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ABSTRACT
The utility of simulations and analysis heavily relies on good
models of network traffic. However, it is difficult to model
and simulate the Internet traffic because of the network’s
great heterogeneity and rapid change. The statistical prop-
erties of Internet traffic not only constantly change over
time but also vary in other dimensions such as locations
and directions. Previously we have developed a tool RAMP
that supports rapid parameterization of traffic models from
live network measurements. In this paper, we first extend
RAMP to support near-real-time trace-driven simulation.
Next, we demonstrate the applications of RAMP via three
case studies: generation of realistic traffic model for simula-
tion, generation of high bandwidth synthetic network traces,
and analysis and modeling of malicious traffic. Finally, we
discuss some lessons we learned from using RAMP for traffic
modeling.

1. INTRODUCTION
It is difficult to simulate and model the Internet due to

its scale, heterogeneity and dynamics [1]. The volume and
statistical properties of Internet traffic not only constantly
change over time but also vary in other dimensions such
as locations and directions [2]. Considering the Internet’s
great technical and administrative diversity and immense
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variations over time regarding how applications are used, it
is not obvious that one can model his traffic accurately based
on the models derived from measurements taken previously
from other parts of the network.

Motivated by the challenge and difficulty of modeling
highly-diverse Internet traffic, previously we have developed
a tool RAMP [2] that allow users to quickly parameter-
ize traffic models based on the measurements and gener-
ate realistic current traffic in their simulations. Our ap-
proach does not make any underlying assumption of traf-
fic properties (for example, heavy-tailed distribution for file
size/transmission time) and hence is more applicable than
existing approaches in coping with the heterogeneous nature
of the Internet traffic. Opposed to traditional trace-replay
time-series analysis techniques which typically ignore the
fact that traffic frequently reacts to the network’s current
properties, our approaches focus on characterizing source-
level pattern in which the data is sent. Our trace-driven
application-level modeling approach employs a trace-analysis
tool that infers traffic and topology characteristics, and a
CDF-based traffic model generating synthetic traffic.

In this work, we have extended RAMP to support near-
real-time simulation. It is useful for network operators to
be able to simulate and visualize the current traffic on the
operational network for various traffic engineering tasks such
as QoS control, anomaly detection etc. Initially RAMP was
designed to process traces and generate simulation models
off-line. To model and simulate the traffic on-line1, we have
modified RAMP so that several copies of RAMP can be run
in a pipeline fashion and the results of simulation can be
visualized in near real-time.

A second contribution of this paper is to evaluate use
of RAMP in three applications. First, we show the use of
RAMP to generate realistic workload for simulation. Sec-
ond, we utilize RAMP to generate high bandwidth network
traffic traces. Lastly, we demonstrate the use of RAMP as a
trace-driven analysis and modeling tool to study malicious
traffic such as DDoS and worm traffic.

In this paper, we first describe the design and implemen-
tation of our tool RAMP (Section 3). Next, we show an ex-
tension of RAMP for supporting near-real-time trace-driven
simulation (Section 4) Finally, we demonstrate the utilities
of RAMP via three immediate applications (Section 5). We

1We do not mean “hard real-time”. Our focus is to simulate
the traffic that happened not long ago (eg. the traffic ten
minutes ago).
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also discuss some insight we learned from using RAMP for
modeling traffic.

2. BACKGROUND
In this section we first describe the dataset we used to

develop our tool and two statistical techniques, including
wavelet scaling plot and Kolmogorov-Smirnov goodness-of-
fit test, that help us validate the results of RAMP. We then
summarize some related work.

2.1 Traces
The data used in our study are from two sources. One was

collected on the web server of Internet Traffic Archive [3]
(this set of trace will be referred to as “ITA” in this paper).
The other was recorded at a 100Mbps Ethernet link con-
necting the Information Science Institute to the rest of the
Internet (referred to as “ISI”). To design and validate our
tool, we utilized two sets of one-hour long ISI data which
were collected at different times of the same day. One was
recorded starting at 2:00 pm (referred to as ISI-1) and the
other was recorded starting at 7:00 pm 2001 (referred to as
ISI-2). Intuitively, one captures the traffic during a normal
business hour and the other shows traffic during after-hours.
The details of the traces are described in [2].

2.2 Statistical Tests
To compare the scaling property of the traces and the

generated synthetic traffic, we use wavelet scaling plot, a
wavelet-based time series analysis [4]. In which the statistics
of the time series is viewed at each resolution level or scale,
taken as a function of scale. More details of this technique
are described in [5, 6].

