirotis
and Gravano 2002] try to estimate the frequencies of database words. They
use information from the search engine to get document frequencies for some
words and then estimate the document frequencies of other words by using
the relationship between the rank and the frequency of a word indicated by
Mandelbrot’s law. The document frequency information is used as a part of the
database description to build a hierarchical structure for the databases.

Our research interest is resource selection algorithms that have moder-
ate communications costs, which do not require training data obtained man-
ually, and that operate on full-text queries, which restricts our attention to
gGlOSS/vGIOSS, CORI, CVV, and the KL-divergence algorithm. Prior research
has shown that the CORI algorithm is effective and stable in a wide variety
of environments [Callan 2000; Callan and Connell 2001; Callan et al. 1995b;
Craswell et al. 2000; French et al. 1999; Larkey et al. 2000; Powell et al. 2000;
Xu and Callan 1998], so we initially restrict our attention further to just that
resource selection algorithm. We revisit this decision in Section 7.

The CORI resource selection algorithm operates on resource descriptions
that consist of vocabulary, term frequency, and corpus information [Callan 2000;
Callan et al. 1995b]. The CORI algorithm is based on a Bayesian Inference
Network Model of information retrieval in which each resource is ranked by
the belief P(Q|C;) that query Q is satisfied given that resource C; is observed
(searched). The belief P(Q|C;) in the simple case relevant to the research re-
ported here is the average of the beliefs P(r;,|C;) for all query terms r; in Q. The
belief P(r;|C;) is estimated as [Callan et al. 1995b]:

df

T = 1
df + 50 + 150 * cw / avg_cw (1)
_ log(|DB|+0.5)/cf @
~ log(|IDB|+1.0)
prrlC)=b+1-0)xT 1, (3)
where:
df is the number of documents in C; that contain rz;
cf is the number of databases that contain r;;
|DB| is the number of databases to be ranked;
cw is the number of term occurrences in C;;
avg_cw is the average cw of the databases to be ranked; and
b is the default belief, usually 0.4.

After a set of databases is ranked with a resource selection algorithm, the
most common choice is to select the top N databases or top-scoring databases
for search (e.g., Callan [2000], Callan et al. [1995b], Craswell et al. [2000],
and Hawking and Thistlewaite [1999]), although more sophisticated decision

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

462 o L. Siand J. Callan

criteria have also been used (e.g., Fuhr [1999]). In this article, we adopt the
common choice of searching the top N databases.

Merging ranked lists returned by different search engines is a difficult task
because different retrieval algorithms may be used to search the databases, and
because different databases have different corpus statistics. The latter problem
has received more attention.

Perhaps the simplest solution, often found in commercial environments, is
for each database to use the same retrieval algorithm and the same corpus
statistics, for example, by imposing a common set of corpus statistics on all
databases. A related solution is for each database to broadcast some or all of
its corpus statistics to other databases, so that all can use a common set of
global corpus statistics when computing document scores [Xu and Croft 1999].
Another variant on this theme is for each database to return basic term fre-
quency information for each retrieved document and each query term so that
the search client can compute a consistent set of document scores using global
corpus statistics [Kirsch 2003]. These solutions are all quite effective, but they
require significant cooperation, homogeneity, and communication among re-
source providers.

Another simple result-merging algorithm is to merge results based on the
document scores; this is sometimes called the “raw score merge” to emphasize
that the database-specific document scores are not normalized in any way. It
is most effective when each database uses the same retrieval algorithm, and
when corpus statistics are relatively similar among databases. Another simple
alternative is Round Robin, in which the first document in the merged list is
the first document returned by the first selected database, the second docu-
ment in the merged list is the first document returned by the second selected
database, and so on [Voorhees et al. 1995]. Round Robin is a common choice
when the database-specific document scores are completely incompatible, for
example when different search algorithms are used at different databases, but
it has the disadvantage that “weak” databases contribute as many documents
to the merged ranking as “strong” databases. Weighted Round Robin, in which
databases contribute documents in proportion to their expected value, is a more
effective choice [Voorhees et al. 1995].

The result merging algorithm associated with the CORI resource selection al-
gorithm uses a simple heuristic to normalize database-specific document scores.
The result merging algorithm? is a combination of the score of the database and
the database-specific score of the document. The “normalized” score suitable for
merging is calculated as shown below [Callan 2000; Callan et al. 1995b]:

, (C; = Crin)

Ci B (Cmax - Cmin) (4)
r (D — Dmin)

b= (Dmax - Dmin) (5)

2The algorithm has no specific name in prior publications. In this article, we call it the “CORI result
merging” algorithm, because its only prior use is with the CORI resource selection algorithm.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 463

D' +04+«D'xC;
B 1.4 '

Equation (4) normalizes database scores to the range [0, 1]. If T in Eq. (1)
is set to 1.0 for each query term, a score Cpax can be computed for each query.
If T is set to 0.0 for each query term, a score Cp;, can be computed for each
query. These are the highest and lowest scores that the resource-ranking al-
gorithm could potentially assign to a database. Equation (4) can be calculated
from (only) information in the resource selection index. Equation (5) tries to
normalize database-specific document scores to the range [0, 1]. It needs the
individual search engines to cooperate by providing Dy.xand Dy, which are
the maximum and minimum scores that could be assigned to any document
in that database. In the absence of cooperation, D,y is set to the maximum
document score returned by the search engine and D,,;, is set to the minimum.
Equation (6) calculates a database-independent document score suitable for
result merging.

Implicit in the CORI result merging algorithm is the assumption that the in-
dividual search engines produce database-specific document scores that are rel-
atively similar. In practice, this algorithm is limited to use with the INQUERY
search engine [Callan et al. 1995a]. The document score D in Eq. (5) is the
database-specific score returned by INQUERY. INQUERY ranks documents by
the belief P(Q|D;) that query Q is satisfied given that document D; is observed.
For simple “bag of words” queries, P(Q|D;) is determined by the average value of
the beliefs of all query items in the corresponding document. The belief P(r|D;)
in document D; according to the query term r; is determined [Callan et al.
1995a] by:

D// (6)

tf
T = 7
tf+ 0.5+ 1.5 xdw/avg_dw @
_ log(|D| +0.5/df) ®)
log(|D| + 1.0)
prelD)=b+1Q-b)xT =1, 9)
where:
tf is the term frequency of word rk in the document;
df is the number of documents that contains the r;;
|D| is the number of documents to be ranked;
dw is the number of word occurrences in the document;
avg_.dw is the average dw of all the documents; and
b is the default belief, usually 0.4.

The CORI resource selection method is a variant of the INQUERY retrieval
algorithm and the Okapi term-weighting formula [Robertson and Walker 1994].
Equation (1) replaces term frequency in Equation (7) by document frequency,
and the constants are scaled by a factor of 100 to accommodate the larger df
values. Equation (2) replaces the number of documents in Equation (8) by the
number of resources.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

464 o L. Siand J. Callan

The retrieved document score is determined by both the T (tf) and I (idf)
parts. For a specific document, the difference between the single-database
document score and the database-specific document score lies only in the I
(idf) part of the equation. If a database has many documents relevant to a
query, then its idf scores tend to be lower than the corresponding centralized idf
scores given by Eq. (8). Hence, a document in a highly relevant database tends
to have a database-specific score lower than its single-database (or database-
independent) score. Equations (5) and (6) try to compensate for the difference
by favoring documents in databases that score highly for the query. Therefore,
it can be seen that the CORI merging algorithm also tries to mimic the effect
of retrieving from a single, global database.

3. THE SEMISUPERVISED LEARNING MODEL FOR RESULT MERGING

Most of the result merging solutions described in Section 2 are designed to
take place at the search client. However, this makes a difficult problem even
more difficult, because result merging is viewed in isolation from the rest of the
distributed information retrieval environment. The information available for
normalizing database-specific document scores is very limited, and so solutions
are heuristic, make strong assumptions, or acquire additional information via
additional communication.

Our result merging goal is to efficiently produce a single ranked list of doc-
uments that closely approximates the ranked list that would be produced if
all of the documents from all of the databases were stored in a single, global
database. We call this the single-database baseline. In principle, it is possible to
produce a (much) better merged list than this baseline, but no method currently
achieves even this baseline level of accuracy.

How might a result-merging algorithm approach the accuracy of the single-
database baseline? Result-merging algorithms suffer from, and compensate
for, the limited information available at the search client. An alternative is to
move result-merging from the search client, where information is limited, to the
part of the architecture where resource selection occurs. The resource selection
component of a distributed IR system has considerable information about the
contents of each database. Some of that information might also be useful for
merging results.

3.1 The Centralized Sample Database

Query-based sampling (Section 2) is a method of creating resource descriptions
by sending queries to a database and examining the documents that are re-
turned. Query-based sampling does not assume cooperation among resource
providers, so it can be applied in almost any distributed retrieval environment.
Experimental results show that it creates resource descriptions that enable
accurate resource selection [Callan 2000; Callan and Connell 2001; Craswell
et al. 2000].

Usually the documents downloaded during query-based sampling are dis-
carded after the resource descriptions are built, because there is no need to
retain them for resource selection. However, these documents can also serve

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 465

another purpose. The documents obtained by sampling all of the available
databases can be combined into a single searchable database. This centralized
sample database is a representative sample of the single global database that
would be created if all of the documents from all of the databases were com-
bined into a single database. The vocabulary and frequency information in the
centralized sample database would be expected to approximate the vocabulary
and frequency patterns across the complete set of available databases.

3.2 Semisupervised Learning

During distributed information retrieval a person enters a query, the query is
used to rank the available databases, a set of databases is selected, the query
is broadcast to the selected databases, and ranked lists of document ids and
scores are returned from each database. These ranked lists of document ids
and scores are usually the only input to a result-merging algorithm.

