Check for
Updates

The Georgia Tech Network Simulator

George F. Riley
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, GA. 30332-0250

riley@ece.gatech.edu

ABSTRACT Once these protocols are known to be correct, the behavior of

We introduce a new network simulation environment, developed these protocols must be demonstrated in realistic size networks to
by our research group, called tt&eorgia Tech Networ|’< Simula- insure that the performance of the protocol will be acceptable when
tor (GTNet$. Our simulator is designed specifically to allow much depll(oyed (I)n a Iﬁrge scale. For protocols designed for W|re|d net-
larger—scale simulations than can easily be created by existing net-Wor s}too s such gsang15] arILdS;SFNe[B] callr:]be ul;selgi_on toptc)) o-

work simulation tools. The design of the simulator very closely gies of up to 100,000 network elements, although this can be time

matches the design of real network protocol stacks and hardware.corsumingl' The vkenefrabfle aﬁd widely usufaﬂ8]hcan confort- .
Thus, anyone with a good understanding of networking in general ably model networks of a few hundred to a few thousand networ

can easily understand how the simulations are constructed. Further.£/€ments. The creation of larger—scale simulation topologies of-
our simulator is implemented completely in object—oriented C++, ten consumes excessive amounts of CPU time and system memory,

which leads to easy extension by users to experiment with new or making this type of experimentation more daunting and therefore

modified behavior of existing simulation models. Our tool is de- less common,.) . _

signed from the beginning with scalability in mind, including the _ heauthor's prior work wit#Parallel/Distributed npdng made

support for distributed simulations on a network of workstations as !t clear th"’_‘t _attemptlng _to baCk.St'tCh SC?'ab'."t_y and performa_nce

part of the basic design. |nt.0 an §X|st|ng simulation environment is difficult at. best.. With
We give an overview of the features@TNetSand present some this in mind, we undertook to develop a new network simulation en-

preliminary scalability results we have obtained by runr@ENets vironment, designed from the beginning to be distributed, scalable,

on a computing cluster at the Pittsburgh Supercomputer Center. apd easy to use. This simulation env?ronment Is callgoner-
puting 9 P P gia Tech Network SimulatqlGTNet$. Like any tool designed for

. . . use by the research communi€;TNetSwill never be completely
Categories and Subject Descriptors finished, and will evolve over time as the needs and requirements
C.2.0 [Computer Communication Networks]: General of the research community change. However, it is presently fully

capable of large—scale simulations of routers, end-systems, LAN’s,

and various end-user applications.
Keywords The motivation for the creation of this new environment is not
to replace or compete with any of the existing simulation tools in
widespread use. Rather, we hope that researchers will find our tool
useful in instances where existing tools cannot easily model the net-
work functions being studied, or cannot achieve the scale needed to
1. INTRODUCTION produce the desired results. Our tool is released and freely avail-

Computer based simulation is widely used in almost all areas of able to the networking research community in the hope that it will
networking research. A number of high—quality simulation tools be useful, and that researcers will contribute new and improved
exist and are in widespread use. These tools allow researchers tgnodels. The software can be downloaded from our web page [12].
test and validate new and existing protocols under a variety of con- In the remainder of this paper we will discuss the basic design
ditions. An experimental protocol can be shown to work correctly and features d&TNetSn section 2, some sample simulation scripts
in the presence of packet losses, packet re—ordering, lengthy dedn section 3, and some representative results in section 4. Finally,
lays, and lengthy round—trip times. This type of protocol validation We will give a summary and future directions in section 5.
is typically done on fairly small scale topology models, since the

objective at this point is protocol correctness. 2. THE DESIGN OF GTNetS
This section discusses the design and capabilities of the newly

Permission to make digital or hard copies of all or part of this work for d€velopedseorgia Tech Network Simulat¢@TNet$. GTNetSvas
personal or classroom use is granted without fee provided that copies areconceived by the author while teaching a graduate level class in net-
not made or distributed for profit or commercial advantage and that copies work simulation methods, which was primarily focused on using
bear this notice and the full citation on the first page. To copy otherwise, to ns2 for all experiments. Many of the students pointed out diffi-
republish, to post on servers or to redistribute to lists, requires prior specific cylties in usingns2to achieve the stated goals of the lab projects.
permission and/or a fee. . -
ACM SIGCOMM 2003 Workshops It became clear that, even thougbk2is an exce_llent gnd w@e_ly _
used research tool, there are a number of basic design deficiencies

August 25 & 27, 2003 Karlsruhe, Germany o e . .
Copyright 2003 ACM 1-58113-748-6/03/0008$5.00. that make it difficult to model certain aspects of network simula-

Network Simulation, Large—Scale Simulations, Distributed Simu-
lation

Proceedings ot the ACM SIGCOMM 2003 Workshops 5 August 2003

http://crossmark.crossref.org/dialog/?doi=10.1145%2F944773.944775&domain=pdf&date_stamp=2003-08-25

Simulator A Simulator B

R2

@

TCP Source 0
TCP Source 1

@

TCP Source 2
TCP Source 3

@

TCPSink 0
TCPSink 2

@

TCPSink 1
TCPSink 3

(w)
N

NG NG

Figure 1: Simple Distributed Network Model

tion experimentation. Further, the author’s experience in imple-
menting Parallel/Distributed ns(pdn9 made it clear that achiev-
ing further improvements in topology scale with the basetis2
product would be difficult. The design o2 using the hybrid of

Tcl andC languages, leads to substantial memory consumption in
many cases.