We use Kolmogorov-Smirnov goodness of fit test [7] to
formally determine if two sets of traffic data are significantly
different from each other, in addition to visually examining
their CDF plots. More details of this technique are described
in [2].

2.3 Related Work
Our work builds on prior work in traffic modeling, trace

compaction and workload generation.
Our methodology is based on structural modeling approach [8]

which emphasizes on characterizing source-level pattern in
which data is sent. For most applications, the application-
level pattern (such as request/reply patterns in web traffic)
in which data is sent, does not react to the network dynam-
ics. The structure we choose to model user behaviors of web
traffic is similar to previous work of Mah [9] and Crovella
et al. [10, 11]. We also adopt Mah’s approach in terms of
describing traffic based on CDF of real data, which has the
advantage of being able to represent arbitrary distribution.

Trace compaction generally refers to the techniques used
to retrieve “relevant characteristics” from the trace. The
methodology we adopt to construct web model is closer to
the work of Smith et al. [12]. Additionally, we also model
path characteristics and provide more comprehensive vali-
dation mechanism. Furthermore, in addition to web traffic
which previous work has focused on, we also include FTP
traffic in our study, and automate the whole process from
trace analysis to model validation.

Previously several studies have developed workload gen-
erators for web traffic including SURGE [10], IPB [13] and
work at RPI [14]. In our work, we focus on parameterizing

tcpdump
trace

RAMP
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Figure 1: Data flow of RAMP

the traces and generating simulation models in a timely fash-
ion to allow the users to study their current traffic. In ad-
dition to modeling user/application behavior, we also man-
ages to estimate path characteristics which are important
parameters to drive simulation.

Finally, while the studies described above were mainly
based on traffic collected at the edges of the Internet, signif-
icant amount of efforts have also been put in the study and
modeling of backbone-level traffic cite.

3. RAMP: RAPID MODEL PARAMETERI-
ZATION

In this section, we summarize some important results in
our previous work [2]. We first describe the design and im-
plementation of RAMP. Next, we compare RAMP with an
existing traffic generator. Finally, we discuss the effect of
detail in a structured model. More details can be found
in [2].

3.1 Design of RAMP
Motivated by the need that it is important to quickly pa-

rameterize models from new data to account for the diversity
of the traffic, we previously designed a tool called RAMP.
RAMP can convert live measurements into simulation mod-
els which then be used to generate realistic synthetic traffic.
In this section we describe our approaches from analyzing
the trace to finally generating the simulation model.

Our approach is to automatically generate statistics that
model user behaviors and network path characteristics by
analyzing TCP/IP header information captured in the mea-
surements. The resulting model will then be built into the
widely-used NS network simulator [15] and validated against
the original trace via wavelet-based analysis and first order
statistical comparison.

The input of RAMP is a tcpdump-format trace. The
output of RAMP is a set of CDF (Cumulative Distribu-
tion Function) files that model the corresponding traffic, as
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shown in Figure 1.
Specifically, the CDF files consist of two types of data.

One set of CDF files model user/application level statistics
of the traffic, such as user session arrival, page/file size etc.
Based on the structural modeling approach [8], we design a
three-level simulation model to characterize web traffic and
two-level model to characterize FTP traffic as shown in Fig-
ure 2 and 3. The other set of CDFs model path characteris-
tics of the network. In particular, we focus on characterizing
RTT and bottleneck bandwidth of the measured traffic since
they are important parameters for driving network simula-
tion.

To determine the RTT of each TCP connection, for out-
bound traffic, we compute the difference of timestamp be-
tween data packet and the first ACK packet which has the
same sequence number. For inbound traffic, we compute the
RTT by taking the timestamp difference between the SYN
packet and its corresponding ACK. For each connection we
take the minimum of RTT samples as an approximation of
propagation delay of the path (after dividing the RTT by
2) and consider the deviations from the minimum RTT as
variances caused by queuing delay and transmission delay.
We use this approximation to drive our simulation.

To compute the bottleneck bandwidth, for outbound traf-
fic, we use Sender Based Packet Pair (SBPP) [16]. SBPP
estimates the spacing between a pair of back-to-back TCP
packets after passing the bottleneck link between local servers
and remote clients by examining the arrival times of their
corresponding ACKs. For inbound traffic, we rely on Re-
ceiver Only Packet Pair (ROPP) [17] which uses the arrival
times of two consecutive full-size packets at the receiver to
estimate the bottleneck bandwidth between remote servers
and the local clients. We also apply similar techniques to
filter noise such as density estimation as described in [18].