The semisupervised learning (SSL) approach to merging results adds an ad-
ditional step and an additional source of input. When the query is broadcast
to the selected databases, it is also sent in parallel to the centralized sample
database. The centralized sample database returns a ranked list of document
ids and scores. This ranked list of database-independent document scores is
also provided to the result-merging algorithm.

The database-independent document scores from the centralized sample
database are important because they are a good approximation of the scores
those documents would have received if they had been retrieved from the (myth-
ical) single global database. The database-independent scores (from the cen-
tralized sample database) and the database-specific scores (from the selected
databases) can be used to teach a machine learning algorithm how to transform
database-specific scores into database-independent scores. We call this method
“semisupervised learning” (SSL) because the centralized sample database cre-
ates training data that is used by a supervised machine learning algorithm.

The semisupervised learning (SSL) approach to merging results is based
on two assumptions: (i) some of the documents retrieved from each selected
database will also be retrieved from the centralized sample database; and
(i1) given pairs of database-specific and database-independent scores for a small
number of documents it is possible to learn functions that accurately map all
database-specific scores into their corresponding database-independent scores.
The first assumption might seem unlikely to be true. However, recall that re-
source descriptions are created from documents that ranked highly for some
query during query-based sampling of a database. Those documents then be-
come part of the centralized sample database. A database is only selected for
search when its resource description, created from sampled documents that are
also in the centralized sample database, closely matches the query. We show in
Section 5.1 that these “overlap” documents are more common than one might
expect.

Given pairs of database-specific and database-independent scores for a set of
“overlap” documents, the problem becomes how to learn a function that maps all
database-specific scores into their corresponding database-independent scores.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

466 o L. Siand J. Callan

Regression is an efficient and effective mathematical tool for this kind of
problem. First, we assume the type of the mapping function, and then the
parameters in the mapping function can be determined by a minimum squared
error criterion. It can be formally described as:

A= argmaxz (fo,x)— yi)2, (10)
A -

where A is the set of parameters, f (A, x;) is some type of function, and (x;, y;)
is the ith training data point, which in this case is the ith pair of (database-
specific, database-independent) document scores.

It is an open question what type of mapping function would be best. Lin-
ear mapping functions have two favorable characteristics: (i) the CORI result
merging algorithm is a linear function, hence there is evidence that a linear
model can be effective; and (ii) linear functions can be computed efficiently from
small amounts of training data because there are few (only two) parameters.
The work reported in this paper is based on learning linear models.

The SSL approach to merging results depends upon the presence of training
data, so it is necessary to specify what happens when there is too little train-
ing data (i.e., when there are not enough “overlap” documents). When there is
insufficient training data, the SSL approach “backs off” to the heuristic CORI
result merging algorithm (Section 2). This solution is not ideal, but there is con-
siderable empirical evidence from prior research showing that it is reasonably
effective. We revisit this issue in Sections 5.1 and 9.

After the normalizing models are built, the database-specific document
scores are transformed to their corresponding database-independent document
scores. The rankings are merged into a single final list by comparing database-
independent document scores.

When databases are searched by multiple (or unknown) search engines (the
multiple engine-types case), it is unlikely that a single function can transform
from any database-specific score to a database-independent score. In these cases
it may be more effective to build different normalizing models for each database.
When it is known that all databases are searched by the same type of search
engine (the single engine-type case), it may be possible to combine all the train-
ing data together to build a single normalizing model. Our main research focus
is the multiple engine-types case, so we describe it first.

3.3 The Multiple Search Engine-Types Case

In the multiple search engine-types case, different normalizing models should
be built for different databases. The first step is to identify documents that
appeared in the result list returned by the centralized sample database and
in the result list of one of the selected databases; we call these overlap docu-
ments. For each overlap document d; ; from database C;, the pairs of database-
specific and centralized database document scores S;(d; ;) and Sc(d; ;) are
the training data for the linear model. The goal is to find a linear function
Sc(d; ;) = a; * S;(d; ;) + b; that maps database-specific document scores to cen-
tralized database document scores (which approximate database-independent
scores). The regression over all training data from a selected database C; can

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 467

be shown in matrix representation as:

Sid;1) 1 Sc(di1)

i(d; 1 i
Sildi2) 1 *[a; bl = Seldiz) , (11)
Si(d;n) 1 Sc(din)

where a; and b; are the parameters in the linear transformation. Call these
matrices X (the first item on the left side of Eq. (11), which is constructed
from database-specific scores and constants), W (the second item on the left
side of Eq. (11), which is the set of parameters) and Y (the item on the right
side of the equation, which is the set of centralized sample database scores).
Simple algebraic manipulation allows the solution to be expressed as shown
below.

W=XTxX)\YTX). (12)

Equation (12) is the solution under the Minimum Squared Error (MSE) cri-
terion. Each model maps all of the document scores from a particular database
to the database-independent scores approximated by the centralized sample
database. The database-independent document scores calculated by the mod-
els for different databases are comparable, and so can be used to generate the
final merged ranked list.

3.3.1 Model Training and Adjustment. There are two parameters in a sin-
gle linear model. At least two data points are needed to train a linear model.
More training data usually generates more accurate models, so we require at
least three training points to fit a linear model. When there are fewer than
three training points available for a database (i.e., fewer than three “overlap”
documents), we call this database a “bad” database.

Our hypothesis is that a database that contains a lot of relevant documents
will tend to also have a lot of overlap documents. When there are many overlap
documents for a database, it is possible to be selective about which are used for
training. We believe that it is more important to be more precise at the top of
the merged ranking, so only the top 10 overlap documents (as determined by
the selected database) are used to train the model. If a database has less than
10 overlap documents, all of them are used.

Iftoo many of the selected databases don’t return enough overlap documents
for a specific query, it may indicate that the semisupervised learning approach
to result merging is a poor choice for the query. This might happen, for example,
in a situation where the query is not a particularly good match for any of the
available databases. We arbitrarily set 40% as a threshold; if the percentage of
databases with fewer than three overlap documents exceeds 40% of the selected
databases, the CORI result merging algorithm (Egs. (4)—(6)) is used to merge
results instead of the semisupervised learning method. In Section 5 we show
that this pathological condition is rare. In Section 9, we present an alternative
solution for generating training data when it does arise, making the back-off
strategy unnecessary.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

468 o L. Siand J. Callan

It is possible for the regression algorithm to create linear models that are
anomalous for ad-hoc document retrieval. A model is anomalous if the learned
linear model produces a database-independent document score greater than 1
for some retrieved document. A score above 1 is not a serious problem by itself
(i.e., the score could still be used for merging result lists), but it signals that the
model is biased high and will give the documents returned from that database
too much of an advantage.

This problem is addressed by replacing the original linear model with the
closest new model that intersects (1,1). Let y = ax + b be the original model,
and y’ = a’x + b’ be the adjusted model, then the problem can be expressed as
shown below.

1
(@,b) = argmin/ @ —a)xx + b —b)%dx. (13)
a, b 0
Simple mathematical manipulation yields the following expression.
a/:L“T_% b=1-a. (14)

This bias correction produces slightly more accurate results in our
experiments.

3.4 The Single Search Engine Type Case

In some environments, (e.g., a local area network or an Intranet), it is known
that each text database is searched by the same type of search engine. The
CORI result-merging algorithm is evidence that in at least some of these “single
engine-type” cases a single model can be used to merge results returned from
different databases. Our hypothesis is that using all of the training data to
train a single model for the single search engine type case will produce more
accurate results than dividing the training data to create multiple, database-
specific models. This hypothesis is tested in Section 6.

The CORI merging algorithm (Eq. (6)) normalizes database-specific docu-
ment scores by a linear combination of the database-specific document score
and the database weight. For consistency, we re-express it in the same notation
used to express the multiple search engine types version of the SSL merging
algorithm (Eq. (11)).

Si(di,j) +0.4 x Si(di,j) x S(C;)
1.4 '

In Eq. (15), S(C;) is the database score for ith database (Eq. (4) and S;(d; ;) is
the database-specific score for the jth document retrieved from that database
(Eq. (5)). In the CORI result merging algorithm, one constant parameter con-
trols the influence of the database score. Our approach is based on the hypothe-
sis that the merging algorithm will be more accurate if this parameter is tuned
on a query-by-query basis.

As in the multiple search engine types case, the first training step is to
identify documents that appeared in the result list returned by the centralized
sample database and in the result list of one of the selected databases (“overlap”

Sc(di ;) = (15)

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 469

documents). For each overlap document d; ; from any selected database C;, the
pairs of database-specific and centralized database document scores S;(d; ;)
and Sc¢(d;, ;) are the training data for the linear model. All of the training data
is used to train a single linear model that is used to normalize scores from
all databases. The regression over all training data from the set of selected
databases can be expressed in matrix representation as shown below.

Si(dy,1) S(C1)S1(d1,1) Sc(di1,1)
Si(d12) S(C1)S1(d1,2) e bl = Sc(d1,2)

Sn(dn,m) S(Cn)Sn(dn,m) SC(dn,m)

Call these matrices X, W and Y as in Eq. (11). The solution (Eq. (12)) is
a single linear function that maps database-specific document scores from all
databases to database-independent scores that approximate estimated central-
ized document scores as shown below:

Sc(d; ;) =ax*8S;(d;)+ bx Sid; ;) x S(C;). a7

The database-independent document scores calculated by Eq. (17) are com-
parable, and so can be used to generate the final merged ranked list.

(16)

3.4.1 Model Training and Adjustment. As in the multiple search engine-
types case, only the top retrieved documents are used to build the regression
model. Each database is allowed to contribute a maximum of 20 “overlap” doc-
uments to the training pool; this limit was determined empirically. If there
is insufficient data (fewer than three “overlap” documents) to train a linear
model, the algorithm backs off to the CORI result-merging algorithm. Backing
off would be expected to occur only very rarely (e.g., it never occurred in our
experiments) because all of the training data from all of the selected databases
is used to train the model.