In the Summer of 2002, we began a research effort to create a

new network simulation environment that could be used in cases
where existing simulations lacked the capabilities to create the de-
sired experiments. This effort has resulted in@worgia Tech Net-
work Simulator GTNetShas a number of basic design goals, which
we categorized into several high—level goals

2.1 Distributed Simulation and Scalability

Care must be taken in the basic design of the simulator when a
distributed simulation is planned. When a single simulation topol-
ogy model is decomposed into a number of small sub—models, and
executed in a distributed environment, there will often be simulated
links that connect nodes which are defined on two simulation pro-
cesses. Consider for example the simple topology in figure 1. In
this example, the link connecting rout®0 and routerR2 has its
endpoints on two different simulators. Simulatérhas no repre-
sentation of route?2, and simulatorB has no representation of
router R0. GTNetSallows the creation oRemote Linksin which

only the local node must be specified. Remote links are assigned IP
addresses and address masks. No other information about the con

nectivity of the remote link is needed. At initialization time of the
distributed simulation, any remote links having matchietwork
Addresortions of their IP addresses are assumed to be connected
and any packet generated at roulr will be forward to simulator
B and delivered to routeR2. This is nearly identical to the ap-
proach used bpdns The SSFNesimulator is designed to operate
on a share—memory multiprocessor, with global state available to
all simulation threads, and thus is not faced with similar problems.

Another potential problem is the possibility that a remote end-
point (aTCP server application for example) is defined and man-
aged in a separate address space, which means that a pointer to a
remote object may not be available. To address this iSSUibletS
always identifies remote connection endpointsiByAddressand
port number. The remote endpoint can be represented in the sam
simulation process as the local endpoint, or by any other process in
the distributed simulation. The actions to create a connection are
identical in both cases. Again, this solution is similar to that used
by pdns and is not an issue with the global-state, shared—memory
design ofSSFNet

Another concern in distributed network simulations is route cal-
culations. A common approach to routing in a network simulator

e

gle large topology of: nodes that is distributed ok simulation
processes. The topology is split inkosub—models (in a fashion
identical topdng, and each sub-model is simulated in a separate
simulation process, with approximatehy/k nodes modeled and
simulated in each of thle processes. With this approach, each sim-
ulation may not have sufficient information to make routing deci-
sions at the links spanning the sub—model boundaries. For example,
router RO in simulator A above does not have sufficient informa-
tion to determine which of the two remote links is the appropriate
link to forward packets destined to hag®.

The simplest approach to solving this problem in to include in-
formation in the simulation script that describes which set of IP
addresses should be forwarded along which of the remote links.
Each remote link is given a list of prefixes that can be reached us-
ing this link, and the routing algorithms of each simulator include
that information when calculating routes.

A second approach is the use ®@host Nodes With the ghost
node approach, the remaining— n/k nodes are also modeled on
each of the simulation processes, along with information about the
links connecting those nodes to others. These ghost nodes do in
fact use memory in each simulation process, but the ghost is a re-
duced state object, containing only connectivity information used
for routing decisions but none of the other objects normally associ-
ated with full-state nodest By usingGhost Nodeseach simula-
tor has a complete picture of the overall topology of the simulated
network and can make routing decisions, but only has full state
representations for those nodes mapped to that simulator in the dis-
tributed simulation.

A scalable simulator must also have fine grained control over
logging of simulation events. When running large—scale simula-
tions, the total number of simulation events processed can be exces-
sively large, potentially trillions or more. Given this large number
of events, it is not practical to log a complete record (on disk files)
of all simulation events for post—analysis. WHTNetSthe events
that are logged are completely controlled by the simulation script,
with very fine grain control. For example, the simulation program
can request that log entries be created only for layer 4 protocols at
specific nodes in the topology. Further, all logging can optionally
be disabled at selected nodes (such as interior routing nodes). For
a given protocol layer, the logging of individual data items can be
turned on or off. For example, we can specify that for any TCP
header that is logged, the sequence numbers are to be logged, but
the checksum field is not. Finally, an individual flow can be tagged

with a forced loggingflag, that would cause every packet in this
flow to be logged, even if logging is disabled along the path.

GTNetSuses NIx-Vector routing [13, 14] as the default packet
routing mechanism. The NIx-Vector approach does not calculate
an all-pairs shortest—path—first graph and does not create routing
tables. Instead, the routes are calculated on demand, and cached
using a compact representation called a NIx-Vector. While this is
not in fact the way existing networks are designed, the resulting

nQ’avings in simulator memory is believed to be a beneficial trade-

off. For those simulation experiments that do require the existence
and maintenance of routing tables, a routing—table based routing
method is also included.

To assist with creating large—scale simulation experim&@fs
NetShas a single object that creates a random topology based on
the existingGeorgia Tech Internet Topology Model@TITM)[18].

When theGTITMobject is constructed, parameters are passed spec-

ifying the desired average degree, average leaf counts, and average

transit node counts. Once tiI&TITM object is created, member

is to use global topology knowledge to calculate a priori the best 1As of this writing, the Ghost Node implementation is work in
path from any node to all other nodes. However, consider a sin- progress irGTNetS

Proceedings ot the ACM SIGCOMM 2003 Workshops August 2003

functions for theGTITM object allow for querying node counts, use random number generator objects during initialization, and the
subnetwork counts, leaf node identifiers, and other information aboutise of theConstantRNG allows deterministic behavior where de-
the random topology that can be used to create and manage the simsired.

ulation. GTNetSallows the specification obefault object types wher-
ever practical. For nearly every simulation object (links, queues,
2.2 Extensibility and Ease of Use protocols, etc.), a default value is provided that allows for creation

of this object without specifying details. For example, by specify-
ing the default queue object iopTail queue with a queue limit

of 60,000 bytes, the user would never need to specify what type
of queue (and what size) would be needed Ifderface objects.

