
Pareto-Optimization-Based Run-Time Task Scheduling for
Embedded Systems ∗

Peng Yang
†

Francky Catthoor
‡

IMEC, Kapeldreef 75, B3001 Leuven, Belgium, {yangp, catthoor}@imec.be

ABSTRACT
Pareto-set-based optimization can be found in several dif-

ferent areas of embedded system design. One example is
task scheduling, where different task mapping and ordering
choices for a target platform will lead to different perfor-
mance/cost tradeoffs. To explore this design space at run-
time, a fast and effective heuristic is needed. We have mod-
eled the problem as the well known Multiple Choice Knap-
sack Problem(MCKP) and have developed a fast greedy
heuristic for the run-time task scheduling. To show the ef-
fectiveness of our algorithm, examples from randomly gen-
erated task graphs and realistic applications are studied.
Compared to the optimal dynamic programming solver, the
heuristic is more than ten times faster while the result is
less than 5% away from the optimum. Moreover, due to its
iterative feature, the algorithm is well suitable to be used as
an on-line algorithm.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—

real-time systems a nd embedded systems; D.4.1 [Operating
Systems]: Processing Management

General Terms
Algorithms, Performance, Design

Keywords
Pareto optimization, scheduling, embedded system, low-

power

1. INTRODUCTION
The merging of computers, consumer and communica-

tion disciplines gives rise to very fast growing markets for
personal communication, multimedia and broadband net-
works. At the same time, technology advances lead to plat-
forms with enormous processing capacity, which is however
not matched with the current system design productivity.

∗
This work was partly supported by the Flemish government in the
scope of the MEDEA and MESA projects.
†
also Ph.D. student of K.U.Leuven-ESAT

‡
also professor of K.U.Leuven-ESAT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

The future embedded system design should be based on
platforms, which have sufficient computation and memory
resources, consume extremely low energy and are flexible
enough to cope with the dynamic behavior of future multi-
media applications.
For this kind of design, one of the most critical bottle-

necks is the very dynamic and concurrent behavior of many
of these new applications, which are fully specified in soft-
ware oriented languages (like Java, UML, SDL, C++) and
still need to be executed in real-time cost/energy-sensitive
way on the usually heterogeneous SoC platforms. An effec-
tive methodology is required to map this system specifica-
tion onto an embedded multiprocessor platform, and nor-
mally this leads to a tradeoff among different system design
objectives.
Pareto optimization is a good way to represent and ex-

plore these tradeoffs. The Pareto-optimal concept comes
from multiobjective optimization problems, where more than
two conflicting optimization objectives exist (e.g., for a given
IC processing technology, one can not reduce the delay and
power of a digital circuit simultaneously). A solution is said
Pareto-optimal when it is optimal in at least one optimiza-
tion objective direction. Such a set of Pareto-optimal solu-
tion is normally called a Pareto set and can be conveniently
represented by a Pareto curve. In real-world applications,
Pareto optimal set can be the result of many different fac-
tors, such as architecture (CPU and/or memory) mapping,
quality of service control(QoS), as long as more than one op-
timization objective exists. A systematic way is presented
on how to generate the Pareto curves [6] when the designer
explores the design space. Traditional design methodology
extract that Pareto optimal set and select one point from
that set, both at design time. This approach can be used
for static systems. However, for modern dynamic systems,
we can explore the design space at design time but defer the
selection step till run time, to better tune the system to the
changing environment.
The Pareto optimal set can come from many design pa-

rameters[6]. In this paper we will focus on on-line task
scheduling in the Dynamic Voltage Scaling(DVS) context[8]
because it is well known to most of the embedded system de-
sign researchers. However, the methodology and algorithm
are not limited to DVS and can be readily applied to any
other similar problem where a multiobjective tradeoff exists.
The rest of the paper is structured as follows. Section 2

uses a motivational example to illustrate our task scheduling
method. In Section 3, related work is discussed. Following
the problem formulation and algorithm description in Sec-

120

t0_1

t0_2

t0_3

t1_1

t1_2

t1_3

t1_4

t2_1

t2_2

t2_3

t3_1

t3_2

t3_3

t3_4

t3_5

t3_6

t4_1

t4_2

t4_3

t4_5

t4_4

t4_6

Task
Graph 0

Task
Graph 1

Task
Graph 2

Task
Graph 4

Task
Graph 3

Figure 1: The task graph of the motivational exam-
ple.

tion 4, Section 5 gives our experimental results on both ran-
domly generated and real-life applications. Finally Section
6 concludes the paper.