4. EXPERIMENTAL METHODOLOGY

The SSL approach to result merging was tested with a variety of experiments
using two testbeds and several search engine algorithms. This section describes
the experimental methodology. The next sections describe the experiments.

4.1 Testbeds

Testbeds (documents, queries, relevance judgments) play an important role in
distributed information retrieval experiments, because the performance of a
distributed information retrieval system is highly influenced by the testbed
characteristics. Two types of testbeds were used in our experiments (Tables I
and II).

(1) Organized by Source and Date (trec123). One hundred databases were
created from TREC CDs 1, 2 and 3. This testbed models an approach to
managing databases that is common in some operational environments
because it is easy to administer. Documents are assigned to databases based
on source and publication date [Callan 2000]. The databases are somewhat

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

470 o L. Siand J. Callan

Table I. Testbed Statistics

Database Sizes
Testbed Testbed Number of Documents Megabytes (MB)
Name Size (GB) | Min Avg Max Min | Avg | Max
Trecl23 3.2 752 | 10,782 | 39,713 | 28.1 | 32 41.8
Trec4 _kmeans 2.0 301 5,675 | 82,727 3.9 | 20 | 2486

Table II. Query Set Statistics

Testbed TREC TREC Average Length
Name Topic Set | Topic Field (Words)
Trecl23 51-100 Title 3.0
Trec4 201-250 | Description 7.2

heterogeneous. Fifty short queries were extracted from the title fields of
TREC topics 51-100 automatically.

(2) Organized by Topic (trec4_kmeans). One hundred databases were created
from TREC4 ad-hoc data. This testbed models an environment in which
databases are organized by topic and are relatively homogeneous. A k-
means clustering algorithm was used to cluster the databases by topic au-
tomatically [Xu and Croft 1999]. Databases are homogenous and the word
distributions are very skewed. 50 longer queries were extracted from the
description fields of TREC topics 201-250 automatically.

Summary statistics for the two testbeds and their queries are shown in
Tables I and II.

The two different testbeds provide different advantages and disadvantages to
the different components of a distributed IR system. The trec4_kmeans testbed
is generally considered easier for resource selection because the queries are
longer and because the databases were constructed to have homogeneous con-
tent and to be relatively different from each other [Xu and Croft 1999]. The
databases are easier to tell apart, and because databases are relatively homo-
geneous, the top N databases tend to cover a higher percentage of relevant
documents than the top N trec123 databases. The trec123 testbed is generally
considered easier for result merging, because databases are more similar to
each other; a document ranked nth by one database is often of similar quality
to a document ranked nth by a similar database. However, as result-merging
algorithms become more sophisticated, the relative result-merging difficulty
of the two testbeds becomes less clear. The trec4 kmeans databases tend to
be smaller than the trecl23 databases; hence a query-based sampling pro-
cedure that draws a fixed number of documents from each database covers
a larger fraction of the trec4 kmeans databases. The queries used with the
trec4_kmeans testbed are also longer than the queries used with the trec123
testbed. These differences might provide more or better quality training data
for the SSL result-merging algorithm on the trec4_kmeans testbed.

4.2 Search Engines

In the multiple search engine types environment different search engines may
be used for each resource. Three different kinds of search engines were used

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 471

in our experiments: INQUERY [Callan et al. 1995a], a statistical language
modeling algorithm [Lemur Toolkit 2003; Ogilvie and Callan 2001], and a
Vector—Space algorithm similar to SMART [Buckley et al. 1995]. All three are
well known and effective retrieval algorithms. The retrieval algorithm used in
INQUERY was described in Section 2. The Vector—Space search engine used
SMART “Itc” weighting [Buckley et al. 1995]. The Language Model retrieval
algorithm is relatively new, so it is described briefly below.

In the Language Model retrieval algorithm, each document is considered as
a sample of text generated from a specific language. The language model for
each document is estimated based on the word frequency patterns observed in
the text. The relevance of a document to a query is estimated by how likely the
query is to be generated by the language model that generated the document.
More specifically, the likelihood of a query @ to be generated from the language
model of document D is computed as:

P@ID) = [] ®P(g|D)+ (1 -1P(q|C)), (18)
q€Q

where q is a query term in the query @, P(q|D) is the multinomial distribution
of the document language model, P(g|C) is the multinomial distribution of the
database C to which the document D belongs, and X is a weighting parameter
between 0 and 1. In all our experiments, A is set to 0.5.

Although the three algorithms are somewhat similar in their effectiveness,
they produce relatively different document scores. Scores from INQUERY can
vary in the range [0.4, 1.0], but typically fall within the range [0.4, 0.7]. Docu-
ment scores from the Language Model retrieval method are negative numbers,
usually in the range [—60, —30]. SMART document scores can range over [0.0,
1.0], but typically fall within [0.0, 0.3].

4.3 Distributed Retrieval Environment

In our experiments, all resource descriptions were created using query-based
sampling. All sampling queries were one word long. The initial sampling query
was selected randomly from a list of English words. Subsequent sampling
queries were selected randomly from the resource description being learned
for the database (i.e., a term seen in a document retrieved earlier from that
database). The top four documents returned for each query were used to create
the resource description. Sampling continued until 300 unique documents were
seen for the database (usually about 75 queries). This methodology is consis-
tent with our prior research on query-based sampling [Callan 2000; Callan and
Connell 2001]. Experiments in Section 8 examine the effect of changing the
number of documents sampled.

The documents obtained from different databases were also used to form a
centralized sample database of 30,000 documents (100 databases x 300 doc-
uments per database). The INQUERY retrieval algorithm was the default
search algorithm for the centralized sample database. Experiments described
in Section 7 examine the effect of changing the algorithm used to search the
centralized sample database.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

472 o L. Siand J. Callan

The CORI resource-ranking algorithm was used to rank the databases for
each query. Section 7 examines the effect of changing the resource selection
algorithm. The top 10 databases were selected for search, and were searched
by the search engines described above (Section 4.2). Each database returned a
result list consisting of document identifiers and scores for the top-ranked 1,000
documents, unless otherwise specified. Experiments in Section 9 examine the
effect of varying the lengths of result lists.

Effectiveness in these experiments was measured by Precision at specified
ranks between 5 and 30. This choice was influenced by our interest in inter-
active retrieval environments, where users rarely search below 30 documents.
It was also influenced by the characteristics of the distributed retrieval task.
When most databases are not searched, metrics such as Average Precision,
which measure effectiveness across a wide range of document ranks, tend to
be affected strongly by testbed characteristics and the percentage of databases
searched. Testbeds that have relevant documents clustered in a few databases
will have much higher Average Precision than testbeds where relevant docu-
ments are scattered across more databases. Precision at low Recall tends to be
less affected by these characteristics.

5. EXPERIMENTAL RESULTS: MULTIPLE SEARCH ENGINES

A series of experiments was conducted to evaluate the performance of the
semisupervised learning (SSL) approach to result merging under a variety of
conditions. In all of the multiple search engine-types experiments described in
this section the databases were distributed evenly among the different types of
search engines using “round robin” distribution.

5.1 Overlap Documents

A sufficient amount of training data is crucial to the SSL result merging al-
gorithm. The number of overlap documents depends on factors such as the
number of documents retrieved from each database during query-based sam-
pling; query characteristics; the characteristics of selected databases; and the
number of documents retrieved from each selected database. We expect that the
number of overlap documents will be larger when more documents are retrieved
during query-based sampling; the number may also be larger when queries are
longer, when databases are homogenous, when databases are small, or when
more documents are retrieved from each selected database.

An experiment investigated the hypothesis that there are usually suffi-
cient training data for the semi-supervised learning approach to result merg-
ing. In this experiment databases were assigned to three types of search
engines (INQUERY, Language Model, Vector Space) using round robin as-
signment. Result lists containing ids and scores of up to 1,000 documents
were returned by each database selected for the query, and a result list of
up to 1,000 documents was returned by the centralized sample database. The
number of overlap documents for each of the queries was counted. Figures 1
and 2 show the number of overlap documents for the queries on the two
testbeds.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 473

The number of queries

0 200 400 600 800 1000
The number of overlap documents

Fig. 1. The distribution of overlap documents for 50 “Title” queries on the trec123 testbed.

The number of queries

0
0 200 400 600 800 1000
The number of overlap documents

Fig. 2. The distribution of overlap documents for 50 “Description” queries on the trec4 kmeans
testbed.

Most of queries (47 out 50) on the trec123 testbed had more than 50 over-
lap documents. All of the queries on the trec4_kmeans testbed had more than
200 overlap documents. These results were consistent with our expectations.
Overlap documents were plentiful for most queries on both testbeds. One would
expect the trec4_kmeans testbed to produce more overlap documents per query
because its databases are more homogeneous, the average database size is
smaller, and the queries were longer and of higher quality.

As described in Section 3.3.1, the result-merging algorithm backs off to the
CORI algorithm when there is not enough training data. The algorithm backed

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

474 o L. Siand J. Callan

Table III. Precision at Different Document Ranks using the CORI and
Semisupervised Learning Approaches to Merging Retrieval Results. INQUERY
and Language Model Search Engines

Document Trec123 Testbed Trec4 kmeans Testbed
Rank CORI Merge SSL Merge CORI Merge SSL Merge
5 0.3600 0.4080 (+13.3%) 0.2640 0.4040 (+53.0%)
10 0.3460 0.3820 (+10.4%) 0.1900 0.3780 (+98.9%)
15 0.3480 0.3560 (+2.3%) 0.1840 0.3400 (+84.8%)
20 0.3400 0.3440 (+1.2%) 0.1800 0.3130 (+73.9%)
30 0.3247 0.3200 (—1.4%) 0.1647 0.2740 (+66.4%)

Note: Ten databases were selected to search for each query. Results are averaged over 50 queries.