If not specified, the default object is used. Similarly, the user can
specify the default TCP object is TCP Reno, with a window size
of 64,000 bytes. Then whenever an application object (such as a
Web browser) needs a TCP endpoint, the default will be used. All
' default values can be specified by the user, and all default values
can be overridden on an instance by instance basis.

The simulator provides a number sfock objectdor creating
well-known topologies, such asar, dumbbel| grid, andtree By
using these stock objects, a single line of code can create a dumb-
bell topology with a random number of nodes on each end, and a
specified bandwidth restriction at the bottleneck. Once the dumb-

Renois only about 100 lines of code. A similar object oriented bell object is created, member functions can query the number of
approach was used in ti@VINe{16, 17] simulator, which is a gen- : ' . ; query .
leaf nodes, and retuidodeobject pointers to specific nodes in the

eral purpose S'“?“'a“on enwro_nment th_at can be adapted to .Createdumbbell. Similar capabilities could be included in ti&2 simu-
network simulations. Thas2 simulator is designed with a mix-

ture of Tcl, otcl andC. SSFNeis written entirely inJava but the lator by add|t_|or_1 of specialized .ObJeCtS representing collections of
nodes, but this is not presently includecdhis2

?e(;dceril (tji?)iclr ;Fr)]t'(ijls :re specified using a non-standard text-based Finally, GTNetSkeeps and optionally reports detailed statistics
P guage. about the simulator's performance. These statistics include the

The simulator is designed like real networks are designe@.Th . ;
. J . . number of objects created, number of simulator events, memory
NetS there is a clear distinction between nodes, interfaces, links, : . . . N
used, just to name a few, which assist the simulator user in iden-

and protocols.Nodeobjects represent the basic functionality of a .. A

network node (either a router or end—user system), and contain onetlfylng resource limitations or performance problems should they
or morelnterfaceobjects. Each interface object haslBrAddress ceur.
and associated network mask, as well asrk object encapsulat-
ing the behavior of the transmission medium. PackeSTiNetS 2.3 Support fc_)r PO_pUIar Protocols

consist of a list ofProtocol Data Unitobjects PDUS). This list GTNetSncludes simulation models of a number of popular pro-
is created and extended while a packet moves down the protocoltocols at the application layer, transport layer, network layer, and
stack through the various layers. When moving up the stack, eachlink layer, as discussed below. A protocol graph is used to map
protocol layer removes and processes the corresponding protocolProtocol numbers to protocol objects, in a fashion similar to ac-
header in a fashion closely modeling a real protocol stack. Each tual protocol stacks. At initialization time, the IPv4 implementa-
protocol layer communicates with the layer below it by invoking tion registers the use of protocol number 0x800 at layer 3. When
a DataRequesinethod, specifying the packet (and current state of @ packet is later received at any layer 2 protocol, the L3 protocol
the PDU stack), and any protocol specific information required by humber is extracted from the L2 header, and the the layer 3 pro-
the next lower layer. Similarly, protocols accept upcalls from the tocol number is looked up in the protocol graph. A pointer to the
layer below using ®atalndicationmethod. Layer 4 endpoints are IPVv4 instance is returned (for protocol number 0x800). Layer 4
bound to port numbers, either well know fixed values or transient WOrks similarly, with TCP registering protocol number 6 and UDP
ports, just like real layer 4 endpoints. Connections between layer 4 egistering number 17.

endpoints are by IP Address and Port Number, in a fashion nearly . .

identical to actual protocols. In general, when faced with a design 2-3-1 Application Layer Models

decision for the simulator, a design similar to actual networks was The application models i@ TNetSuse an interface very similar
chosen whenever possible. Thus, any user who has a good underto the familiarsocketsnterface to create and manage layer 4 con-
standing of the design and operation of real networks will find that nections. There are equivalent functions to the famd@mnect ,

The simulator is written entirely in C++ using an object—oriented
design methodology. To use the simulator, the simulationist creates
a C++ main program, instantiating C++ objects to represent the
various network elements comprising the simulation. Most of the
supplied C++ objects that encapsulate the functionality of network
elements useirtual functions, to allow easy extension and mod-
ification of behavior. For example, there is a single virtual base
class describing the behavior of a Queue. All queuing methods
such adDropTail andRED, use a subclass of queue to define their
behavior. As another example, the basic functionality of T#
protocol is found an abstract ba3€P class (called, not surpris-
ingly, TCP). Each of theTCP variants uses this as a base class,
and simply redefines the desired behavior by overriding the neces-
sary methods. With this approach, the class that implenieDB

GTNetSworks similarly. listen |, send, sendto , andclose just to name a few. The
Simulation models for a number of different random number major difference between our implementation andsbeketsAPI
generators are provided, includiegponentialparetg normal uni- is the use of upcalls for received data, rather than the more famil-
form, empirical andconstant We have found the use ofGonstant iar blocking read calls from the socket library. In a discrete event
random number generator particularly useful. TanstantRNG simulation environment, we cannot easily implement the behavior
object returns the same constant value every time a new value isof blocking system calls, and thus we use upcalls to achieve similar
requested. The constant value is specified whelCtrestantRNG results. However, wittGTNet$ applications do receive notifica-

is created. ThionstantRNG can be passed to any object need- tions of incoming connection requests, connection refusals from
ing a random variable, such as the on or off time for an ON—OFF peers, connection closure from peers, and failed connections.