2. MOTIVATIONAL EXAMPLE
The advantages of our novel approach can be shown by

an example generated by Task Graph For Free (TGFF)[5].
Fig. 1 shows an application which requires the cooperation
of five task graphs, denoted from 0 to 4. The details of
those task graphs can be found in Tab. 1, in which the first

TG0 TG1 TG2 TG3 TG4
Number of nodes 8 47 12 29 21
Number of arcs 9 59 13 35 26
Exec. time(us) 284 1258 371 826 661
En. consum.(uJ) 222 1211 331 814 671

Table 1: Task graphs generated by TGFF.

row shows the number of nodes in each task graph, the sec-
ond row is the number of arcs, and the third and fourth
rows give the execution time and energy consumption re-
spectively when the task graph is executed completely on a
3.0V processor. We assume the application is frame based,
i.e. every time frame the application will be executed once
to process the current input data. This is a reasonable ab-
straction for the multimedia processing or communication
(e.g. mp3 or image decoding). Depending on the content of
the input data, not all 5 task graphs of the application will
be needed for that specific time frame. In our motivational
example we simply assume that every time frame each task
graph is selected randomly. The last assumption is that the
application has to finish before a deadline, which is normally
the period of the time frame.
In this paper, we investigate the single-processor task schedul-

ing. To handle the worst case, which happens when all 5 task
graphs are selected, the CPU has to be powerful enough to

400 500 600 700 800 900 1000 1100 1200
0

50

100

150

200

250

300

350

Execution time(uS)

E
ne

rg
y

co
ns

um
pt

io
n(

nJ
)

Figure 2: The Pareto curve of task graph 2.

complete the application before the deadline. On the other
hand, most of the time only a few of the 5 task graphs are
active and hence DVS can be applied to save energy. The on-
line inter-task DVS algorithm[19], which is called so because
the voltage scheduling is done dynamically at the boundary
of task graphs, monitors the application execution. When-
ever it sees some slack time available, it scales the working
voltage accordingly. For instance, with a deadline of 3.4ms,
a CPU working at 3.0V is just good enough to finish all the
task graphs in time. Every task graph will take exactly the
execution time and energy given in Tab. 1. Now suppose
at the end of task graph 0, the inter-task DVS scheduler
notices that task graph 3 will not be active for the current
time frame. Therefore a slack of 0.826ms is available. We
still have to run task graph 1, 2 and 4, which will normally
take 2.29 ms and consume 2213uJ, while the time available
is 3.4ms subtracted by 0.284ms, i.e. 3.12ms. Using the
conventional equation[7], even if the inter-task DVS reduces
the CPU working voltage by 2.29/3.12=0.73, the application
can still be completed in time, but the energy consumption
is now 2213*0.73*0.73=1179uJ, i.e. almost half of the orig-
inal value.
The inter-task DVS can save much energy, but it assumes

a continuous variable voltage. That requires special circuit
design and processing technology and a DC-DC converter
which is not very energy efficient(80-95%, depending on the
output voltage[4]). Besides, inter-task DVS cannot see the
internal contents of the task graph, and is not able to explore
the slack time coming from that.
Our scheduler behaves quite differently from the inter-task

DVS. Firstly, we use only a limited set of discrete voltages
(two for the first example, namely 3.0V and 1.0V). Secondly,
the internal content of the task graph is divided into schedul-
ing nodes and scheduled at that granularity. Thirdly, we
schedule it in two phases. At design time, the task graph is
scheduled at the scheduling node granularity, i.e. each node
is assigned to one of the discrete voltages and ordered in
time, generating a set of Pareto points with different exe-
cution time and energy consumption. The Pareto curve we
extract for task graph 2 is given as an example in Fig. 2.
At run time, knowing the active task graphs of the current
time frame and their Pareto curves, the run-time scheduler
is able to select one Pareto point (which represents a spe-
cific voltage assignment and ordering for that task graph)
from each active curve and can combine them together to
get the complete scheduling, taking into account the time
constraints.