Table IV. Precision at Different Document Ranks using the CORI and
Semisupervised Learning Approaches to Merging Retrieval Results. INQUERY
and Vector—Space Search Engines

Document Trec123 Testbed Trec4_kmeans Testbed
Rank CORI Merge SSL Merge CORI Merge SSL Merge
5 0.2840 0.3280 (+15.5%) 0.2280 0.3360 (+47.3%)
10 0.2700 0.3040 (+12.6%) 0.1660 0.3080 (+85.5%)
15 0.2640 0.2947 (+11.6%) 0.1613 0.2760 (+71.1%)
20 0.2610 0.2820 (+8.0%) 0.1610 0.2620 (+62.7%)
30 0.2487 0.2867 (+15.3%) 0.1487 0.2240 (+50.6%)

Note: Ten databases were selected to search for each query. Results are averaged over 50 queries.

off to CORI result-merging for 3 out of 50 queries on the trec123 testbed. It
didn’t back off for any of the queries on the trec4_kmeans testbed. These re-
sults suggest that generally there are enough training data for the learning
algorithm. We revisit this topic in Section 9.

5.2 Comparison with Cori Result-Merging

In order to test the effectiveness of the SSL result-merging algorithm, a set of
experiments was conducted with different combinations of search engine types.
Experiments were conducted with a combination of three types of search engine,
and with three combinations of two types of search engine. Databases were
assigned to types of search engines using round robin assignment. The CORI
result-merging algorithm (Section 2) was used as a baseline for comparison.

Results for the three “two search engines” experiments are summarized in
Tables III-V. On the trec123 testbed, the SSL algorithm was about as good
as or better than the CORI result-merging algorithm. The largest improve-
ment, about 10%, was on the combination of INQUERY and the Vector—Space
search engine. Results are more dramatic on the trec4_kmeans testbed because
it is organized by topic and has very skewed word distributions. Prior research
identified this as a difficult testbed for the CORI result-merging algorithm
[Larkey et al. 2000], which is confirmed by our experiments. The SSL merge
algorithm was far more effective with all combinations of two search engines
on this testbed.

Experimental results for the “three engines” experiment, summarized in
Table VI, were consistent with the results for “two engines” cases. The SSL

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 475

Table V. Precision at Different Document Ranks using the CORI and
Semisupervised Learning Approaches to Merging Retrieval results. Language
Model and Vector—Space Search Engines

Document Trec123 Testbed Trec4 _kmeans Testbed
Rank CORI Merge SSL Merge CORI Merge SSL Merge
5 0.2880 0.2960 (+2.8%) 0.2120 0.3400 (+60.4%)
10 0.2680 0.2860 (+6.7%) 0.1800 0.3120 (+73.3%)
15 0.2693 0.2840 (+5.5%) 0.1680 0.2720 (+61.9%)
20 0.2680 0.2750 (+2.6%) 0.1620 0.2530 (+56.2%)
30 0.2620 0.2687 (+1.6%) 0.1507 0.2333 (+51.4%)

Note: Ten databases were selected to search for each query. Results are averaged over 50 queries.

Table VI. Precision at Different Document Ranks using the CORI and
Semisupervised Learning Approaches to Merging Retrieval Results. INQUERY,
Language Model, and Vector—Space Search Engines

Document Trec123 Testbed Trec4 _kmeans Testbed
Rank CORI Merge SSL Merge CORI Merge SSL Merge
5 0.3240 0.3520 (+8.6%) 0.2560 0.3640 (+42.2%)
10 0.3020 0.3400 (+12.6%) 0.1920 0.2940 (+54.4%)
15 0.3013 0.3280 (+8.9%) 0.1787 0.2760 (+43.5%)
20 0.2960 0.3290 (+11.1%) 0.1770 0.2540 (+47.4%)
30 0.2947 0.3200 (+7.0%) 0.1560 0.2300 (+46.0%)

Note: Ten databases were selected to search for each query. Results are averaged over 50 queries.

merge algorithm was a little better than the CORI merging algorithm on the
trec123 testbed and was much more effective on the trec4 kmeans testbed.

The experiments reported in Tables III-VI investigated the accuracy of the
SSL and CORI merging algorithms when 10 databases were selected for search.
Another experiment evaluated the performance of these two algorithms with
fewer selected databases. Table VII shows the results when 5 databases were
selected in the “three search engines” case.

The SSL algorithm was about as effective as the CORI merging algorithm
on the trec123 testbed, but it was much more effective than the CORI merge
algorithm on the trec4 kmeans testbed. It is perhaps more interesting to in-
vestigate how the two algorithms were affected when the number of databases
was reduced. The accuracy of the CORI merging algorithm improved slightly,
but the accuracy of the SSL algorithm deteriorated slightly. The improvement
of the CORI merging algorithm suggests that it is distracted by lower-quality
databases; when they are removed, the result merging task is a little easier, so
the results for the CORI merging algorithm improve. The drop in the accuracy
of the SSL algorithm suggests that it is relatively good at identifying the few
relevant documents in the lower-quality databases; when these databases are
removed, the SSL algorithm has fewer relevant documents to work with, so its
Precision drops a little.

The learning component of the SSL algorithm dynamically adjusts param-
eters in a model that is otherwise identical to the model used by the CORI
merging algorithm. The CORI merging algorithm uses a constant to control
the effect of the database score on the normalized document score; the SSL
merging algorithm varies this parameter dynamically, on a database-specific

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

476 o L. Siand J. Callan

Table VII. Precision at Different Document Ranks using the CORI and
Semisupervised Learning Approaches to Merging Retrieval Results. INQUERY,
Language Model, and Vector—Space Search Engines

Document Trec123 Testbed Trec4 _kmeans Testbed
Rank CORI Merge SSL Merge CORI Merge SSL Merge
5 0.3240 0.3400 (+4.9%) 0.2560 0.3080 (+20.3%)
10 0.3220 0.3240 (+0.6%) 0.2200 0.2660 (+19.8%)
15 0.3107 0.3067 (—1.3%) 0.2080 0.2507 (+23.6%)
20 0.3010 0.3000 (—0.3%) 0.1830 0.2440 (+33.3%)
30 0.2787 0.2793 (+0.2%) 0.1687 0.2167 (+28.5%)

Note: Five databases were selected to search for each query. Results are averaged over 50 queries.

0.4
0.35 -
0.3 _%: —&— CORI Merge, k=0.0
§ 0.25 —B— CORI Merge, k=0.2
]
3 0.2 CORI Merge, k=0.4
& 0.15 CORI Merge, k=0.6
0(:)'1 —¥— CORI Merge, k=0.8
.05
0 —@— CORI Merge, k=infinity
5 10 15 20 30 SSL Merge

Documents Rank

Fig. 3. How varying the k parameter in the CORI result merging algorithm affects Precision on
the trec123 testbed.

and query-specific basis. Our hypothesis is that the ability to adjust this param-
eter dynamically is why the SSL merging algorithm is more effective than the
CORI merging algorithm, but the experiments reported above don’t test this
hypothesis directly. The CORI result-merging algorithm is generally consid-
ered well-tuned, but it is possible that some other constant database weighting
factor would give better accuracy.

The CORI result-merging algorithm (Equation 6) can be rewritten to make
this parameter explicit, as shown below:

D' x(14+kxC})
1+¢% ’

k represents the importance of the database score for computing a normalized
document score. k& is usually set to 0.4 for the CORI result-merging algorithm
(Eq. (6)). An experiment was conducted to study the effect of setting % to other
values. When £ is set to infinity, the formula is D" = D'C".

Figures 3 and 4 show the effect of using different values of k in the CORI
result-merging algorithm. The particular choice of 2 did not make much
difference to the effectiveness of the CORI merging algorithm; all of the choices
were about equally good, on average. This experiment confirms the hypothe-
sis that the power of the SSL algorithm is its ability to dynamically set k to

D' = (19)

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 477

0.4

0.35 +—=
0.3 \ —&— CORI Merge, k=0.0

& —=— CORI Merge, k=0.2

S 0.25 +—;
Z§ 00_2 i S"g . - CORI Merge, k=0.4
L 015 Le—" » CORI Merge, k=0.6
0.1 —¥— CORI Merge, k=0.8
0.05 —@— CORI Merge, k=infinity
0 T T T T +—SSL Merge

5 10 15 20 30
Documents Rank

Fig. 4. How varying the k parameter in the CORI result merging algorithm affects Precision on
the trec4_kmeans testbed.

Table VIII. Precision at Different Document Ranks using the CORI and
Semisupervised Learning Approaches to Merging Retrieval Results from
INQUERY, Language Model, and Vector—Space Search Engines that Don’t
Return Document scores

Document Trec123 Testbed Trec4 kmeans Testbed
Rank CORI Merge SSL Merge CORI Merge SSL Merge
5 0.2960 0.3520 (+18.9%) 0.2160 0.3240 (+50.0%)
10 0.2680 0.3040 (+13.4%) 0.1960 0.2660 (+35.7%)
15 0.2693 0.2813 (+4.5%) 0.1907 0.2520 (+32.1%)
20 0.2630 0.2630 (+0.0%) 0.1780 0.2310 (+29.8%)
30 0.2540 0.2513 (—1.5%) 0.1613 0.2053 (+27.3%)

Note: Ten databases were selected for each query. Results are averaged over 50 queries.

different values for different queries and databases, instead of having a con-
stant value for all queries and databases.

Another set of experiments was designed to address the scenario where the
databases return no document scores but report only ranked lists of results. The
CORI and semi-supervised learning approaches were used to merge retrieval
results from INQUERY, Language Model, and Vector-Space search engines. Ten
databases were selected to search for each query and the results were averaged
over 50 queries. However, in these experiments the document scores were elim-
inated intentionally and the returned result from each database was only a
ranked list of document identifiers. Each document was assigned a pseudo-
score.? These pseudoscores were the input to the CORI and SSL algorithms.
Experimental results are shown in Table VIII.

