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ABSTRACT
This paper introduces a methodology for interpreting mea-
surement obtained over Internet. The paper is motivated by
the fact that a large number of published papers in empirical
networking analysis follow a generic framework that might
be formalized and generalized to a large class of problem.
The objective of this paper is to present an interpretation
framework and to illustrate it by examples coming from the
networking literature. The aim of the paper is rather to give
to the researcher who is confronted to measurements coming
from a network some guidelines on how to formalize the way
to address interpretation of observations.

The paper is based on the remark that interpretation is
essentially a matter of relating observed effects to hidden
causes. This problem might be formalized in its most gen-
eral setting as an inverse statistical inference problem. The
paper illustrates this inverse statistical problem in the con-
text of two well-referred problems: interpretation of active
measurement and network tomography. It shows that even
if at first glance these two problems are different, the solu-
tion framework is the same. We will also give description
about how to solve that inverse statistical inference problem
by the EM method or the Bayesian framework.

The framework provided in this paper is a powerful so-
lution to address the complex problem of interpreting mea-
surement over Internet and network modelling.
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Felix qui potuit rerum cognoscere causas

Happy is he who can understand the reasons of realities...
Virgile, Georgic

1. INTRODUCTION
We address, in this paper, the problem of modelling net-

work elements and understanding their behaviour. There
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exists a complete literature on the art of performance anal-
ysis of computer network and a broad spectrum of methods
is commonly used to perform capacity planning, modelling
and analysis. Analytic modelling, measurement and simu-
lations are frequently used independently or in association
to derive accurate solutions able to capture the essence of
the system under study. Combining different methods is an
interesting solution as it is recognized that each of particular
approach is better suited to some target goals. For instance,
in computer system modelling, when fine grain analysis is
crucial, a first step consists in developing a simulator of the
system while, at the same time, a measurement campaign is
conducted to extract some important system performance
metrics. The later are exploited, in a second step, in or-
der to calibrate the system simulator. We propose a general
method that combines measurement and modelling in order
to understand some important Internet performance met-
rics.

Two main classes of modelling approaches have been ap-
plied so far to address performances in networking context :
the constructive and the descriptive approach.

The constructive approach has been widely used since
many years to model systems in general. It is based on the
derivation of a model that ideally produces the same out-
put that the system for an outside observer. These models
might be based on a description of network elements those
are as close as possible to the real network. The network
is described as a combination of queues and routers etc.
that causally relate an input scenario defining the parame-
ters of the system in term of arrival process, capacity, buffer
space, etc., to output parameters. The modelling phase is
followed by a resolution phase that either relies on simula-
tion or analytical analysis to derive performance metrics for
a given set of input parameters. This approach is widely
adopted in performance analysis and queueing theory. The
general use of packet level network simulator, as ns [1], as
simulation tool for analysing complex networks have made
possible very precise and detailed modelling of network el-
ements. Constructive approaches have the nice property of
relating directly performance metrics as can be perceived by
end users to operational traffic engineering parameters that
might be controlled by network operators. It can also an-
swer "what if" questions, arising when one want to evaluate
the impact of changes in network parameters or architec-
ture in the performance of the system under study. Nev-
ertheless, this approach suffers from a main drawback; the
assumptions made about the structure of the network and
the scenario are so strong that it is very difficult to generalize
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results of constructive approach to the real Internet.
On the other hand, the descriptive approach is based on

measurements made over operational networks. It models
the observations by describing them by some statistical pa-
rameters such as moment of different order (mean, variance,
autocorrelation, Hurst parameter, etc.). In this approach
the network is seen as an opaque black box and no ac-
cess to its internal structure is supposed. The descriptive
approach only describes the observations without explain-
ing the mechanism generating the observations. This pro-
cess mainly aims toward predicting the QoS experienced by
applications under some reproducibility or stationarity as-
sumptions. However, as these models do not integrate the
mechanisms generating the observations, they cannot help
on predicting what will happen if these stationarity assump-
tions do not hold anymore. This means that this approach
cannot be used for network dimensioning, capacity planning
or predicting the QoS improvement consecutive to changes
in network parameters.

An important goal in any scientific investigations, is to
interpret results. By interpretation we mean being able to
relate effects to causes. Without interpretation, any mea-
surement results remain at best anecdotal, and no proactive
control can be done. However, interpretation is not triv-
ial, as it needs an insight into the observed phenomenon
that might be unreachable to the observer with incomplete
knowledge. This incompleteness might results from partial
observation or from partial understanding of the underlying
process leading to the observations.

The situation of the engineer confronted to measurement
obtained over the Internet is almost similar to the situation
nicely described by Socrates in the famous Plato cavern alle-
gory [2]. The allegory is the story of peoples who have been
held prisoner in a den deep inside a mountain. They have
been there for so long that the cave has gradually become
the only world they know. The only light they can see is
the light from a fire that is maintained on the other side
of the cave, which is reflected off the rocks of the cavern in
front of them. In this manner, their world has become a
world of a faint glow of light and of huge shadows of objects
that are passed in front of the fire. The shadows thus be-
come a reality to them that in part defines their world, that
they react to. If someone manages to break away from the
chains, and begins to observe the process that creates the
shadows, he will begins to understand that the mythology
of the world the had created for him is not real, but was
merely a construct of its deduction from the limitations of
its perception.