To reconstruct the data exchanges in the HTTP connec-
tions, we adopt a similar approach and heuristics from pre-
vious work [12]. One observation in their study is that
when the server receives a HTTP request it will send TCP
acknowledgments (ACKs) indicating the in-order byte se-
quence it has received, and all of the request messages will
be ACKed before the corresponding HTTP response data
is sent (note that here we assume there is no pipelining in
use). Hence by looking at the uni-directional flow sent from
server to the client, we can infer the size of request by the
amount of ACK value advances and the size of response by
the amount of data sequence number advances.

Note that, while we can estimate HTTP request/response
and bottleneck bandwidth of inbound traffic using only one
direction of the traffic (i.e. from servers to clients), we need
to have traces from both directions to be able to infer RTT
and the bottleneck bandwidth of outbound traffic.

3.2 Comparison with existing tool
To understand if RAMP can perform as well as existing

work in terms of generating realistic synthetic workload, we
have previously compared RAMP with SURGE [10], a pop-
ular web traffic workload generator. We demonstrated that
our model parameterization tool is capable of achieving the
same functionality of SURGE (i.e. generating similar traffic
workload like SURGE ) without suffering its limitation.

To validate RAMP against SURGE, we performed an ex-
periment by running SURGE for 30 minutes and recording
the traffic via tcpdump. We then fed the SURGE trace into

User behavior

1. User arrival is modeled as a Poisson process with a
certain rate.

2. The number of pages per user session is randomly
picked from the CDF(Cumulative Distribution Func-
tion) of trace.

3. the source of the page is chosen from a CDF that
matches the popularity of servers

4. Each page is sequentially requested by the users as
described below.

Page

1. Page size is chosen from a CDF

2. The inter-arrival time of page is picked from a CDF

3. The number of objects within one page is picked from
a CDF

4. The size of request to a page is picked from a CDF

5. User decides a TCP connection is used for multiple re-
quest/response exchanges or a single request/response
exchange based on the probability of persistent con-
nection (HTTP1.1) versus non-persistent connection
(HTTP1.0) computed from the trace. In persistent
connection mode, all objects within the same page are
sent via the same TCP connection.

Object

1. The inter-arrival time of object is picked from a CDF

2. The size of object is picked from a CDF

3. The TCP window size for both servers and clients are
also randomly chosen from a CDF

Figure 2: Structural model of web traffic

RAMP and verified that if the output of ns-2 simulation
model from RAMP agreed with SURGE trace. We look
at the packet inter-arrival time and wavelet scaling plot of
the outputs of SURGE and our model respectively. All the
statistics match closely, as shown in Figure 4 and Figure 5.

One limitation of SURGE is that it attempts to fit the
models into some widely-used analytic functions (such as
using Pareto to describe the distributions of file sizes and off
time). However, it is not universally true that all web traffic
follow these assumptions. For example, these assumptions
would break for a trace distribution site like ITA. We have
observed that distribution of page size in ITA traffic (which
is mainly made up by simple plain HTML files that describe
traces and collection/analysis software) is not heavy-tailed,
and hence can not be modeled by SURGE.

To demonstrate this aspect, we simulate the web traffic in
ITA data with a SURGE-like analytic model in ns-2, similar
to models used in previous studies [5, 6]. We show that this
SURGE-like workload model does not accurately reproduce
the ITA web traffic. As the wavelet plots shown in Figure 6,
the traffic generated by the analytic model does not capture
the scaling features of ITA traffic at both small and large
time scales.

On the other hand, our tool is based on empirical distri-
butions of traffic and does not have any implicit assumption
about the distribution of the traffic, and hence is more flex-
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User behavior

1. User arrival is modeled as a Poisson process with cer-
tain rate.

2. The number of files transmitted per user session is ran-
domly picked from the CDF(Cumulative Distribution
Function) of trace.

3. the source of the file is chosen from a CDF that
matches the popularity of servers

4. User starts a new TCP connection for each new file
which is sequentially transmitted as described below.

File

1. file size is chosen from a CDF

2. The inter-arrival time of file is picked from a CDF

3. The TCP window size for both servers and clients are
also randomly chosen from a CDF

Figure 3: Structural model of FTP traffic
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Figure 4: Comparison of packet inter-arrival time

between SURGE and RAMP

ible to cope with the diversity of the traffic. As the wavelet
plot shown in Figure 7, the ITA model generated by RAMP
does capture the important features of ITA traffic (such as
a dip at 500ms and similar energy levels).