121

Our approach benefits from the fact that we know which
task graph is selected for the current frame when we schedule
the application. This is realistic for real-life multi-media
applications by inserting extra code to extract the necessary
information, at the start of each frame (see e.g. [21]). If it is
impossible to do so, the run-time scheduling decision should
be re-evaluated as soon as that info becomes available during
the task execution. But even then, our run-time heuristic
is fast enough to accommodate that situation. This is also
one of the major reasons why the heuristic should be fast,
and preferably also scalable in terms of speed versus solution
quality.
We have simulated the scheduling of the above problem

for 1000 frames. In each frame the task graphs are selected
randomly and the time constraint is always 3.4ms. The re-
sults are shown in Tab. 2, in which our two-Vdd scheduler

no DVS inter. PC 2 PC 3 optimal
en. cons.(uJ) 1620 1068 956 823 705
en. saving 0 34% 41% 49% 56%

Table 2: Energy consumption of the motivation ex-
ample with different schedulers.

is denoted as PC 2. For comparison, we also list the energy
number for an “optimal” scheduler which uses a continuous
optimal DVS strategy. This is not achievable in practice be-
cause it requires the full knowledge of the future run-time
behavior of the tasks. In this simple example, compared to
the state-of-the-art inter-task DVS schedulers (see related
work section), our approach saves 7% more energy, which
is quite good taking into account we have only two discrete
voltages instead of a continuously changeable one. When a
third voltage, 1.5V, is available (PC 3), 15% more energy
can be saved compared to the inter-task case. This result
also comes close (within 7%) to the theoretical (unachiev-
able) optimal value.
These results show clearly the potential advantage of our

method. In section 4 we will present a run-time scheduling
heuristic on how to achieve it.

3. RELATED WORK
Task scheduling has been investigated overwhelmingly in

the last decades. When a set of concurrent tasks - i.e. tasks
that can overlap in time - have to be executed on one or
more processors, a predefined method, called scheduling al-
gorithm, must be applied to decide the order in which those
tasks are executed. For a multiprocessor system, another
procedure, assignment, is also needed to determine on which
processor one task will be executed. A good overview of
scheduling algorithms can be found in [17]. In our paper,
the terminology task scheduling is used for both the task
ordering and the processor assignment.
Generally speaking the scheduling algorithms can be clas-

sified as off-line and on-line algorithms. We focus here only
on the latter because it provides better opportunity for run-
time optimization. These algorithms are usually priority-
based and are derived from Liu and Layland’s classical pa-
per [11], in which the priority of a task is either set stati-
cally, e.g. the Rate Monotonic (RM), or dynamically, e.g.
the Earliest Deadline First (EDF). Nowadays, RM and EDF
are still the most used algorithms.
Recently, Dynamic Voltage Scaling(DVS) is getting pop-

ular ([8, 16] for a good survey). Traditionally, the CPU
works at a fixed supply voltage, even for a light workload,
when high CPU speed is unnecessary and can be traded for
a lower energy/power consumption by a reduction of the
supply voltage. This simple observation leads to many al-
gorithms.
Shin and Choi [19] extended the normal fixed-priority

scheduler to implement an on-line inter-task DVS for real-
time application. They slow down the processor when there
is only one eligible running task and completely shut it down
when that last task ends earlier than expected. Their work
is extended in [20] by adding a two-phase strategy: an off-
line algorithm decides the basic voltage for a task set with a
priority-based scheduler, while the on-line algorithm refines
the off-line decision, using the approach in [19].
To fully utilize the slack time in the on-line DVS, some