The experiments demonstrate the effectiveness of the SSL algorithm when
databases return only ranked lists without document scores. The results show
that the SSL algorithm is better than the CORI algorithm in most cases and the
improvement is larger on the trec4 _kmeans testbed, which is consistent with
our prior experiments.

3First document has a score of 1; the second has a score of 0.999 etc. At most, 1000 documents were
retrieved.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

478 o L. Siand J. Callan

Table IX. Precision at Different Document Ranks using the CORI and
Semisupervised Learning Approaches to Merging Retrieval Results. INQUERY
Search Engine

Document Trec123 Testbed Trec4 _kmeans Testbed
Rank CORI Merge SSL Merge CORI Merge SSL Merge
5 0.4480 0.4680 (+4.5%) 0.4240 0.4520 (+6.6%)
10 0.4220 0.4360 (+3.3%) 0.3860 0.4060 (+5.2%)
15 0.4053 0.4107 (+1.3%) 0.3400 0.3573 (+4.6%)
20 0.3820 0.3840 (+0.5%) 0.3140 0.3230 (+2.9%)
30 0.3627 0.3647 (+0.6%) 0.2753 0.2913 (+5.8%)

Note: Ten databases were selected to search for each query. Results are averaged over 50 queries.

The experiments reported in this section demonstrate that the SSL algorithm
for merging results is an improvement over the CORI result-merging algorithm
in environments containing multiple search engines. The SSL algorithm was
as effective as the CORI merge algorithm on the “easy” trec123 testbed, and
much more effective on the “harder” trec4_kmeans testbed. A comparison of
results from searching the top 5 databases and the top 10 databases suggests
that the SSL algorithm is better able to merge relevant documents from lower-
quality databases. An experiment varying the database weighting parameter
k demonstrates that the power of the SSL algorithm is its ability to vary &
dynamically on a query-specific and database-specific basis. The SSL algorithm
was also shown to be effective when search engines return only document ranks,
but not scores.

6. EXPERIMENTAL RESULTS: SINGLE SEARCH ENGINE

In alocal area network or on an Intranet, it is not unusual for all text databases
to be searched by the same type of search engine. For example, the CORI result-
merging algorithm assumes that all the search engines are INQUERY, and
its performance has been the state-of-the-art in this research area. The set of
experiments reported in this section investigate the effectiveness of the single
engine-type variant of the semisupervised learning approach to result merging.
The main difference between the multiengine and single-engine versions of the
algorithm are that the single-engine type combines all of the training data to
train a single linear model that transforms database-specific document scores
into normalized database-independent document scores.

The first single search engine type experiment compared the single engine-
type version of the SSL result-merging algorithm (Section 3.4) to the CORI
result-merging algorithm. The INQUERY search engine was used to search
selected databases because the CORI result-merging algorithm is tuned for
INQUERY. Table IX summarizes the experimental results.

The SSL merging algorithm was about as effective as the CORI merging
algorithm in the tests with both testbeds. This experiment demonstrates that
the CORI result-merging algorithm is indeed well tuned for environments con-
taining only INQUERY search engines. However, the SSL algorithm compared
favorably in what might be considered a best case scenario for the CORI result-
merging algorithm.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results .

479

Table X. Precision at Different Document Ranks using the CORI and Semisupervised Learning
Approaches to Merging Retrieval Results. INQUERY Search Engine

Trec123 Testbed Trec4_kmeans Testbed
Document| CORI | SSL Merge, SSL Merge, CORI | SSL Merge, SSL Merge,
Rank |Merge| Single Model | Multiple Models | Merge | Single Model | Multiple Models
5 0.4480 | 0.4680 (+4.5%)|0.3960 (—11.6%) |0.4240 |0.4520 (+6.6%) |0.4760 (4-12.26%)
10 0.4220|0.4360 (+3.3%) | 0.3660 (—13.27%) | 0.3860 | 0.4060 (+5.2%) [0.3800 (—1.55%)
15 0.4053|0.4107 (+1.3%) | 0.3600 (—11.18%) | 0.3400 | 0.3573 (+4.6%) [0.3453 (+1.56%)
20 0.3820(0.3840 (+0.5%) | 0.3430 (—10.21%) | 0.3140 | 0.3230 (+2.9%) |0.3310 (+5.41%)
30 0.36270.3647 (+-0.6%) | 0.3307 (—8.82%) |0.2753|0.2913 (+5.8%) [0.2907 (+5.59%)

Note: Ten databases were selected to search for each query. Results are averaged over 50 queries.

The single engine-type variant of the SSL algorithm is based on the hypoth-
esis that it is more effective to combine training data (“overlap” documents)
from different databases running the same software. In this case, only a sin-
gle linear model is learned that must normalize document scores returned by
all of the databases. An alternative would be to treat the single engine-type
case the same as the multiple engine-types case: Use overlap documents to
train multiple database-specific models for transforming database-specific doc-
ument scores into database-independent document scores. More models would
provide greater flexibility, but there would be less training data available to
build each model, which might result in greater variance in model quality.

An experiment was conducted to test the hypothesis that combining the
training data from each database to learn a single model would be superior
to learning separate models for each database when all of the databases are
searched with the same software. As in the previous experiment, all databases
were searched by the INQUERY search engine. Table X summarizes the results.

The experiment supports the hypothesis that it is more effective to combine
training data when possible. When the databases have similar vocabulary pat-
terns, as on the trec123 testbed, training multiple database-specific models was
clearly less effective than training a single model for all databases. When the
databases were relatively dissimilar, as in the trec4 _kmeans testbed, the two
approaches were about equally effective. The results suggest that although mul-
tiple models have more tuning power than a single model, the reduced amount
of training data counteracts the additional tuning power. When there is prior
knowledge that the search engines are all of the same type, it is more effective
to use all of the training data to build a single model.

7. EXPERIMENTAL RESULTS: THE EFFECT OF DIFFERENT RESOURCE
SELECTION AND DOCUMENT RETRIEVAL ALGORITHMS

The experiments described above used the CORI resource selection algorithm
to select which databases to search and the INQUERY document retrieval
algorithm to find “overlap” information in the centralized sample database.
These algorithms were chosen because they are very effective, and because
the baseline CORI result-merging algorithm requires them. However, the SSL
result-merging algorithm is not restricted to use with these algorithms. It can
be used just as easily with other resource selection and document retrieval

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

480 o L. Siand J. Callan

algorithms. This section investigates the flexibility and robustness of the SSL
result-merging algorithm with a set of experiments that use language-modeling
algorithms for resource selection and document retrieval.

The language-modeling approach to document retrieval was introduced
briefly in Section 4.2 (Eq. (18)). The same algorithm was used to search
the centralized sample database for “overlap” information in the experiments
reported below.

The language-modeling approach can be adapted to database selection by
treating each database as if it were a single big document [Si et al. 2002; Xu
and Croft 1999]. Resource selection is modeled as selecting the databases that
have the largest probabilities P(C;|Q). Bayes’ Rule allows this probability to
be represented as:

P(Q|C)P(C;)

P(C;|Q) P(Q)) (20)
where P(Q|C;) is the generation probability of the query Q given the language
model* of the ith database C;. P(Q) is the prior probability of observing the
query; it is constant during database selection. We assume a uniform distri-
bution on the collections, which makes P(C;) a constant, too. Hence, P(C;| Q)
is proportional to P(Q|C;). P(Q|C;) is calculated as a mixture of two language
models, as shown below:

P(QIC) = [(:Prte(@IC) + (1 = 1) Pric(q|G)). (21)
q€@

P,i.(q|C;) and P,;.(q|G) are the maximum likelihood estimator (mle) lan-
guage models for the ith database and the union of all databases [Si et al. 2002].
A is set to 0.5.

This approach to using language models for resource selection is similar to
the Kullback—Leibler (KL) divergence-based collection selection method used
by Xu and Croft [1999]. Prior research showed that Xu and Croft’s KL diver-
gence approach to database selection is about as effective as the CORI resource
selection algorithm [Larkey et al. 2000; Xu and Croft 1999].

The effect of the language-modeling approaches to resource selection and doc-
ument retrieval on the CORI and SSL result-merging algorithms was tested
in experiments using the multiple search engine experimental methodology
described above. Resource descriptions were created from the same sets of doc-
uments used in prior experiments with CORI resource selection and INQUERY
document retrieval algorithms. Three types of search engines were used, ten
databases were selected for each query and result-lists describing 1,000 doc-
uments were returned by each database. The constant in the CORI result-
merging algorithm is not tuned for use with a KL.-divergence resource selection
algorithm, so a range of values was tested to provide a fair baseline. Figures 5
and 6 summarize the results.

4We treat resource descriptions and language models as equivalent concepts in this article. Both
describe the vocabularies and term frequencies of terms in a sample of text. Usually resource
descriptions describe term counts and language models describe probabilities of occurrence, but
these are just different representations of the same information.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 481

0.4 —&— CORI Merge, k=0.0
0.35 —— CORI Merge, k=0.2
:g 0.3 +— — CORI Merge, k=0.4
§ 0.25 4 CORI Merge, k=0.6
0.2 —¥— CORI Merge, k=0.8
0.15 : T r T —@— CORI Merge, k=infinity
5 10 15 20 30 —+—SSL Merge

Documents Rank

Fig. 5. How varying the £ parameter in the CORI result-merging algorithm affects precision at
different document ranks on the rec123 testbed. Language Model resource selection and Language
Model central retrieval method were used for the semisupervised learning method.