data source. By passing th@onstantRNG to the ON-OFF data The web browser application iBTNetSis based on empirical
source, it becomes a deterministic data source with on and off timesmodels reported by Mah in [7]. These empirical distributions are
exactly the same every time. A large number of @ENetSbjects used to determine the number of objects per web page, size of the

Proceedings ot the ACM SIGCOMM 2003 Workshops 7 August 2003

requests and responses, and the think time between page requests. GTNetSuses IPV4 exclusively for the layer 3 protocol. There are
Our models also include detailed data collection of response time presently no models for IPV6, but the basic design of the simulator
per object, total number of objects, and total size of objects. The with a protocol graph and protocol numbers in the layer 2 header
web server model allows the enforcement of a limit on the number make the addition of these model possible at a future time.
of simultaneous connections processed, which provides a basis for For routing protocols, we presently have DSR for wireless route
simulated denial of service style attacks. discoveries, with AODV in progress. Further, we are presently
For studying the behavior of popular Peer-to—Peer overlay net- working on models for BGP[11] and Cisco’s EIGRP protocols for
works, we have simulation models for the behavior of the Gnutella wired networks.
protocol [1] and theGCache[2] web server scripts. OutCache .
model includes the querying of ped® Addresss from the cache, 2.3.4 Link Layer Protocols
the posting of newP Addresss, querying of otheGCachehosts, Each interface in the simulator has an associated MAC address
and the posting of ne®Cachehosts. The Gnutella models include and layer 2 protocol assigned, and these protocols create and utilize
the querying of th&sCachedor initial peer selection, connection an appropriate layer 2 PDU in the simulated packets. We presently
to peers (with both successful and unsuccessful connections), anchave layer 2 models for IEEE 802-3 [6] for wired networks and
peers terminating connections. Using these models, large-scaldEEE 802.11 [5] for wireless. Support is included for link layer
studies of Gnutella client initialization, peer discovery, peer selec- broadcasts for Ethernet LAN segments.
tion, and content searching can be modeled in detail. Further, each interface has an associated queue object, which is
Finally, the simulator has models for the well-kno@yn—Flood used to store packets to be transmitted when the link is available.
and UDP Stormdistributed denial of service attacks. Our TCP \We presently have implemented models for simple DropTail queues
server application models track the number of simulataneous con-as well as the Random Early Detecti®®HD)[4] queues.
nections, and enforce a limit on ths count to model the behavior of Nodes with wireless interfaces also have mobility models, and
servers under this type of attack. When connections are refused,support random initial node placement. A variety of placement
a RSTpacket is returned to the requestor, who in turn retries the distributions are available, including uniform, bounded normal, and
connection after a delay period. Using these models, detailed studybounded exponential. The mobility is based on a random waypoint
of the affect of this type of DDoS attacks can be performed, under approach, but allows for the specification of specific predetermined
a variety of conditions such as the number of attackers, frequencywaypoints as well.

of attack, duration of attacks, etc. L .
2.4 Built in Data Collection
232 Transport Layer Protocols GTNetShas a number of data summarization primitives, to as-

TheGTNetSsimulator has models for TCP Reno, TCP NewReno, sist the user in gathering network performance statistics during the

- . simulation execution. For example, the Web Browser object has
TCP Tahoe, an0_| TCP SACK. In ?dd't.'on' ;he design of the_ TcP an optionahistogramobject that is used to trace the response time
model uses a client/server paradigm identical to real TCP imple-

tati T i b f | inale TCP d_l‘or each requested web object. These histogram objects can then
rp;]oeir?tiiisl(;r;ss.ignoe(czirte::r?o\(,:ivs bsoeur;]/grtoogce);(tasrgp Ce:,oir?(lar::?ign requeenstsbe queried and printed, resulting in a cumulative distribution graph

. T) . . (CDF) of the web response time.
;SerNTgicziﬁr))oﬁ ??’C/rﬁghbééggngzcigcm; giﬁii;{ifnc:ee;gg; o;n% Another e>§ample of the built in data coIIec_tion methods is the
the original TCP on port 80 continues to listen for SYN packets. optional logging of sequence number versus ime & connec-

L) X tion. If instructed to do so in the simulation program, any speci-
Th's is especially important fo_r distributed simulations, since the fied TCPobject will track the sequence numbers sent and acknowl-
c[lent and server may be.on different processes, anq W.'” have no edged as a function of simulatin time, and will log this information
direct way of communicating that a new server endpoint is needed. to a data file at the conclusion of the simulation. This can then be
With our approach, we simply define the server on a well-known '

. . plotted (for example witltGnuPlo), to produce a graphical repre-
P Addressgnd port, and any qther endpoints can connect without sentation of the behavior of tARECP connection. Th@s2simulator
further action. To contrast this with the TCP client/server model

. . . h . can be used to produce a similar plot, but post—analysis K
found inns2 thens2model requires the simulation script to manu- P piot, P ysis Guil

ally create both endpoints of each connection before the connection?hr.Other scripting languages) of the trace file is necessary to achieve
; A . e is.
establishment process is initiated. This can cause difficulties in a
distributed simulation where the two endpoints are modeled in dif-
ferent simulator instances. 3. USING GTNetS
The simulator has detailed models for UDP datagram processing, The GTNetSsimulator consists of a large number @#+ ob-
and several applications that generate data for UDP flows. Thesel'ects which imp|emen[the behavior of a Variety of network ele-
data models include On—Off sources (with configurable probability ments. Building and running a simulation usi6g NetS consists
distributions for the On and Off times) and Constant Bit Rate data of Creating aC++ main program that instantiates the various net-
sources. work elements to describe a simulated topology, and the various
GTNetShas full support for modelingata contentsas well as applications and protocols used to move simulated data through
data length when moving data between layer 4 protocols. Most the topology. TheC++ main program is then compiled with any
current simulators, includings2 do not provide an easy way for compiler that fully complies with th€++ standar8. After suc-
applications to specify and receive data contents. Modeling data cessfully compiling the main program, it is linked with 68 NetS
contents is essential for a number of networking research simula—object libraries, which are available both and.soformat. The
tion experiments, including the Peer—to—Peer network models dis- resulting executable binary is simply executed as any other appli-