new approaches are proposed recently. They can be clas-
sified as intra-task DVS, because they benefit from looking
inside the boundary of a task. Lee and Sakurai [9] partition
a task into several pieces, called time-slots, then dynami-
cally control the supply voltage on a “time-slot by time-
slot” basis, with the feedback from the software. In [10], a
combination of hierarchical Finite State Machine and Syn-
chronous Data Flow (SDF) actors is used to model the sys-
tem. Scheduling is done at the SDF actor level. Whenever
one actor finishes, the scheduler is recalled to see whether
the current execution path has more slack time available,
either because the previous actor finishes earlier or because
an execution path different from the worst case is selected.
Other approaches include checking the current code execu-
tion against data generated at compile time to find the op-
portunity for voltage scaling[2, 18]. To take full advantage of
DVS, some authors further suggest a handshake between the
content or application and the OS[3, 15]. Our approach also
has a compile-time stage. However, different to the above
ones, it computes and stores a partial scheduling which is
used in the run-time phase.
The Knapsack Problem and its generalization, Multiple

Choice Knapsack Problem (MCKP), which forms the under-
lying base for our technique, have been studied for decades
due to their importance in operation and optimization prob-
lems. Martello and Toth[12] discuss the knapsack-like prob-
lem in detail. A good exact algorithm is given in [14]. Good
heuristics are being looked for in many different contexts[1].
Mejia-Alvarez et al applied it to DVS-like problems and a
heuristic is constructed from the linear relaxation of the orig-
inal MCKP[13].

4. RUN-TIME SCHEDULING ALGORITHM
Section 2 shows the effectiveness of our two-phase, Pareto-

curve-based scheduling methodology. The key step of this
method is the run-time scheduler. Given a set of Pareto
curves and a deadline, the run-time scheduler has to select
one and only one point from each active Pareto curve and
combine them into the final scheduling. It has to be done
fast because that will allow a more frequent (re)evaluation
of the run-time scheduling decision or the handling of more
tasks in a single shot. Both will result in still more energy
saving. The quality of the solution is also important because
it affects the amount of energy saved.
In this section, we will first formulate the problem in the

MCKP model. Then a greedy heuristic is proposed for our
specific problem.

122

4.1 Problem Specification
The run-time scheduling problem can be formulated as a

constrained minimization problem:

minimize : z =
∑k

i=1

∑Ni
j=1 eijxij (1)

subject to
∑k

i=1

∑Ni
j=1 tijxij ≤ D, (2)

∑Ni
j=1 xij = 1, i = 1, . . . , k, (3)

xij is 0 or 1, i = 1, . . . , k, j = 1, . . . , Ni. (4)

where k is the number of Pareto curves, each of which has Ni

Pareto points. eij and tij are the energy consumption and
execution time of the jth point on the ith curve respectively.
xij is 1 if the jth point on the ith curve is selected; otherwise
it is 0. The total number of points is denoted by n, n =∑k

i=1 Ni.
The minimization problem can be transformed into a dif-

ferent form[13]. Taking into account that each Pareto curve
is an ordered set, we can substitute eij with sij as

sij = (ei0 − eij), sij ≥ 0. (5)

Thus Eqn. 1 becomes a maximization problem:

maximize : z
′
=

k∑

i=1

Ni∑

j=1

sijxij (6)

With the same set of constraints, this is a classical Multiple
Choice Knapsack Problem (MCKP) and it is known as NP
hard[12].
When of limited size, MCKP can be solved optimally

in pseudo-polynomial time through dynamic programming.
However, the worst case computation complexity of DP is
still exponential, which is not acceptable as an on-line algo-
rithm for big problem size.
Several approximate algorithms exist for MCKP but all

have limitations or are not suitable for our problem. Cur-
rent heuristics are designed for big problems, which can not
be solved easily by an accurate algorithm due to its NP-hard
feature. They rival each other in which can get a solution
closer to the optimal value or which can handle a bigger
(or more difficult) problem. Execution time is only the sec-
ond or third concern to them, which makes them unsuitable
to work as an on-line algorithm. In addition, most of the
heuristics do not recognize that in our case, all points are
already Pareto optimal and ordered. That can save quite
extra computation effort.
The goal of our heuristic is to find a good enough solution

in as short as possible time for a typical problem size. It is
not our major interest to improve the solution by 1% if it
means 2 times longer execution time. Moreover, the heuris-
tic should be constructive, which improves the solution in-
crementally in every iteration so that it can be interrupted
if the time slot assigned to the run-time scheduler expires.
Then it returns its best solution at that moment.