3.3 Effect of detail in a structured model
Previously, we have developed a three-level model, as shown

in Figure 2, to capture the characteristics of web traffic.
To understand the importance of capturing the details of
application-level structure in order to correctly model the
traffic, we compare the results of using a simplified flow-
based model (where the hierarchical relationship between
page and object has been omitted). As shown in Figure 8,
although the plots look similar at smaller time scales, the
traffic generated by the simplified two-level web traffic model
becomes less bursty at larger time scales (larger than 16 sec-
onds). This example shows that it is important to capture
the details of application-level structure (a three-level model
rather than a two-level model in this case) in order to ac-
curately reproduce the traffic. Furthermore, using empirical
distributions from real traces alone provides no guarantee
of model accuracy; differences in application structure also
have an important effect on simulation accuracy.
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4. NEAR-REAL-TIME TRACE-DRIVEN SIM-
ULATION

One of the design goals of RAMP is to rapidly parameter-
ize traffic models. The time required for RAMP from ana-
lyzing the traces to finally generating the simulation models
typically takes tens of minutes for trace with a size of several
hundred megabytes. When running on a 1.7G Hz Pentium
IV box with 1G memory, as shown in Table 1, we can see the
process time of RAMP is approximately proportional to the
number of packets in the trace (and hence also proportional
to the file size).

On-line simulation is important for various traffic engi-
neering tasks which have the nature of short turn-around

Trace ISI-1 ISI-2 ITA

file size (MB) 614 561 203
no. of bytes (GB) 1.0 7.3 2.4

no. of packets (M) 9.2 8.4 2.5
no. of flows (K) 506 398 1.3

process time (min) 25 21 8
speed (thousand packets/sec) 6.1 6.3 5.7

Table 1: Process time of RAMP for different traces
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(a) Snapshot of 1st 5-minute traffic (b) Snapshot of 2nd 5-minute traffic (c) Snapshot of 3rd 5-minute traffic

Figure 10: Visualization of ISI network traffic
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time, such as feedback-based traffic management, adaptive
parameter tunning for network control algorithm, short-term
traffic prediction etc. RAMP by default takes a trace file as
input and processes the traffic off-line. Although, as shown
in Table 1, RAMP processing is slightly slower than real time
(the traffic rate of ISI is around seven thousand packets per
second), with minor software changes RAMP could param-

Traffic1

collection
RAMP1 NS Simulation1

NAM
visualization1

time

T

Traffic2

collection
RAMP2 NS Simulation2

NAM
visualization2

Traffic3

collection
RAMP3 NS Simulation3

NAM
visualization3

Figure 9: pipelined RAMP

eterize the model in near real-time. The primary change to
RAMP would be to incrementally update the output CDFs
as each new flow arrives, instead of computing all flows at
once.

To model and simulate traffic in near real-time, we have
modified RAMP so that it can be run in a pipeline fashion
as shown in Figure 9. By running several copies of RAMP
in parallel with each copy only processing one subset of the
traffic and updating the CDFs incrementally, we can have
RAMP process the traffic and visualize the results via nam
in near real-time.

Note that there are trade-offs in choosing the duration of
traffic for each copy of RAMP to process (the time period T
in Figure 9). The shorter the duration is, the shorter is the
time lag from the time traffic is first recorded to the final
visualization of the traffic via nam (and hence closer to “real-
time”). On the other hand, while any trace is already bound
to have incomplete flows due to its finite-duration nature,
when the chosen T is shorter, the chances that one long flow
is separated into two or more shorter incomplete flows will
increase. There are two aspects to consider in this case. For
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flows that start in current measurement period T and end
in future time, we keep the states of these flows but ignore
them from the computation of RAMP for the current T,
which resultedly introduces some inaccuracy into the gener-
ated model. For flows start in previous measurement period
and end in current T, we use previous stored states to in-
clude those incomplete flows into current period. However,
the smaller T is, more states of these incomplete flows need
to be kept (some flows might last across several T periods).
Finally, when the measurement period T is small, it tends
to reduce the usable samples (eg. number of back-to-back
data packets) for the estimation of topology information and
hence the results are more prone to the effect of the noise in
the data.

Previous work [19] has shown 98% of Interent flows are
shorter than 15 minutes. In our traces, 90% of flows have
duration less than 2 minutes and 95% of flows are less than
20 minutes. Intuitively, one can choose the length of du-
ration based on the nature of the traffic. For example, we
can pick a shorter duration if the majority of flows are web
traffic, and pick a longer duration if there is a significant
amount of FTP traffic in the trace.