cussed above, as well as the behavior of routing protocols. cation, which results in the simulation of the topology and data
2GTNetShas been compiled successfully on Linux with g++-2.96,
2.3.3 Network Layer Protocols g++-3.x, Sun Solaris with SUNWS-CC and HPUX-CC (64 bit)

Proceedings ot the ACM SIGCOMM 2003 Workshops 8 August 2003

TCPClient 1 TCP Server 1 life of the simulation, and must not be destroyed until the simula-

tion completes. In this simple example, either method would work
correctly, since the nodes are being defined insidertaim func-
tion, which does not exit until the simulation completes. However,
if the nodes are created in a subroutine (sucima<reateN-

odes() ,they would not persist after tliereateNodes function
completed unless dynamically allocated writdw.

100Mbps, 5ms 100Mbps, 5ms

10Mbps, 100ms

b

TCP Client 2 AN / Create Simulated Links. Lines 32 — 43 create the five link ob-
jects in the sample topology. First, line 33 creates a point-to—point
@ 100Mbps, 5ms 100Mbps, 5ms link object of classLinkp2p . There are three things of interest
TCP Sarver 2 in this declaration. First are two arguments to the constructor for
Linkp2p objects, which specify the link bandwidth and propaga-
Figure 2: Sample GTNetS Topology tion delay. The arguments are of typate _t and Time_t re-

spectively, which are both of typgouble . However, inGTNet$
anytime a variable of typRate _t is required, an object of class
Rate may be used instead. Objects of cl&ste require a single
argument in the constructor, which is a string value specifying rates
using commonly recognized abbreviations for multipliers (such as
Mb). Similarly, anytime a variable of typ€&ime _t is required, an
object of classTime may be used instead. Objects of cldgse
require a single argument in the constructor, which is a string value
specifying rates using commonly recognized abbreviations for mul-
tipliers (such asns).

flows specified in the main program.

In this section, we give a small example of usi@gNetSo cre-
ate a simple topology and two data flows. An exam@lENetS
simulation is given for the simple topology shown in figure 2, and
discussed in detail. In this simulation, there are six nodes, and two
TCP flows from clients to servers. Many of ti@&TNetSfeatures
will be used in this example, most of which were described in the

prior section. The main program for the example is shown in the Secondly, notice that the objektis statically allocated in this

listing on the following page. Each line of the sample program will case (it is not allocated using tmew operator), and will be de-

be discussed briefly to describe it's purpose in the simulation. After : . . g
reading through this example, the reader should have a basic under-StroyeOI when the enclosing subroutine exits. This is the accepted

. : . . way of defining and parameterizing links, and will be discussed in
?S?S:r;gmm the various functions provided GffNetSand how to more detail below. Lines 35 — 38 specify the links connecting the

Include Files. Lines 4 — 10 use the Ch+ include direc- clients to routerl and the servers to route2 . Node objects have

tive to include the definitions for the various network elements and ? ThgthodAddI?uthLemek tr\1N hich createstgmsbbe}weﬁnknodes.
simulation objects used in this simulation. The necessary include tge l\:zdeé(arc?iﬁtz’r fo(rert?w::)e c::iteee}irr?;rgr?; oint tﬁg ﬁ;l(klgb'ec’t it
files will of course vary from simulation to simulation depending i t?f d F;gAdd o thp i k dooint Jlt'
on which of theGTNetSobjects are used in the simulation. A com- self (in this case), and a ressior the fink endpoint. 1t 1s

S ; . o important to note that theddDuplexLink method makes eopy
ﬁ:séeishzticgnoimugpﬁgggfe crt;nigdn:xg;orrespondmg include of theLink object passed as the second parameter, rather than us-

Main Program. The C++main entry point is defined in line ing it directly. Thus a single link obje_ct (in this example) can be
12. All GTNetSsimulations must have@++ main function. passed to any number sdddDuplexLink . caIIs,. and can subse-.
Simulator Object. A single object of clasSimulator must quently be destroyed (when the subroutine exits) without causing

be created by alGTNetSsimulations before any oth&TNetSob- problems in the simulation.

jects are created. In our example, Sienulator object is created _Flnally notl_ce that the third argument_ﬁddDuplnglnk in
at line 15. this example is th&P Addresof the local link endpoint. The argu-

Defining the Trace File. Lines 17 — 22 specify the name of the [)nent mustdbel of tyde:ddr L wg_crr’lllstgef;]ned b)(BTNethl
trace file and the desired level of tracing. For@INetSsimula- eunsigned long . HOWEVer, In elowhenever a variab'e

. - . . of type IPAddr _t is needed, an object of claH3Addr may be
tions, there is a single global object of tyjpeace that manages) . .)
all aspect of packet tracing in the simulation. Line 18 uses the ysed instead. Objects of Cla§*Addr require a single argument