4.2 The Greedy Heuristic
We have developed a fast and effective greedy heuristic

with the above considerations. Alg. 1 consists of two stages,
the initialization (line 2 to 16) and the iteration stage (line
18 to 41). Every point i of our Pareto curve m is denoted by
two basic parameters, tm,i and em,i, standing for the execu-
tion time and energy consumption if that point is selected
by the scheduler(the corresponding concepts in MCKP are

weight and profit). D is the deadline. In the initializa-
tion stage, we compute the changes of t and e if we move
to the right (from point i to i + 1) or to the left (to point
i − 1) and the corresponding slopes (line 5 to 12). Here
a superscript “+” means the rightward direction and “-”
means the leftward direction. The initial solution is found
at line 13 and 14: a portion of the deadline(sm) is assigned
to a curve proportional to the execution time of its left-
most point. Therefore it guarantees a valid initial solution
can always be found for that curve. When finding the ini-
tial solution we use an on-the-fly strategy. The difference
between the time assigned to curve m and the actual ex-
ecution time of its initial solution will be accumulated in
the variable slack and added to the available time of the
following curves.

Algorithm 1 The greedy heuristic algorithm.

1: INITIALIZATION
2: step 0:
3: slack=0;
4: for all curve m do
5: for all point i on curve m do
6: δe+

m,i = em,i − em,i+1;

7: δe−m,i = em,i−1 − em,i;

8: δt+m,i = tm,i+1 − tm,i;

9: δt−m,i = tm,i − tm,i−1;

10: slope+
m,i = δe+

m,i/δt+m,i;

11: slope−m,i = δe−m,i/δt−m,i;
12: end for
13: sm = tm,0D/

∑k−1
l=0 tl,0;

14: search for maximal j with tm,j ≤ (sm + slack);
15: update slack;
16: end for
17: ITERATIVE IMPROVEMENT
18: step 1:
19: sort slope+ descendingly and slope− ascendingly;
20: for all curve m in slope+ do
21: for all curve n in slope− and m 	= n do
22: if slope+

m ≤ slope−n then
23: goto step 2;
24: end if
25: if δe+

m > δe−n andδt+m < δt−n + slack then
26: change solution of curve m from i to i + 1;
27: change solution of curve n from j to j − 1;
28: update slack;
29: goto step 1;
30: end if
31: end for
32: end for
33: step 2:
34: sort slope+ descendingly;
35: for all curve m in slope+ do
36: if δt+m < slack then
37: change solution of curve m from i to i + 1;
38: update slack;
39: goto step 2;
40: end if
41: end for

After the initialization, we explore the chances of finer
tuning the solution in two steps, step1 and step2. step1
checks the possibility of moving the operating point on one

123

curve to the right and the operating point on another curve
to the left in pair. At line 19, all curves are sorted according
to the slopes of their current solutions, slope+ descendingly
and slope− ascendingly. Then the algorithm will try to find
two curves m and n, which satisfy the time constraint and
reduce the energy consumption most, if the solution of m is
changed from i to i+1 and the solution of n from j to j−1.
When no such kind of tuning is possible, the algorithm will
enter the next step. step2 does the final tuning by finding
any curve m which can still satisfy the time constraint if we
move its current solution form i to i + 1.
Assuming k curves and l points are present on each curve,

the complexity of the initialization step is O(k log l) because
for every curve we have only to do an ordered search(line
14). The complexity of the iterative stage is also very low.
In step1 every iteration takes maximally O(k2) operations,
while in step2 O(k) operations. The heuristic ends when no
improvement is possible, but we can interrupt the iteration
at any moment to finish the run-time scheduling in a prede-
fined time slot. In that case the algorithm just returns the
best available solution. This capability is very important for
a real-time system where bounded and deterministic service
is always desirable. The performance of our greedy heuristic
is illustrated in Section 5.