We have tested this extended version of RAMP on the
ISI network. In our experiment, we set the trace collection
period T to five minutes. We artificially generated FTP
and web traffic and varied the number of clients and servers
in each five-minute period (fifteen servers and one client in
the first five-minute, twenty-four servers and three clients in
the second five-minute, thirty-seven servers and two clients
in the third five-minute). For a five-minute trace, it takes
around one minute for RAMP to process the traffic and two
minutes to run NS simulation using the generated CDFs
on a Pentium III machine (obviously these numbers might
change depending on the nature of the traffic and the speed
of the hardware). Figure 10 shows the visualization of traffic
on nam for a duration of fifteen minutes (each nam window
models a different five-minute snapshot of the traffic. )

As shown in Figure 1, there are three stages in the data
flow of RAMP: collecting traffic, generating models based on
previously collected traffic and running ns simulation using
the output models. For brevity, in the rest of this section
we refer Tsample as the traffic collection period, Tmodel as
the period of “observation” time that RAMP uses to gen-
erate the models and Tsim as the time period that simu-
lation runs. In our current implementation, as implied in
Figure 9, Tsample = Tmodel = Tsim. Furthermore, the in-
put Tmodel to different RAMP instances are not overlap-
ping (eg. RAMP2 and RAMP3 use disjoint time periods
Traffic2 and Traffic3 respectively as inputs). One pos-
sible improvement for the pipelined RAMP is to make the
choice of Tmodel independent of both Tsample and Tsim. In
other words, the length of Tmodel could be different from
the length of Tsample and Tsim. Additionally, one could
allow the choices of Tmodel to be overlapping for different
RAMP instances. For example, in Figure 9, instead of us-
ing the same duration as the most-recent sampling period
(i.e. Traffic2), RAMP2 can use Traffic1 + Traffic2 as
input to generate ns model. Similarly, RAMP3 can gen-
erate model based on a longer period of traffic (such as
Traffic2 + Traffic3 or Traffic1 + Traffic2 + Traffic3)
instead of Traffic3. There are two aspects for allowing
users to adjust the length of Tmodel. By setting Tmodel to a
longer period, one can reduce the possibility of occurrences

of incomplete flows while still model traffic in near “real-
time”. By setting Tmodel to a shorter period, one can more
realistically capture the characteristics of the most recent
traffic in the models.

5. APPLICATIONS OF RAMP
In this section, we demonstrate the utilities of RAMP via

several immediate applications. First, we utilize RAMP to
generate realistic synthetic traffic [2]. Next we demonstrate
the use of RAMP to generate synthetic high bandwidth net-
work traces [20]. We then present the results of using RAMP
to analyze and model DoS attack traffic [21]. Finally, we dis-
cuss some lessons we learned from using RAMP.

5.1 Generation of Realistic Traffic Model for
Simulation

Another design goal of RAMP is to generate realistic syn-
thetic workload for simulation. To understand if RAMP can
accurately reproduce the traffic under study, we use ISI-1
data to evaluate its accuracy. We first feed ISI-1 trace into
RAMP, and then incorporate its output into ns-2 simulator
and compare the result of the simulation against the original
trace. The result shows the output of simulation match the
original traces closely. Note that because currently our tool
only supports web and FTP traffic, we first filter the traces
so that they only contain web and FTP data before being
compared against the simulation result (together web and
FTP traffic account for 83.7% of the total traffic in terms
of the number of bytes, and 48% in terms of the number of
packets in the ISI-1 trace).

The statistics we use here for validation including the dis-
tributions of flow arrival, flow size, flow duration, packet
inter-arrival time, wavelet scaling plot and the application-
specific parameters, such as page size, page arrival, object
size (for web traffic), file size, file arrival (for FTP traffic),
user arrival and user duration. Here we only show outbound
traffic and only CDF plots of flow statistics for simplicity.
(although the graphs of inbound traffic are not shown here,
they are consistent with the results of outbound traffic).

The CDF plots of flow statistics for the ISI-1 model are
depicted in Figure 11, which shows that the model matches
the trace closely. The Kolmogorov-Smirnov test D values
for Figure 11(a), Figure 11(b) and Figure 11(c) are 0.0019,
0.0013, 0.0018 respectively. They all pass the K-S test given
a critical value of 0.00874.

The corresponding wavelet scaling plot for the ISI-1 model,
as depicted in Figure 12, also shows large degree of resem-
blance between trace and model, such as similar energy
value (the model has slightly lower energy though) and a
dip around 128ms (which reflects the RTT of the underly-
ing traffic).