0.4 _,_'\ —e— CORI Merge, k=0
0.35 \\ —— CORI Merge, k=0.2
c
o 108 =
B 0.3 X ~F CORI Merge, k=0.4
8 0.25 CORI Merge, k=0.6
o
0.2 - —*— CORI Merge, k=0.8
0.15 i i i i —@— CORI Merge, k=infinity
5 10 15 20 30 —+—SSL Merge

Documents Rank

Fig. 6. How varying the £ parameter in the CORI result-merging algorithm affects precision at
different document ranks on the trec4-kmeans testbed. Language Model resource selection and
Language Model central retrieval method were used for the semisupervised learning method.

The relative accuracy of the two result-merging algorithms in these experi-
ments was similar to the results reported above, in Section 5.2. The SSL merg-
ing algorithm was slightly more effective than the CORI merge algorithm on
the trec123 testbed, and substantially more effective than the CORI merge
algorithm on the trec4 kmeans testbed.

These results are consistent with the conclusion that we drew in Section
5.2 that the SSL algorithm is always at least as good as the CORI merge, but
tends to have a large advantage on the topic-organized testbed. This experiment
confirms again that the power of the SSL algorithm lies in the query-by-query
model tuning for different databases.

Careful comparison of Figures 5 and 6 with Figures 3 and 4 reveals that in
these experiments the results for the trec4_kmeans testbed were much better
than in the prior experiments. The difference was due in large part to more
accurate resource selection, and is consistent with earlier research showing that
the KL-divergence resource selection algorithm is more effective than CORI
resource selection when databases are organized by topic [Larkey et al. 2000].

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

482 o L. Siand J. Callan

Table XI. Precision at Different Document Ranks using the CORI and Semisupervised
Learning Approaches to Merging Retrieval Results. Resource Descriptions were
Created from 300 Sampled Documents

Trec123 Testbed Trec4 _kmeans Testbed
Document | CORI SSL Merge CORI SSL Merge
Rank Merge | 300 sampled documents | Merge | 300 sampled documents

5 0.3280 0.3240 (—1.21%) 0.2400 0.3360 (+40.00%)
10 0.3020 0.3520 (+16.56%) 0.1940 0.3120 (+60.82%)
15 0.3107 0.3400 (+9.43%) 0.1920 0.2720 (+41.67%)
20 0.3000 0.3200 (+6.25%) 0.1800 0.2580 (+43.33%)
30 0.2873 0.2993 (+4.18%) 0.1627 0.2300 (+41.36%)

Note: Ten databases were selected to search for each query. Results are averaged over 50 queries.

The experiments reported in this section demonstrate that the SSL result-
merging algorithm is not restricted to use with the CORI resource selection
and INQUERY document retrieval algorithms. At least one other algorithm
can be used for each of these tasks. It is likely that other resource selection
and document retrieval algorithms can be used with the SSL result-merging
algorithm, too.

8. EXPERIMENTAL RESULTS: QUERY-BASED SAMPLING EFFECTS

Prior research showed that the number of documents examined during query-
based sampling has a direct, although diminishing, effect on resource selection
accuracy [Callan 2000]. The number of documents examined during query-
based sampling also determines the size of the centralized sample database
that provides training data for the SSL result-merging algorithm. The single
engine-type experiments described in Section 6 suggest that the accuracy of the
SSL result-merging algorithm is affected in part by the amount of training data
available for learning models. In this section, we examine the sensitivity of the
SSL result-merging algorithm to the number of documents examined during
query-based sampling.

A series of experiments was done to study the effects of varying the number
of documents examined during query-based sampling. The experiments were
designed to distinguish among the influences of the number of documents on re-
source selection and on result merging. The multiengine experimental method-
ology described in Section 5.2 was used: Three types of search engines, CORI
resource selection, and ten databases selected per query. Two sample sizes were
compared: Our default sample size of 300 documents per database and a larger
size of 700 documents per database (obtained using about 175 queries). As in
our prior experiments, a random sampling strategy was used to select query
terms during query-based sampling, which means that two equal-sized sam-
ples will produce slightly different resource descriptions and slightly different
results. In these experiments, the 300-document samples are the first 300 doc-
uments observed in a 700-document sampling run, which ensures that the 300-
document and 700-document results are directly comparable. Tables XI and XII
summarize the results.

The 300-document results (Table XI) were consistent with results reported
earlier in this paper (Table VI). The numbers varied slightly, due to random

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 483

Table XII. Precision at Different Document Ranks using the CORI and Semisupervised
Learning Approaches to Merging Retrieval Results. Resource Descriptions were
Created from 700 Sampled Documents

Trec123 Testbed Trec4 _kmeans Testbed
Document | CORI SSL Merge CORI SSL Merge
Rank Merge | 700 sampled documents | Merge | 700 sampled documents

5 0.3280 0.3880 (+18.3%) 0.2600 0.3800 (+46.2%)
10 0.3400 0.3640 (+7.1%) 0.2160 0.3320 (+53.7%)
15 0.3360 0.3520 (+4.8%) 0.1947 0.3107 (+59.6%)
20 0.3260 0.3420 (+4.9%) 0.1850 0.2880 (+55.7%)
30 0.3100 0.3133 (+1.1%) 0.1700 0.2587 (+52.5%)

Note: Ten databases were selected to search for each query. Results are averaged over 50 queries.

term selection during query-based sampling, but the results were qualitatively
similar: The SSL merge was slightly better than the CORI merge on the trec123
testbed and much better than the CORI merge on the trec4 kmeans testbed.

The results for both result-merging algorithms were better when 700 doc-
uments per database were sampled than when 300 documents per database
were sampled. The only possible reason that the CORI merging results were
better is that resource selection is more accurate when resource descriptions
are created from 700 documents. The results for the SSL algorithm could be
caused by improved resource selection and/or by improved merging due to a
larger amount of training data (more “overlap” information). A second experi-
ment was conducted to distinguish among these effects.

The second experiment was conducted only with the SSL method. In addi-
tion to the experimental configurations used in the previous experiment, two
new configurations were introduced that allocated unequal amounts of training
data to resource selection and result merging. One new configuration used 700
sampled documents per database for resource selection, but only 300 sampled
documents per database were available to the SSL result-merging algorithm.
The other new configuration used 300 documents per database for resource se-
lection, but 700 documents per database were available to the SSL algorithm.
The unequal allocations of sampled data make it possible to test the effects of in-
creased data on just one component of the system. The results are summarized
in Tables XIII and XV.

The more detailed experiment indicated that improved result merging was
responsible for about half of the improvement observed in Tables XIII and XV
when 700 documents were sampled per database. When resource descriptions
were based on 300 documents per database and the centralized sample database
was based on 700 documents per database (Tables XIII and XV, 3rd column of
results), Precision increased about 4% for the trec123 testbed and about 9% for
the trec4 _kmeans testbed. This increase could only be due to improved result-
merging due to a larger number of “overlap” documents.

The more detailed experiment also indicated that the SSL result-merging
algorithm is sensitive to mismatches in the information used for resource se-
lection and result-merging. When the information used for resource selection
was more accurate than the information used for result-merging (Tables XIII
and XV, 2nd column of results), Precision decreased slightly on both testbeds.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

484 .

L. Siand J. Callan

Table XIII. Precision at Different Document Ranks using the Semisupervised Learning
Approach to Merging Retrieval Results

Trec123 Testbed
SSL Merge, SSL Merge, SSL Merge, SSL Merge,
300 docs for 700 docs for 300 docs for 700 docs for
selection, selection, selection, selection,
Document | 300 docs for 300 docs for 700 docs for 700 docs for
Rank merging merging merging merging
5 0.3240 0.3640 (+12.4%) | 0.3560 (+9.88%) | 0.3880 (+19.75%)
10 0.3520 0.3400 (—3.5%) 0.3600 (+2.27%) | 0.3640 (+3.41%)
15 0.3400 0.3280 (—3.5%) 0.3427 (+0.79%) | 0.3520 (+3.53%)
20 0.3200 0.3140 (—1.9%) 0.3300 (+3.13%) | 0.3420 (+6.88%)
30 0.2993 0.3020 (+0.9%) 0.3107 (+3.81%) | 0.3133 (+4.68%)

Note: Resource descriptions were created from 300 or 700 sampled documents. The centralized sample
database was created from 300 or 700 sampled documents from each database. 10 databases were
selected to search for each query. Results are averaged over 50 queries.

Table XIV. The Number of “Overlap” Documents per Database on the
Trec123 Testbed

Trec123 Testbed
300 docs for | 700 docs for | 300 docs for | 700 docs for
selection, selection, selection, selection,
300 docs for | 300 docs for | 700 docs for | 700 docs for
merging merging merging merging
Available 22.6 20.8 33.6 34.6
Used 9.06 8.96 9.41 9.48

Note: At most 10 “overlap” documents per database are used for training, so the
number used can be less than the number available. Ten databases are selected per
query. Results are averaged over 50 queries.

Resource selection was more accurate in this case, so the loss could only be
due to the SSL result-merging algorithm. Further analysis indicated that in
this situation the resource selection algorithm was more likely to select (good)
databases for which the result-merging algorithm was unable to obtain as much
training data (“overlap” information) as other configurations. In these cases,
weak result-merging offsets any improvement in resource selection. The num-
ber of training data (“overlap” documents) is shown in Tables XIV and XVI.
The configuration of 700 documents for resource selection and 300 documents
for result-merging (Tables XIV and XVI, 2nd column of results) had the least
training data. Although the difference in the amount of used training data be-
tween this configuration and other configurations is not very distinct, there is
a larger difference in the amount of available training data. Generally, more
available training data enables the result-merging algorithm to choose bet-
ter training data points (the training data with higher ranks), which helps to
improve retrieval accuracy.

The experiments reported in this section indicate that increasing the number
of documents sampled per database can improve result-merging accuracy, but is
not guaranteed to do so. The most accurate results were obtained when resource
descriptions and the centralized sample database were constructed from the

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results .