5. EXPERIMENTAL RESULTS
We have implemented the greedy algorithm in C and tested

it with both randomly generated and real-life applications.
The first test set we have used is the task graphs generated

by TGFF. For each task graph, a Genetic Algorithm is used
to extract the Pareto curve, on an architecture like the one
we used in section 2. Finally the heuristic is applied to
find the on-line task scheduling within a given deadline. A
dynamic programming(DP) optimal algorithm[14] is used in
this step to check the speed and quality of our heuristic.
We have generated three task sets with TGFF, containing

5, 10, and 20 task graphs respectively. For every task graph,
we have extracted two Pareto curves, one with 5 points and
the other with 9 points. The former is just a subset of
the latter. The points are distributed almost uniformly, in
the sense of execution time, between the lowest and highest
possible values. Different deadlines are then tried on the
same task set and same Pareto curves and the results are
summed in Tab. 3 and Tab. 4.

no. av. max. av. max. av. max. av. max.
of init. init. init. init.
cv. sp. up sp. up error error sp. up sp. up error error
5 14.9 24.0 1.2% 5.2% 44.0 58.7 4.1% 9.1%
10 8.8 13.2 1.0% 2.9% 42.9 53.3 6.8% 13.4%
20 3.9 7.3 1.0% 2.0% 24.0 50.2 4.5% 8.7%

Table 3: The performance of the greedy algorithm
compared to DP, 5 points per curve.

no. av. max. av. max. av. max. av. max.
of init. init. init. init.
cv. sp. up sp. up error error sp. up sp. up error error
5 15.4 24.9 0.6% 3.5% 46.0 65.1 3.4% 10.3%
10 8.4 14.5 0.8% 2.1% 34.5 55.6 4.1% 8.7%
20 4.3 7.7 0.9% 1.9% 26.2 43.4 3.5% 7.0%

Table 4: The performance of the greedy algorithm
compared to DP, 9 points per curve.

The performance of our heuristic can be evaluated in two
ways: the execution time and the quality of the result.
Tab. 3 and Tab. 4 give the overview of the result. In the

tables, the first column is the number of curves; the sec-
ond column is the average speedup of execution time of the
greedy heuristic against the DP solver; the third column is
the maximum speedup; the fourth column gives the average
error between the heuristic and DP solution and the fifth
column is the maximum error. The next four columns are
just the same but for the initial solution given by step0 of
Alg. 1.
The results show that our heuristic has an up to 15 times

average speedup against the optimal solver, while main-
taining a very high solution quality (error within 1.2% on
average). If the initial solution is considered, the average
speedup is up to 46 times while the solution error is up to
6.8%, on average. This is quite acceptable for an on-line
scheduling algorithm, because if the optimal solution means
an energy reduction from 1000nJ to 500nJ, a 10% error just
means the energy is reduced to 550nJ, which is already a big
improvement compared to the original value, especially if we
take into account the high speed to find the initial solution.
For the on-line scheduling stage, the time spent on the

scheduler itself will not contribute to the application func-
tionality execution. So it has to be minimized or bounded,
even though we can have a separate CPU to run the sched-
uler in some architectures. Our heuristic provides the capa-
bility of improving the initial solution iteratively until the
time slot assigned to the scheduler depletes. This is espe-
cially important for big problem sizes, when the scheduler
could not run to its end and still has to find a solution in
a short time slot. Tab. 5 shows the iterative improvement
of our heuristic. The result is for the 9 points per curve,

iter. no. time(cycles) solution(nJ)
0 11554 39366
1 36909 39102
2 48201 38857
3 59389 38695
4 70700 38640
5 81939 38556
6 93502 38538
7 103381 38526
8 113225 38463
9 119312 38443

Table 5: The iterative improvement of the heuristic
for a 20 curves, 9 points case.