The CDF plots of model parameters such as page/file size,
user arrival etc. also match closely (are not shown here),
though it is not surprising though since the model is directly
driven by those parameters.

All the statistical comparisons show RAMP is able to ac-
curately reproduce the original traffic. More details can be
found in [2].

5.2 Generation of High Bandwidth Network
Traffic Traces

Most real world network traces that are publicly avail-
able are low bandwidth traces from OC3c, OC12c links or
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Figure 11: Comparison of flow statistics for model and ISI-1 outbound traffic
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FDDI or Ethernet traces. In contrast to the wide availability
of low bandwidth traces, traces from high bandwidth links
(OC48, OC192 links, such as in the core of the Internet) are
not widely available. The administrative constraints and
difficulty of implementing a mechanism for collecting traces
at high speeds [22] are factors that contribute towards the
lack of public availability of such traces. As link speeds in-
crease in the future, the difficulties involved in obtaining
high bandwidth traces will increase.

In the absence of real high bandwidth traces, one option is
to attempt to generate the traces that are likely to resemble
real traces. Applications of such traces include studies of
the behavior of routers, switches and network protocols on
high speed links.

To utilize RAMP to generate high bandwidth traces, we
first use RAMP to extract the statistics of user and appli-
cation characteristics and topology information such as link
latencies and bottleneck link bandwidth from low bandwidth
traces. We then feed the output of RAMP into a ns simula-
tion model.

To obtain higher bandwidth traces from the simulation,
we first scale the number of nodes based on a previous
study [23], which has shown that the host pairs increases
as the square root of the bit rate. To simulate 1Gbps link
with 10Mbps trace, the number of servers and clients was
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Figure 13: Distributions of unique destination ad-

dresses in an interval between original trace and

scaled high bandwidth trace using RAMP

chosen to be approximately 10 times the number of server
and client IP addresses found in the trace. The link band-
widths were increased linearly by a factor of 100 and the
user inter-arrival rates were decreased linearly by a factor of
100.

Simulating a backbone network topology is a difficult task
because simulating the entire topology along with traffic
sources at each node strains the available computing re-
sources [1]. The topology chosen should be such that it
should be easy to increase the amount of traffic on the link
on which the traffic trace is recorded. Hence, we have sim-
plified the backbone topology to a dumbbell topology with
clients and servers on either side of the bottleneck link. A
packet from a client to a server traverses four router nodes.
In the simulation, the traffic traces are collected on the bot-
tleneck link.

We evaluate the quality of generated traces using several
metrics including distributions of packet inter-arrival time,
the number of unique destination address, flow duration and
flow size etc. For brevity, here we only show the comparison
of the number of unique destination addresses seen in an
interval between the original traffic and the generated high
bandwidth trace.

It is important to properly scale the unique destination ad-
dress in the generated synthetic high bandwidth traces. The
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destination address determines where the packet needs to be
sent and the distribution of the number of unique addresses
seen in an interval affects mechanisms such as routing table
caches used in a switch or router. As shown in Figure 13,
the unique destination addresses in the generated high band-
width trace has been scaled by a factor of around 10, which
correctly reflects the scaling in the number of destination
hosts in the simulation.

More details about using RAMP to generate high band-
width synthetic traces are described in [20].

5.3 Analysis and modeling of malicious traffic
The sudden and explosive growth of the Internet has wit-

nessed a very complex evolution of network traffic patterns
giving rise to normal and malicious traffic. Normal traffic
includes traffic generated by well-known services and appli-
cations: web, ftp, nntp, and smtp, for example. On the
other hand, malicious traffic is generated by non compliant
applications and causes disruptive effects on the network,
such as DDoS attacks and worm traffic.

During the last few years, network traffic has increasingly
witnessed a surge in malicious traffic. One question that
occurs naturally is how this malicious traffic affects the nor-
mal background traffic. To answer this question, we used an
extended version of RAMP as a trace-driven analysis and
modeling tool to study the characteristics of network traf-
fic during phases dominated by malicious behavior of DDoS
attacks and worm propagation, and compare it with phases
when such activity is negligible.

We looked at several metrics to understand the impact of
malicious traffic such as DDoS and worm on the network.
Our study concentrates on short-lived flows such as web mice
and DNS traffic which are more delay-sensitive than long-
lived flows like FTP. We investigate the impact of malicious
traffic on the DNS lookup latency and web latency. DNS
lookup latency is defined as the time lapse between the client
sending out a request to the DNS sever and the client finally
receiving an answer from a DNS server that terminates the
lookup, by returning either the requested name-to-IP map-
ping or an error indication. To extract the statistics about
lookup latency, we adopt an approach that is similar to that
used in previous study [24]. We define web latency as the
time lapse between the issue of HTTP request to the receiv-
ing of response data.