Table XV. Precision at Different Document Ranks using the Semisupervised Learning
Approach to Merging Retrieval Results

Trec4 Kmeans Testbed
SSL Merge, SSL Merge, SSL Merge, SSL Merge,
300 docs for 700 docs for 300 docs for 700 docs for
selection, selection, selection, selection,
Document | 300 docs for 300 docs for 700 docs for 700 docs for
Rank merging merging merging merging
5 0.3360 0.3040 (—9.5%) | 0.3560 (+5.95%) 0.3800 (+13.10%)
10 0.3120 0.2960 (—5.1%) | 0.3280 (+5.13%) 0.3320 (+6.41%)
15 0.2720 0.2573 (—5.4%) | 0.3160 (+16.18%) | 0.3107 (+14.23%)
20 0.2580 0.2510 (—2.7%) | 0.2840 (4+10.08%) | 0.2880 (+11.63%)
30 0.2300 0.2273 (-1.2%) | 0.2520 (+-9.57%) 0.2587 (+12.40%)

485

Note: Resource descriptions were created from 300 or 700 sampled documents. The centralized sample
database was created from 300 or 700 sampled documents from each database. 10 databases were
selected to search for each query. Results are averaged over 50 queries.

Table XVI. The Number of “Overlap” Documents per Database on the
Trec4_kmeans Testbed

Trec4 _Kmeans Testbed
300 docs for | 700 docs for | 300 docs for | 700 docs for
selection, selection, selection, selection,
300 docs for | 300 docs for | 700 docs for | 700 docs for
merging merging merging merging
Available 56.0 37.5 79.9 77.4
Used 9.93 9.01 9.96 9.93

Note: At most 10 “overlap” documents per database are used for training, so the
number used can be less than the number available. Ten databases are selected per
query. Results are averaged over 50 queries.

same set of sampled documents, because there was a higher likelihood of finding
sufficient “overlap” information for all of the selected databases.

9. EXPERIMENTAL RESULTS: THE EFFECT OF THE RESULT LIST LENGTH

In the previous experiments ranked lists of 1,000 documents were retrieved
from each selected database. By ranked lists we mean document identifiers,
ranks, and scores; the document text is not downloaded until a person requests
it. Ranked list information can be communicated efficiently across a computer
network. If the string identifier and numeric score for a document can be com-
municated in 60 bytes, then a ranked list of 1,000 documents requires about
60,000 bytes. The number of bytes varies depending upon the result list format,
but in general the communications costs are not excessive.

Often result list lengths cannot be controlled by the merging process. For
example, Google and AltaVista initially return only the top 10 or 20 documents.
Additional communication is required to obtain results farther down the ranked
list. If a search engine returns 20 documents at a time, obtaining information
about the top 1,000 documents would require 50 “client sends request and server
responds” transactions. We would view this as excessive communication.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

486 o L. Siand J. Callan

Table XVII. The Percentage of Selected Databases
That Do Not have Enough Overlap Documents, for
Result Lists of Different Lengths

Result Percentage of Selected Databases
List With Fewer Than 3 Overlap Documents

Length | Trecl23 testbed | Trec4_kmeans Testbed
50 62.0% 21.0%
100 31.8% 8.0%
200 12.6% 1.6%
500 6.2% 0.4%
1000 3.0% 0.0%

Note: Ten databases were selected per query. Results are aver-
aged over 50 queries.

In many operational environments, it is desirable to rely on result-lists
far shorter than 1,000 documents. However, one consequence of using shorter
result-lists, for example, 50 documents, is that the semi-supervised learning
approach to result merging is likely to have much less training data, that is,
less “overlap” information, from which to learn its models. The multiengine ver-
sion of the algorithm needs “overlap” information for at least three documents
for each database. A very real concern is that the training data requirements of
the SSL method can’t be satisfied inexpensively in environments where search
engines return only short result lists.

The effect of the result list length on result-merging accuracy was explored in
a series of experiments. The multiple search engine types experimental method-
ology described in previous sections was used in these experiments, except that
the length of result lists was varied from 50 to 1,000. All search engines were
assumed to return lists of the same length. The results are summarized in
Table XVII.

When the result list described only the top 50-100 documents from each
database, a large percentage of the selected databases did not have enough
overlap information to provide sufficient training data. The problem was less
severe on the trec4_kmeans testbed, which has homogeneous databases with
shorter average length and longer queries; result lists of 100-200 documents
were sufficient to provide adequate training data for all but a small percentage
of databases. The problem was more severe on the trec123 testbed, which has
many somewhat similar heterogeneous databases; result lists needed to contain
about 500 documents.

It is encouraging that in these experiments shorter result lists worked well
with the trec4 _kmeans testbed, which is usually considered the more difficult
testbed for result-merging algorithms. One might conclude that when relevant
documents are distributed across a small number of databases, short result
lists are acceptable, but when relevant documents are scattered across a larger
number of relatively similar databases, longer result lists are required. How-
ever, our goal is more consistent behavior from a result-merging algorithm.

Additional “overlap” information can be created on-the-fly by allowing
the result-merging process to download a small number of documents from
databases that do not have enough “overlap” information. The downloaded

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 487

Table XVIII. The Average Number of Downloaded Documents Required to Provide
Overlap Information about 3 Documents per Selected Database

Trec123 Testbed Trec4 kmeans Testbed
Result Total Total
List Download Docs | Download Docs | Download Docs | Download Docs
Length Per Database (10 Databases) Per Database (10 Databases)
50 1.2 12.1 0.4 3.8
100 0.5 5.3 0.1 1.3

Note: Ten databases were selected per query. Results are averaged over 50 queries.

documents can be inserted into the centralized sample database (temporar-
ily or permanently), and scores can be computed for them. This solution has
communications costs (i.e., the cost of downloading the additional documents),
but the cost of downloading a few documents may be much lower than the cost of
obtaining the many result-list fragments needed to reach 200-500 documents
per database.

The experiment described above was repeated, except that if overlap infor-
mation was not available for at least three documents in a result list, enough
documents were downloaded from the database to provide overlap informa-
tion for three of its documents. Documents ranked 1st, 11th, and 21st were
candidates for downloading. These ranks were chosen to cover a small range
of top-ranked document scores. Documents that were downloaded on-the-fly
were inserted into the centralized sample database temporarily so that scores
could be computed for them.’ The experimental results are summarized in
Table XVIII.

When result lists contained information about the 50 top ranked documents,
the minimum training data requirements were met by downloading an average
of 0.4-1.2 documents per database. When result lists contained information
about the 100 top-ranked documents, it was only necessary to download an
average of 0.1-0.5 documents per database. In these experiments, the costs
of downloading documents to meet the minimum training data requirements
were relatively low, and almost certainly lower than the cost of downloading
additional fragments of the result lists.

The effectiveness of this approach to meeting the minimum training data
requirements is shown in Table XIX. The combination of shorter result lists and
on-the-fly document downloading was about as effective as result lists of 1,000
documents. The variance in effectiveness was greater when result lists were
short and documents were downloaded on-the-fly; the increased variance was
due to the reduced amount of training data. However, in general the difference
was too small for an interactive user to notice. Effectiveness was maintained,
in spite of greatly reduced training data because the algorithm could choose
which documents to download. It could focus its limited amount of training on
the higher-ranked documents, which was a more efficient use of training data

5Documents were inserted into the centralized sample database only temporarily during these
experiments to prevent one query from affecting subsequent queries. We return to this point in
Section 10.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

488 .

L. Siand J. Callan

Table XIX. Precision at Different Document Ranks for Three Methods of Supplying Training Data
to the Semisupervised Learning Algorithm for Merging Retrieval Results

Trec123 Testbed Trec4_kmeans Testbed
Document Top 50 Docs Top 100 Docs Top 50 Docs Top 100 Docs
Rank |1,000 Docs| -+Downloads +Downloads |[1,000 Docs| +Downloads +Downloads
5 0.3520 |0.3680 (+4.45%)[0.3440 (—-2.27%)| 0.3640 |0.3480 (—4.40%)|0.3520 (—3.30%)
10 0.3400 |0.3600 (+5.88%)(0.3460 (+1.76%)| 0.2940 [0.2980 (+1.36%)|0.2960 (+0.68%)
15 0.3280 |0.3587 (+9.36%)[0.3360 (+-2.44%)| 0.2760 |0.2667 (—3.37%)|0.2627 (—4.82%)
20 0.3290 |0.3500 (+6.38%)[0.3340 (+1.52%)| 0.2540 [0.2530 (—0.39%)|0.2520 (—0.79%)
30 0.3200 |0.3340 (+4.38%)[0.3160 (—1.25%)| 0.2300 [0.2233 (—2.91%)|0.2240 (—2.61%)

Note: Each method is characterized by a result-list length (1000, 50, and 100) and whether documents can be down-
loaded on-the-fly to generate additional “overlap” information. Ten databases were selected per query. Results
are averaged over 50 queries.

Table XX. The Number of “Overlap” Documents per Database

Overlap Documents Per Database
Rﬁiséltlt Trec123 Testbed | Trec4_kmeans Testbed
Length Available | Used | Available Used
Top 50 Docs + Downloads 3.9 3.8 5.7 5.5
Top 100 Docs + Downloads 5.3 4.6 10.3 8.0
1,000 Docs 24.5 9.1 57.8 9.9

Note: At most 10 “overlap” documents per database are used for training, so the number
used can be less than the number available. Ten databases are selected per query. Results
are averaged over 50 queries.

(Table XX), and which maintained accuracy in the portions of the rankings most
likely to be observed by the user.

These experiments demonstrate that the semisupervised learning approach
to merging results can be applied in environments where result lists are short
and communications costs are to be kept low. Allowing the algorithm to down-
load a very small number of documents per database compensates for dramat-
ically shorter result lists with no significant effect on accuracy.