20 curves case because it is the worst case in our experi-
ment when the execution time is considered. The optimal
result is 37836nJ and it takes the DP 232k processor cy-
cles to find it. With the heuristic, to find the final solution
38443nJ, it takes 119k cycles, which may be too long. How-
ever, the final solution is only 1.6% from the optimal one
and we are usually already satisfied with solutions which
are not that good but can be found rather fast. If we as-
sume we have 50k(100k) cycles available for the scheduler,
which is 0.25ms(0.5ms) on a 200MHz processor, the result
we can find is 38857nJ(38538nJ) and it is only 2.7%(1.9%)
away from the optimal solution. Even the initial solution is
acceptable in this case, which can be found in less than 12k
cycles. Given the fact that the run-time scheduler is trig-
gered by external events (e.g. user related) at the frequency
of tens of ms, this result is quite good.
We have also tried our heuristic on some real-life appli-

cations. One example is the quality of service(QoS) adjust-
ment algorithm of a 3D image rendering application. Every

124

17,53

14,32

6,211 6,171

17,53

14,65

9,487 9,469

0

2

4

6

8

10

12

14

16

18

20

no DVS inter-task DVS greedy heur. DP

e
n

e
rg

y
(J

)

fps=5 fps=10

Figure 3: The energy consumption of QoS adjust-
ment algorithm for 1000 frames.

14,39

11,97

10,55 10,5

14,39

12,37

10,89 10,89

0

2

4

6

8

10

12

14

16

no DVS inter-task DVS greedy heur. DP

e
n

e
rg

y
(J

)

fps=8 fps=10

Figure 4: The energy consumption of the VTC de-
coder for 1365 frames.

time frame, depending on the number of visible objects and
which kind of objects they are, the QoS controller will adjust
the number of vertices assigned to each object, in order to
provide the best quality at a fixed computation power. Fig. 3
illustrates the energy consumption of QoS adjustment algo-
rithm for 1000 frames, with a frame rate of 5fps(frame per
second) or 10fps. From this figure it is obvious that our run-
time scheduler can achieve a very high energy saving (65%
for 5fps and 46% for 10fps). The inter-task DVS does not
work very well here because the number of task graphs and
the execution time of each task graph varies dramatically in
this application. Having to assume the worst case for the
unscheduled task graphs, the inter-task DVS scheduler has
a limited chance to scale the voltage. Another observation is
that the difference between the greedy heuristic and the DP
is very small. This is because most of the frames the heuris-
tic and DP will give the same solution, due to the limited
problem size.
Another real-life application we have experimented on is

the Visual Texture Coding(VTC) decoder of the MPEG-4
standard. Similar to the QoS example, it is frame based.
However, unlike the varying number of objects in QoS, the
number of blocks to be decoded is fixed (3 in this experi-
ment) for every frame, though the workload of each block
varies from frame to frame. As shown in Fig. 4, this example
gives less space for voltage scaling because of its relative high
and less varying work load. In spite of that, our heuristic
still outperforms the inter-task DVS and provides an energy
saving of 27%. Again the results from the heuristic and DP
are very close.

6. CONCLUSION
In this paper we have modeled the Pareto-optimization-

based run-time task scheduling with Multiple Choice Knap-
sack Problem and have proposed a greedy heuristic for it.
Results on randomly generated and real-life applications
prove that our heuristic is fast (speedup of more than 10)
and high quality (suboptimality less than 5%). The incre-
mental and scalable feature makes the heuristic well suitable
for on-line task scheduling. Further research is continuing
to extend the heuristic to handle more than two optimiza-
tion objectives and to integrate the run-time scheduler into
Real-Time Operating Systems.

7. REFERENCES
[1] M. Akbar et al. Heuristic Solutions for the Multiple-Choice

Multi-Dimension Knapsack Problem. In Int. Conf.
Computational Science, pages 112–117, June 2001.