The traces we utilize in this study are from two different
locations: one at Los Nettos [25], a regional area network
in Los Angeles, and the other at the Internet2 [26] peer-
ing link at USC. Los Nettos has peering relationships with
Verio, Cogent, Genuity, and the LA-Metropolitan Area Ex-
change, and serves a diverse clientele that includes academic
institutes and corporations around the Los Angeles area.
We monitor the Verio and Cogent peering links that experi-
ence an average utilization of 11% at 110Mbps and 38Kpps
(packets-per-second) The USC trace machine monitors the
Internet2 traffic to and from USC. The average utilization
of link monitored by the trace machine is 6% at 60Mbps and
25Kpps.

5.3.1 Analysis of DDoS traffic
We used RAMP to analyze the distributions of DNS la-

tency and web latency from 12 DDoS attack traces. We
found that the average DNS latency can increase to as high
as 230% and the average web latency can increase by 30%

upon interaction with DDoS traffic. Figure 14 shows the
change in latency at Los Nettos during one particular ping
reflection attack [27]. This attack employs 145 distinct re-
flectors located in different countries such as Brazil, Japan,
Korea, Singapore, and United States, generating attack rates
of 4300pps. During the attack, we observed a 230% increase
in the mean latency for DNS lookup, from 0.13s (with me-
dian latency 11ms) to 0.44s (with median latency 23ms).
We believe the sudden increase of traffic during an attack
leads to higher average buffer occupancies at the router, re-
sulting in increased queuing delays. We also looked at the
effect of DDoS attack on web mice since such flows are more
sensitive to the delay. As shown in Figure 14(b), the mean
latency of web flows has increased from 9s (with median la-
tency 1.2s) to 11.9s (with median latency 2.9s), resulting in a
30% increase during the attack. Note that the DNS and web
latencies increase even when the link is still under-utilized
(11%).

5.3.2 Modeling DDoS attack generated by worm-
infected hosts

Worm infection is on the rise. Worms like Code Red and
Nimda can infect thousands of hosts within short periods of
time and generate significant network traffic [28]. We have
observed the propagation of the Apache mod ssl worm (aka
the Slapper worm) in our traces. The Slapper worm propa-
gation did not generate disruptive amounts of traffic at our
data collection point. However, if all the infected machines
launched a coordinated DDoS attack, it would have had a
disastrous effect. To understand its effect on the network
when all worm-infected hosts launch a coordinated DDoS
attack, we used RAMP to derive the distributions of RTT
of the worm-infected network, and the flow rates and packet
size of DDoS traffic from the traces. The derived empir-
ical distributions were then input into ns simulation. We
use a simple dumbbell topology to model the network and
constant bit rate sources to model DDoS attackers.

Figure 15 shows the attack intensity when generated by
worm-infected hosts. We observed that the different RTT
distributions of the attackers cause distinctively different
transient ramp-up behavior before the steady state attack
rate is achieved. Also, when all the worm-infected hosts
launch a DDoS attack, the average traffic generated due to
the attack during the steady state is fifty times larger than
that generated by the DDoS attack that we traced.

The above results show that although short duration DDoS
attacks might not be disruptive in terms of causing network
failures and reducing aggregate throughput, delay-sensitive
traffic such as DNS and small/medium web transaction will
still be affected by these attacks. Over-provisioning the links
alone does not provide the complete solution, since the short
burst of DDos traffic can result in increases in latency with-
out affecting the throughput. We feel that the above obser-
vations can be used as hints to design better AQM mech-
anisms to provide differential services in order to protect
short-lived traffic.

More details about using RAMP to study the impact of
malicious traffic on the network are described in [21].

5.4 Discussion
In this section, we describe some experiences we learned

from using RAMP in these applications: the use of trace-
driven application-level model.
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The design of RAMP is based on the structural modeling
approach [8] which implicitly takes into account the hierar-
chical structure of application and intertwined networking
mechanisms to reproduce the traffic. Using a trace-driven
application-level model provides a short turn-around time
from analyzing to modeling new types of traffic. Consider-
ing the constantly-changing nature of the Internet traffic, it
is very important to be able to quickly reproduce real world
traffic from measurement for the simulation study before
the data becomes obsolete or irrelevant. By modeling DDoS
attackers as CBR sources (Section 5.3), it only took us a
few hours to extend RAMP to support DDoS traffic. On
the other hand, if we had chosen to model DDoS traffic us-
ing traditional time-series analysis approaches, the effort for
distribution estimation and parameters fitting alone would
have taken days if not weeks.