10. CONCLUSIONS

This article presents the results of an extended study of a semisupervised learn-
ing (SSL) approach to result-list merging for autonomous, uncooperative search
engines in distributed information retrieval environments. The SSL algorithm
assumes that result merging is an integrated part of a complete distributed in-
formation retrieval system, and that information acquired for creating resource
descriptions can also be used to guide result merging. The SSL algorithm specif-
ically models result merging as a task of transforming sets of database-specific
document scores into a single set of database-independent document scores. We
call this method a semisupervised learning approach because data acquired for
creating resource descriptions is automatically used by an ordinary document
retrieval algorithm to create training data that teaches a supervised learn-
ing algorithm to normalize the scores of unseen documents. We believe that
this is the first result-merging algorithm to model the task in this way and to
learn database-specific and query-specific functions for normalizing document
scores.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 489

The research reported here reproduces results reported in an earlier paper
[Si and Callan 2002]. In particular, it demonstrates that the algorithm is effec-
tive on two rather different 100-database testbeds under a variety of conditions,
in environments with a single type of search engine, and in environments with
several types of search engines. The SSL algorithm is shown to be at least as
effective as the well-known CORI result-merging algorithm, and its effective-
ness is shown to be due to its ability to tune a linear normalization model on a
database-specific and query-specific basis.

This article also extends the prior research in several important directions.
It addresses the criticism that the SSL result-merging algorithm might be im-
practical in operational environments because it relies on receiving result-list
information about a large number of documents (1,000) from each database.
The research reported here demonstrates that the algorithm is effective with
relatively short result-lists if it is also allowed to download a small number
of document texts “on the fly” from selected databases. In this configuration
the algorithm uses its training data very efficiently, which gives implementers
considerable freedom in how to trade off result-list length and the number of
documents downloaded “on the fly.”

The earlier paper [Si and Callan 2002] claimed that the SSL result-merging
framework is independent of the particular resource selection algorithm and
the algorithm used to search the centralized sample database. The research
reported here supports that claim by demonstrating effective results with
language-modeling algorithms for resource selection and document retrieval
from the centralized sample database. We believe that the SSL result-merging
framework can be used with any reasonably effective resource selection and
document retrieval algorithms.

The SSL result-merging algorithm increases the importance of query-based
sampling, because the sampled documents are used for two purposes: build-
ing the resource descriptions that guide resource selection, and building the
centralized sample database that supplies training data for learning to merge
result lists. This article shows that the effect of varying the amount of sampled
data is magnified because of this dual use. Increasing the number of sampled
documents improves resource selection accuracy, and also improves the accu-
racy of result merging.

The SSL algorithm is also sensitive to inconsistencies between the amount
of information used for resource selection and merging results, which was not
known previously. If the resource selection algorithm makes its decisions based
on more or different information than is used by the SSL algorithm, any im-
provement in resource selection accuracy may be lost due to an inability to
find comparable training data for result-merging in the centralized sample
database. This problem can probably be solved by allowing the SSL algorithm
to dynamically download document “on the fly,” as is done when result lists are
short, but that solution remains to be studied in future work.

As with any new algorithm, there remain open questions about this approach
to merging results. For example, we have studied just one type of method for
learning to normalize document scores. Linear models are a good choice when
the training data are limited, but occasionally, for some combinations of queries

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

490 o L. Siand J. Callan

and databases, training data is plentiful. Perhaps more complex models can be
adopted when there is more training data. In our research, the centralized
sample database did not change over time, but in an operational environment
the centralized sample database probably would change over time, for exam-
ple, each time it is necessary to download documents “on the fly” to generate
additional training data. Over time, the centralized sample database might be
expected to become a very good model of the information most relevant to the
queries that are seen most often, which would enable, for example, a gradual
transition from simple models to complex models. We are not aware of any re-
search on distributed information retrieval systems that learn over time, but
this seems likely to be a fruitful area for future research.

The result-merging problem in distributed information retrieval environ-
ments, especially in environments with multiple types of uncooperative search
engines, has been a major open problem for several years. Although it is not yet
completely solved, we view the work presented in this article as an important
improvement in the state-of-the-art.

REFERENCES

AsraMm, J. A. AND MONTAGUE, M. 2001. Models for metasearch. In Proceedings of the 24th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM, New York.

Buckiey, C., SINGHAL, A., MiTRA, M., AND Sarron, G. 1995. New retrieval approaches using SMART.
In Proceedings of 1995 Text REtrieval Conference (TREC-3), special publication. National Insti-
tute of Standards and Technology.

CaLraN, J. 2000. Distributed information retrieval. In Advances in Information Retrieval, W. B.
Croft, Ed. Kluwer Academic Publishers, pp. 127-150.

CaLLAN, J. AND CoNNELL, M. 2001. Query-based sampling of text databases. ACM Trans. Inf. Syst.
19, 2, 97-130.

CaLLaN, J., CrorFT, W. B, AND BroGLIO, d. 1995a. TREC and TIPSTER experiments with INQUERY.
Inf Proc. Manage. 31, 3, 327-343.

CaLLAN, d., Ly, Z., AND CrorT, W. B. 1995b. Searching distributed collections with inference net-
works. In Proceedings of the 18th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, New York.

CrasweLL, N., Baky, P., anD Hawking, D. 2000. Server selection on the World Wide Web.
In Proceedings of the 5th ACM Conference on Digital Libraries. ACM, New York, pp. 37—
46.

CRrasSWELL, N., HAWKING, D., AND THISTLEWAITE, P. 1999. Merging results from isolated search en-
gines. In Proceedings of the 10th Australasian Database Conference. pp. 189-200.

FrencH, J. C., PoweLL, A. L., CaLLAN, J., ViLgs, C. L., Emmitt, T., Prey, K. J., aND Mou, Y. 1999.
Comparing the performance of database selection algorithms. In Proceedings of the 22nd Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM, New York.

Funr,N. 1999. A decision-theoretic approach to database selection in networked IR. ACM Trans.
Inf Syst. 17, 3, 229-249.

Gravano, L., CHANG, C., GaRcia-MoLiNa, H., aND PAEPCKE, A. 1997. STARTS: Stanford proposal
for Internet Meta-Searching. In Proceedings of the ACM-SIGMOD International Conference on
Management of Data. ACM, New York.

Gravano, L., Garcia-Morina, H., anp Tomasic, A. 1994. The effectiveness of GIOSS for the text
database discovery problem. In Proceedings of the ACM-SIGMOD International Conference on
Management of Data. ACM, New York.

Gravano, L., Garcia-MoLiNa, H., aAND Tomasic, A. 1999. GIOSS: Text-Source discovery over the
Internet. ACM Trans. Datab. Syst. 24, 2.

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

SSL Method to Merge Search Engine Results . 491

HawkiNg, D. AND THISTLEWAITE, P. 1999. Methods for information server selection. ACM Trans.
Inf. Syst. 17, 1, 40-76.

IpEROTIS, P. AND GRAVANO, L. 2002. Distributed search over the Hidden-Web: Hierarchical
database sampling and selection. In Proceedings of the 28th International Conference on Very
Large Databases (VLDB).

KirscH, S. T. 2003. Document retrieval over networks wherein ranking and relevance scores are
computed at the client for multiple database documents. U.S. Patent 5,659,732.

Larkgy, L., CoNNELL, M., AND CaLLAN, J. 2000. Collection selection and results merging with
topically organized U.S. patents and TREC data. In Proceedings of Conference of Information
and Knowledge Management.

LE Cawv, A. AND Savoy, J. 2000. Database merging strategy based on logistic regression. Inf Proc.
Manage. 36, 3.

LEg, J. H. 1997. Analyses of multiple evidence combination. In Proceedings. of the 20th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM, New York.

LeEMUR TooLkiT. 2003. http://www.cs.cmu.edu/~lemur.

ManmaTHA, R., RaTH, T., AND FENG, F. 2001. Modeling score distributions for combining the outputs
of search engines. In Proceedings of the 24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, New York.

Ocivie, P. aND CALLAN, J. 2001. Experiments using the Lemur toolkit. InProceedings of 2001
Text REtrieval Conference (TREC 2001), special publication. National Institute of Standards and
Technology, Washington, DC.

PontE, J. aND Crorr, W. B. 1998. A language modeling approach to information retrieval. In
Proceedings of the 21st International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, New York.

PowgLL, A. L., FRENcH, J. C., CALLAN, J., CONNELL, M., AND VILESs, C. L. 2000. Theimpact of database
selection on distributed searching. In Proceedings of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, New York.

RoBerTsON, S. E. AND WALKER, S. 1994. Some simple effective approximations to the 2-Poisson
model for probabilistic weighted retrieval. In Proceedings of the 17th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM, New York,
pp. 232-241.

S1, L. aND CaLraN, J. 2002. Using sampled data and regression to merge search engine results.
In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval. ACM, New York.

St, L., JIN, R., CaLLAN, J., AND Ociivie, P. 2002. A language model framework for resource selection
and results merging. In Proceedings of the 11th International Conference on Information and
Knowledge Management (CIKM). ACM, New York.

Song, F. anp CrorT, W. B. 1999. A general language model information retrieval. In Proceedings
of the 22nd ACM SIGIR Conference on Research and Development in Information Retrieval. ACM,
New York.

ViLEs, C. L. AND FrRENcH, J. C. 1995. Dissemination of collection wide information in a distributed
information retrieval system. In Proceedings of the 18th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. ACM, New York.

VoorHEES, E., Gupta, N. K., AND JoHNSON-LAIRD, B. 1995. Learning collection fusion strategies. In
Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval. ACM, New York.

Xu, J. aND CaLLAN, J. 1998. Effective retrieval with distributed collections. In Proceedings of the
21st Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, New York.

Xy, J. aND CrorT, W. B. 1999. Cluster-based language models for distributed retrieval. In Pro-
ceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. ACM, New York.

Received October 2002; revised January 2003; accepted July 2003

ACM Transactions on Information Systems, Vol. 21, No. 4, October 2003.