Trace::Instance() function to obtain a pointer to the global Idnottrt]ee dcggf;[;é Cntorl’_i?]%iczi”r_]g 42‘ igi?;%i?é?;n;h:efg?gﬁ; link
trace object. Line 19 specifies that B Address should be writ- : P

ten to the trace file idottednotation, such as 192.168.0.1. The de- Obgg;[(;ntﬂicgré%tgee::’/\l;sro%iﬁ’cﬁlg:vér obiects are created
fault notation for loggindP Address is 32 bit hexadecimal. Line))

20 opens the actual trace file and assigns the riatreL txt in lines 45 — 51. Lines 46 and 47 create two objects of class

Line 21 specifies that the flags field for aICP headers logged in ;?:S:;Xﬁ; ' d‘;:éﬂg;:gnaek\)’\é Sgﬁﬁ;; d'l(;hg:)t_aw to peratc:_r IS used_
the trace file should use a text based representation for the flags DJECLS creation para
(such asSYN|ACK), rather than a 8 bit hexadecimal value. Line 22 graph. T?elconstgjctﬁ_r E)TCPS_ft_arveL Obje.CtS gfacspa sl;ngle p;'
specifies that allPVV4 headers should be logged in the trace file for][amﬁyero cas§bQ ’W’\'IC .Speﬁ' |es_t ﬁ.varlant | tobe use
every packet received and every packet transmitted at all nodes. or this SErver o ject. Notice t _at, In this example, an anonymous
Create Simulated NodesLines 24 — 30 create the node objects temporary objecT CPTahoe() is passed as the argument to the
representing the six network nodes in the sample topolog@ T TCPServer constructor. The constructor fdCPServer makes

: : copy of the supplied object, rather than using it directly. The
NetS node objects represent either end—systems (such as desktorfc)1 S
systems or web servers), routers, or hubs. Notice that when creaﬂnganonymous temporaryCPTahoe object is destroyed when the

Node objects, thaC++ new operator is used to create then nodes, constructors at lines 46 and 47 are complete. Lines 48 and 49 as-

: . : : - signtheTCPServer objects to nodesl ands2 respectively, and
rather than using a statically defined object (for example by saying | . . .
Node c1; Node c2;). Thisis due to the fact that node objects bind to port 80. Lines 50 and 51 specify thatB@Pheaders should

(and in fact almost all of the topology objects) must exist for the be logged in the trace file for all received and transmitted packets

Proceedings ot the ACM SIGCOMM 2003 Workshops 9 August 2003

1 /I Simple GTNetS example

2 /I George F. Riley, Georgia Tech, Winter 2002

3

4 #include "simulator.h" /I Definitions for the Simulator Object

5 #include "node.h" /I Definitions for the Node Object

6 #include "linkp2p.h" /I Definitions for point-to-point link objects

7 #include "ratetimeparse.h" // Definitions for Rate and Time objects

8 #include "application-tcpserver.h" // Definitions for TCPServer application

9 #include "application-tcpsend.h" // Definitions for TCP Sending application
10 #include "tcp-tahoe.h" /I Definitions for TCP Tahoe

11

12 int main()

13

14 /I Create the simulator object

15 Simulator s;

16

17 /I Create and enable IP packet tracing

18 Trace* tr = Trace:Instance(); // Get a pointer to global trace object

19 tr->IPDotted(true); /I Trace IP addresses in dotted notation
20 tr->Open(“introl.txt"); /I Create the trace file

21 TCP::LogFlagsText(true); /I Log TCP flags in text mode

22 IPV4::Instance()->SetTrace(Trace::ENABLED); // Enable IP tracing all nodes
23

24 /I Create the nodes

25 Node* c1 = new Node(); /I Client node 1
26 Node* c2 = new Node(); /I Client node 2
27 Node* r1 = new Node(); /I Router node 1
28 Node* r2 = new Node(); /I Router node 2
29 Node* s1 = new Node(); /I Server node 1
30 Node* s2 = new Node(); /I Server node 2

32 /I Create a link object template, 100Mb bandwidth, 5ms delay
33 Linkp2p I(Rate("100Mb"), Time("5ms"));

34 /I Add the links to client and server leaf nodes

35 cl->AddDuplexLink(rl, I, IPAddr("192.168.0.1"); // cl to rl

36 c2->AddDuplexLink(r1, I, IPAddr("192.168.0.2")); // c2 to rl

37 s1->AddDuplexLink(r2, I, IPAddr("192.168.1.1"); // sl to r2

38 s2->AddDuplexLink(r2, |, IPAddr("192.168.1.2"); // s2 to r2

40 /I Create a link object template, 10Mb bandwidth, 100ms delay
41 Linkp2p r(Rate("10Mb"), Time("100ms"));

42 /I Add the router to router link

43 r1->AddDuplexLink(r2, r);

45 /I Create the TCP Servers

46 TCPServer* serverl = new TCPServer(TCPTahoe());

47 TCPServer* server2 = new TCPServer(TCPTahoe());

48 serverl->BindAndListen(s1, 80); // Application on s1, port 80

49 server2->BindAndListen(s2, 80); // Application on s2, port 80

50 serverl->SetTrace(Trace::ENABLED); // Trace TCP actions at serverl
51 server2->SetTrace(Trace::ENABLED); // Trace TCP actions at server2

53 /I Create the TCP Sending Applications
54 TCPSend* clientl = new TCPSend(TCPTahoe(cl),

55 s1->GetlPAddr(), 80,
56 Uniform(1000,10000));
57 TCPSend* client2 = new TCPSend(TCPTahoe(c2),

58 s2->GetlPAddr(), 80,
59 Constant(100000));

60 /I Enable TCP trace for all clients
61 clientl->SetTrace(Trace::ENABLED);
62 client2->SetTrace(Trace::ENABLED);

64 /I Set random starting times for the applications
65 Uniform startRv(0.0, 2.0);

66 clientl->Start(startRv.Value());

67 client2->Start(startRv.Value());

68

69 s.Progress(1.0); /I Request progress messages

70 S.StopAt(10.0); /I Stop the simulation at time 10.0
71 s.Run(); /I Run the simulation

72 cout << "Simulation Complete" << endl;

73}

Proceedings ot the ACM SIGCOMM 2003 Workshops 10 August 2003

for theseT CP endpoints.