Furthermore, while the network infrastructure is continu-
ously upgraded and network traffic is constantly changing,
for most applications the application-level pattern (such as
request/reply patterns in web traffic) in which data is sent
does not react to the network dynamics. By capturing this
application structure invariant, RAMP provides an efficient
and reasonable way to predict future traffic (Section 5.2): by
taking a sample of original traffic and feeding it into a scaled
version of the system, we can predict the future traffic in a
consistent manner (Although it is impossible to prove that
RAMP will accurately predict future high-rate traffic until
we have traces from such links, it is important to provide re-
searchers a tool to study plausible traffic to evaluate future
links). On the contrary, it will be a non-trivial task if we
try to employ traditional time-series forecasting techniques
to achieve similar results.

6. FUTURE WORK
Currently, except from keeping the history of incomplete

flows, our simple implementation of pipelined RAMP does
not manage to transit the states of network traffic from one
instance of RAMP to the other. Hence, it might not be
applicable for solving some traffic engineering problems that
require the knowledges of long-term properties of network
traffic. We plan to investigate this issue as future work.

Possible improvements to RAMP in the future would in-
clude a better queuing model, support of other types of im-
portant traffic, modeling of temporal relationship between
different types of traffic, long-term traffic prediction and in-
tegration of distributed measurements.

We modeled queuing delay as an extra component of prop-
agation delay instead of the end result of interaction between
aggregation of flows and limited buffer size (which is hard
to characterize just by only looking at TCP/IP header in-
formation). This approach was sufficient for our data sets
which have low link utilization and zero packet drop. How-
ever, for sites that experience serious congestion (like flash
crowd), our approximation might introduce some inaccuracy
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into the result and require further study.
Our tool currently supports web, FTP and DoS traffic,

which only accounts for a subset of real network traffic. To
make the output of RAMP more representative, we would
like to incorporate other types of important traffic such as
DNS, multimedia traffic (such as Real Audio/Video), game
traffic and increasingly popular peer-to-peer traffic into our
tool.

To accurately model traffic, it is important to character-
ize the temporal relationship between different types of traf-
fic. For example, DNS behavior is very likely linked closely
to web traffic pattern since most of the web connections
are usually preceded by DNS lookups. We plan to study
this issue and understand how to orchestrate different traf-
fic classes correctly in the model.

Currently our model is based traces recorded at a single
tap point of network. However, distributed measurement is
required in order to get a network-wide view of traffic and
to correctly model the behavior of cross traffic, while keep-
ing the size of collected data maintainable. Integrating dis-
tributed data together would require approaches for overlap
detection and hole filling. To address this problem, we plan
to explore and extend the techniques developed in previous
work of distributed network monitoring such as SCAN [29]
and recent work in network tomography [30, 31, 32, 33, 34],
as well as to employ new algorithms and tools to merge dis-
tributed data into a coherent model.

Measurement study of Internet traces shows that the WAN
performance is reasonably stable over terms of several min-
utes; meanwhile, nearby hosts experience similar or identi-
cal throughput performance within a time period measured
in minutes [35, 16]. Our model parameterization tool out-
puts simulation model at the time scale of tens of minutes
for hour-long traffic, which matches the level of stability re-
ported in previous study and hence is applicable to sim-
ulate present traffic and predict short-term traffic trend.
However, to simulate and predict long-term trend of traffic
(for example, at the time scale of days), we need to under-
stand how the traffic evolves and correlates in time.

7. CONCLUSION
Floyd and Paxson [1] characterized the problems, the constantly-

changing and decentralized nature of the Internet, result
in a poor understanding of traffic characteristics and make
it difficult to define a typical configuration for simulating
the Internet. Motivated by their observations, we develop
a tool called RAMP that support rapid parameterization
of live network traffic for generating realistic application-
level simulation models. Our model is based on estimation
of user/application behaviors and network conditions from
captured tcpdump trace. In this paper, we first describe
the design and implementation of RAMP. We then extend
RAMP to support near-real-time trace-driven simulation.
Finally, we demonstrate the utilities of RAMP via three im-
mediate applications: generation of realistic synthetic traffic
for simulation, generation of high bandwidth network traces,
and analysis and modeling of malicious traffic.
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