[2] A. Azevedo et al. Profile-based dynamic voltage scheduling
using program checkpoints. In Proc. Design Automation and
Test in Europe, pages 168–75, 2002.

[3] E.-Y. Chung, L. Benini, and G. De Micheli. Contents
Provider-Assisted Dynamic Voltage Scaling for Low Energy
Multimedia Applications. In Proc. Int. Symp. on Low Power
Electronic Device, pages 42–7, Aug. 2002.

[4] A. P. Dancy, R. Amirtharajah, and A. P. Chandrakasan.
High-Efficiency Multiple-Output DC-DC Conversion for
Low-Voltage Systems. IEEE Trans. VLSI Syst., 8(3):252–63,
June 2000.

[5] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: Task Graphs
for Free. In Proc. Int. Work. Hardware/Software
Codesign(CODES), pages 97–101, 1998.

[6] T. Givargis, F. Vahid, and J. Henkel. System-level Exploration
for Pareto-optimal Configurations in Parameterized
System-on-a-Chip. IEEE Trans. VLSI Syst., 10(4):579–592,
Aug. 2002.

[7] I. Hong et al. Power Optimization of Variable Voltage
Core-Based Systems. IEEE Trans. Computer Aided Design,
18(12):1702–14, Dec. 1999.

[8] N. K. Jha. Low Power System Scheduling and Synthesis. In Int.
Conf. Computer-Aided Design, pages 259–63, 2001.

[9] S. Lee and T. Sakurai. Run-Time Voltage Hopping for
Low-Power Real-Time Systems. In Proc. 38th Design
Automation Conf., pages 806–9, 2000.

[10] S. Lee, S. Yoo, and K. Choi. An Intra-task Dynamic Voltage
Scaling Method for SoC Design with Hierarchical FSM and
Synchronous Dataflow Model. In Proc. Int. Symp. on Low
Power Electronic Device, pages 84–7, Aug. 2002.

[11] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment. J.
ACM, 20(1):46–61, Jan. 1973.

[12] S. Martello and P. Toth. Knapsack Problems: Algorithms and
Computer Implementations. John Wiley and Sons, 1990.

[13] P. Mejia-Alvarez, E. Levner, and D. Mosse. Power-Optimized
Scheduling Server for Real-Time Tasks. In Proc. the 8th IEEE
Real-Time and Embedded Technology and Applications
Symp., 2002.

[14] D. Pisinger. Algorithms for Knapsack Problems. PhD thesis,
Dept. of Computer Science, University of Copenhagen,
Denmark, 1995.

[15] J. Pouwelse, K. Langendoen, and H. Sips. Energy Priority
Scheduling for Variable Voltage Processors. In Proc. Int.
Symp. on Low Power Electronic Device, pages 28–33, 2001.

[16] G. Quan and X. Hu. Energy Efficient Fixed-Priority Scheduling
for Real-Time Systems on Variable Voltage Processors. In Proc.
38th Design Automation Conf., 2001.

[17] K. Ramamritham and J. A. Stankovic. Scheduling Algorithms
and Operation Systems Support for Real-Time Systems. Proc.
IEEE, 82(1):55–67, Jan. 1994.

[18] D. Shin, J. Kim, and S. Lee. Low-Energy Intra-Task Voltage
Scheduling Using Static Timing Analysis. In Proc. 38th Design
Automation Conf., pages 438–43, 2001.

[19] Y. Shin and K. Choi. Power Conscious Fixed Priority
Scheduling for Hard Real-Time Systems. In Proc. 36th Design
Automation Conf., pages 134–139, 1999.

[20] Y. Shin, K. Choi, and T. Sakurai. Power Optimization of
Real-Time Embedded Systems on Variable Speed Processors. In
Int. Conf. Computer-Aided Design, pages 365–8, 2000.

[21] P. Yang et al. Managing Dynamic Concurrent Tasks in
Embedded Real-Time Multimedia Systems. In Proc. Int.
Symp. on System Synthesis, pages 112–9, Oct. 2002.

125

	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index