Create the TCP Clients. The TCP client applications are cre- -
ated in lines 54 — 62. The objects of claBSPSend are created | Samiytn
using thenew operator, as previously discusseBCPSend con- |
structors have four parameters, as follows. First is a temporary
object of clas§’ CP(or any subclass afCP) that specifies th& CP
variation to be used for thiECP client. Notice that in this case, the
constructor for the temporaflyCP object specifies the node object
that is associated with the correspondir@P endpoint €1 in line
54, andc2 in line 57). The second and third arguments are the
IP Addressand port number of th& CP server to which a connec-
tion is made. The second argument in this example illustrates the
GetlPAddr method forNode objects, which returns th¥ Ad-
dressof the node (or the firdP Addressf the node has more than
one). The last parameter is a temporary object of ¢kasxlom (or
any subclass odRandom), which specifies a random variable that
determines how much data to send to the server. The first client
specifies dJniform random variable at line 56 which returns a
uniform value between 1000 and 10,000. The second client speci-
fies aConstant random variable, that returns the constant value
100,000. Lines 60 — 62 enable tracing of fh€éP headers for all
packets sent and received by these endpoints.

Start the Client Applications. Lines 64 — 67 tell the simulator
to create the connections between the clients and servers. Line 65 Figure 3: Campus Network Topology
defines a statically allocatddniform random variable that will
return random values uniformly in the interval [0.0, 2.0). Lines
66 and 67 use th8tart method common to alfCP applications
that specifies when the application should create the connection an
begin sending the data.

Start the Simulation. Line 69 uses th&@rogress method of
classSimulator to request a message be printed sbdout
every 1.0 seconds of simulation time, indicating the simulation is
progressing in time. Line 70 calls tHeun method ofSimula-
tor , to run the simulation. ThBun method does not exit until the
simulation completes.

TCPServers |

(O =4x100Mbps Ethernet LAN, 42 Clients

dstance. Clearly, as the number of CPUs assigned to the distributed
increases, the total topology size and number of flows modeled in-
creases linearly. As can be seen from the table, we have to date
completed a simulation of 482,048 nodes and 455,168 TCP flows,
which processed more than 4 billion simulated packet transmission
events. Each of these simulations completed in less than 15 min-
utes, including all initialization overhead. Further, the table shows
that GTNetSshows good scalability in terms of performance as the
number of simulation instances increases. The simulation running
on 128 CPUs does take longer than the single CPU case (869 sec-
4. SCALABILITY EXPERIMENTS onds versus 562 seconds), but recall that it is modeling 128 times
Since theGeorgia Tech Network Simulateras designed to sup- as many flows and packets. The difference in execution time is due
port large—scale experiments, we set out to determine how large ofto the time synchronization and message passing overhead between
a network topology we could create and successfully simulate. Us- the simulation instances in the distributed simulation environment.
ing our account on the Pittsburgh Supercomputer Center (PSC), we A pencil and paper analysis of the memory usage shows that,
created a scalable simulation based onGlaenpus NetworkCN) within the memory constraints of a single system at PSC, we should
topology defined by Nicol[9], as shown in figure 3. Each CN con- be able to support four processes of 20 CN’s per processor on a sin-
sists of 538 nodes, including 504 leaf client nodes and 4 server gle PSC system. Given this, we fully expect simulation topologies
nodes. An arbitrary number of campus networks can be connectedexceeding several million nodes to be completed in the near future.
together with high—speed links between the gateway router nodes We point out that, while we did in fact set out to design and
of each campus. For data flows in these experiments, each leaf onimplement an efficient simulation environment, our objective was
a campus network randomly selects a server on an adjacent CN,not to create a tool where performance is the only important met-
and establishes a TCP connection with it. Each connection sendsric. The performance of a network simulator is a function of a
a total of 500,000 bytes and terminates. By distributing a number number of variables, and design tradeoffs. For exan(ENetS
of campus networks on each of a numbeGdfNetSnstances, the has substantial detail in the layer 2 IEEE 802-3 model, including
total scale of the network and amount of data processed can growpreparation and processing of a layer 2 PDU as packets are trans-
arbitrarily large. mitted and received. This results in extra per—packet event pro-
Some preliminary results of our scalability experiments are given cessing overhead, as comparech$2 and SSFNetvhich have no
in table 1. The Pittsburgh Supercomputer Center system consistssuch models. FurtheGTNetShecks for local network routes and
of 750 systems, each with four HP Alpha CPU’s and 4Gb of main broadcasts in the layer 3 processing, as well as looking up the layer
memory. The systems are connected via a Quadrix high—speed in4 processor in a protocol graph, which again results in some extra
terconnect. We assigned four simulation processes on each PS(Qer—packet overhead. Design decisions such as this were made to
system (one per CPU), and varied the number of systems from linsure the simulator works much like real networks work, and to
to 32, giving a total number of simulation processes varying from facilitate future addition of protocols such as Address Resolution
4 to 128. As a baseline, we also ran the single CPU case. ForProtocol (ARP)[10].
these results, each simulation instance modeled a total of seven Preliminary experiments comparimg2and GTNetSshow that
campus networks, for a total 3,766 nodes and 3,556 flows per in- the simulation initialization time is substantially fasterGTNet$

Proceedings ot the ACM SIGCOMM 2003 Workshops 11 August 2003

Number Systemg Number Processorf Simulated Nodeg Simulated Flows| Execution Time| Simulated Pkt

1 1 3766 3556 562 sec 36955410

1 4 15064 14224 697 sec 146014864
2 8 30128 28448 723 sec 291981440
4 16 60256 56896 769 sec 583689248
8 32 120512 113792 753 sec 1167925760
16 64 241024 227584 787 sec 2332761088
32 128 482048 455168 869 sec 4662689280

Table 1: Scalability Experiments from PSC

roughly an order of magnitude faster. This difference is clearly due [4] S. Floyd and V. Jacobson. Random early detection gateways
to thens2design decision to use the interpreted Tcl language to de- for congestion avoidancé&EEE Transactions on Networking
fine the simulation, with the resulting ease of use at the expense of 1(4):397-413, August 1993.

slower performance. Once the simulation begins processing events, [5] IEEE. leee standard 802-11 wireless lan medium access

ns2in fact runs somewhat faster th@&@TNetSdue to the extra pro- control (mac) and physical layer (phy) specificatibrstitute

cessing details in th&TNetSayer 2 and 3 models. We have not of Electrical and Electronic Enginegrg997.

yet done a performance study compar&gNetSvith SSFNetbut [6] IEEE. leee standard 802-3 carrier sense multiple access with

we expect that the performance will be comparable. collision detection(CSMA/CD) access method with physical
layer specificationdnstitute of Electrical and Electronic
Engineers2000.

S. SUMMARY) . [7] B. A. Mah. An empirical model of http network traffic. In

The Georgia Tech Network Simulat@s a full featured network Proceedings of IEEE INFOCOMMpages 592-600, 1997.

simulation environment that can be used for experimental network- [
ing research on moderate to large—scale topologies. The design of
GTNetSs such that it is easy to learn and use. The object oriented
methodology in the design is such that it can be easily extended to [9]
support new variations on existing networking methodologies. The
simulator is efficient, both in the initialization overhead, and during
the actual processing of simulation events. This is evident from the
480,000 node topology simulation at PSC completing in less than
15 minutes.

8] S. McCanne and S. Floyd. The LBNL network simulator.
Software on-line: http://www.isi.edu/nsnam, 1997. Lawrence
Berkeley Laboratory.

D. M. Nicol. The baseline campus network explained.
http://www.cs.dartmouth.edu/ nicol/NMS/baseline/, 2002.
DARPA Network Modeling and Simulation (NMS).

[10] D. Plummer. Internet RFC826: Ethernet address resolution
protocol: Or converting network protocol addresses to 48.bit

The scalability experiments presented show nearly a half-million ethernet address for transmission on ethernet hardware.
node topology can be simulated on a moderately sized network of Network Working Group, Nov 1982.
workstations (32 workstations, 4 CPU's each). Using more of the [11] Y. Rekhterand T. Li. RFC 1771, border gateway protocol 4,
available resources at PSC (there are a total of 3,000 procesesors March _1995- _ _
on 750 systems), we fully expect to be demonstrating simulations [12] G. F. Riley. The georgia tech network simulator. Software

of millions of nodes in the near future. on-line:

As previously mentioned, a tool designed for use by the network- http://www.ece.gatech.edu/research/labs/MANIACS/gtnets.htm,
ing research community will never be complete. New regirements 2003.
for network protocols and methods will certainly be needed as new [13] G. F. Riley, M. H. Ammar, and R. M. Fujimoto. Stateless
such methods are invented. We are continuing work on our simula- routing in network simulations. IRroceedings of the Eighth
tor, with students presently working on more wireless routing pro- International Symposium on Modeling, Analysis and
tocol (AODV and NixVector), and wired routing protocols (BGP Simulation of Computer and Telecommunication Systems
and EIGRP). August 2000.

Our objective is to provide a tool that can be another option in the [14] G. F. Riley, M. H. Ammar, and E. W. Zegura. Efficient
set of tools available to networking researchers to study network routing using nix-vectors. 12001 IEEE Workshop on High
behavior in a simulation environment. We hope that it will be of Performance Switching and Routingay 2001.
benefit to the community at large. [15] G.F. Riley, R. M. Fujimoto, and M. H. Ammar. A generic

framework for parallelization of network simulations. In
Proceedings of Seventh International Symposium on

6. REFERENCES Modeling, Analysis and Simulation of Computer and

[1] The Gnutella protocol specification. Software on-line: Telecommunication Systems (MASCOTS'@gfober 1999.
http://www.gnutella.com, 2002. Gnutella. [16] A.Varga. The OMNeT++ distrete event simulation system.

[2] The gwebcache specification. Software on-line: Software on-_Iine: http://whale.h_it.bme.hu/omn.etpp/,.1999.
http://www.gnucleus.com/gwebcache/specs.html, 2002. [17] A.Varga. Using the omnet++ discrete event simulation
Gnucleus. system in educatiolEEE Transactions on EducatipA2(4),

[3] J. Cowie, A. Ogielski, and D. Nicol. The SSFNet network Nov 1999. _
simulator. Software on-line: [18] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to
http://www.ssfnet.org/homePage.html, 2002. Renesys model an internetwork. IRroceedings of IEEE Infocom 96
Corporation. 1996.

Proceedings ot the ACM SIGCOMM 2003 Workshops 12 August 2003