By essence, measurements are always incomplete as they
are always bounded in time and space. This fact is truer in
the context of the Internet that spread over continent and
timescales. Moreover, our understanding of the complex in-
teractions occurring in the network is still embryonic. Even
when we have good understanding of some internal mecha-
nism, the combinatorial explosion of the number of influent
parameters drive the observer to use a parsimonious and
incomplete model of the observed reality. These facts some-
what explain why a lot of observed phenomenon over the
Internet still remains without any convincing interpretation.
Examples of these unanswered question are the sources (and
the interpretation) of self-similar behaviour and long-range
dependences in traffic, or the causes of the power law in the
topological graphs of Internet.

Our aim in this paper is to provide a framework for in-
terpreting measurements. This framework might be applied
to a large class of measurement problem. The approach will
consist of mixing the two previously described modelling ap-
proaches: constructive and descriptive. At the first step, we
use constructive approach to define some models relating
effects to causes, or differently said, relating parameters of
unseen (hidden) input scenario to observed and measured
parameters. This constructive model will be used as an a
priori base for interpretation. The interpretation occurs af-
terthat when descriptive approach and statistical inference
are used to infer the hidden input scenario that have led to
the actual observations.

This framework enable a formulation of the interpreta-
tion problem as an inverse statistical estimation problem.
In this problem the goal is to infer the input scenario of an
a priori constructive model that have more likely led to the
observations. This inverse problem might be solved by sev-
eral methods, as we will explain. Moreover, we will describe
some networking problems that appears at first attempt as
completely separate problems, but reduce to the same in-
verse statistical estimation problem by using the described
framework, demonstrating its importance as a generic ap-
proach.

2. GENERAL FRAMEWORK
Suppose that we are interested in a given performance

metric x (vector-valued variable). Unfortunately, x can not
be measured directly (hidden variable), although, we can
measure another causally related variable y; by causally re-
lated we means that x might be interpreted as a cause of y
through a model D (possibly deterministic or probabilistic)
relating x to y and some other variables z, i.e. y = D(x, z).
Model D might come from a constructive approaches as de-
scribed in the introduction.

It might frequently arise that we have not access to all
causal variables,i.e. z or x might be unobserved. In this
case probabilistic modelling is applied; x and y are assumed
to be realizations of correlated stochastic processes X and
Y, defined over a probability space (X × Y, E ,P), e.g. a
sample space X × Y, a σ-algebra of events E and a prob-
ability measure P. We suppose that X and Y are related
through a parametric (with parameter θ) stochastic model
M, i.e. Y

d
= M(θ,X); by stochastic model we mean that

the model give the probability distribution function (pdf )
of the resulting random variable and this is emphasized by
the use of the sign d

= meaning an equality in distribution.
Thereafter we will assume that all equality between random
variables are by distribution and we will not use anymore
the d

= sign.
We assume that we have measured a realization y of the

output process Y and the input process X is hidden from us.
The interpretation problem with an a priori interpretation
model M consists of finding the sequence x of inputs that
have more likely led to the observation y (Fig. 1). In this
framework the problem under study reduces to an estima-
tion problem where estimation refers to the general subject
of making inferences about the value(s) of one (or more)
random variable(s) based on observations (measurements)
of one or more related random variables [3].

In general terms, we have to find an inference δ(y) =

(X̂, θ̂) of the hidden variable X and the parameter θ based
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Figure 1: The general interpretation problem

on the observation y such that an optimality criterion is
satisfied. The optimality criterion for dealing with the es-
timation problem can be defined based on every form of
cost function C(X, X̂) suitable to a particular applicative
need. We will describe further this general case. This gen-
eral problem can be splitted to two problems that may not
be independent: the modelling problem and the interpreta-
tion problem.

In the described framework the modelling problem goal is
to infer the parameter θ in relation Y = M(θ,X) that will
most likely lead to the observation y. Specific case of this
problem is given by descriptive approaches which usually
try to describes the observations (measurements) through a
stochastic parametric model defined by Y = N (θ) (where
no input variable X is assumed) by inferring the parameter
θ. As an example of this kind of approaches we can give the
large literature, that assume a model N where the observa-
tion have a multi-fractal or long-range dependent structure,
and one have to infer parameters of the model based on the
observations. We will give other examples in the forthcom-
ing.

On the other hand the interpretation problem tries to find
the vector δ(y) = x̂ (realization of the random vector X)
that will interpret the measured y by a cause and effect re-
lationship given by Y = M(θ,X) (where the parameter θ
are assumed to be known). Solving this problem is the ul-
timate goal of measurement interpretation, as based on the
a priori interpretation model, it gives the set of causes (x̂)
that have more likely lead to the observation (y). This kind
of approach has also been applied in a lot of problems in the
networking literature. One bright example is the so-called
network tomography problem [4, 5, 6], where one have to
infer the internal characteristics of the network (Traffic ma-
trix, link delay, link losses, etc.) based on some correlated
observed value. We will describe more completely this ex-
ample in next section.

Before going further and giving any explanatory exam-
ples, we have to answer a concern that might pop up in
the reader mind; the proposed interpretation framework is
based on an a priori interpretation model, and the interpre-
tation results are conditioned on this prior model. How can

we find a good model for interpretation and what happen if
the a priori model is bad? This question is as old as mod-
elling itself. Almost all natural phenomena lack of universal
models that are good for all purposes. A specific model and
a resulting interpretation might be good in one context and
insufficient for another one. The quality of a model cannot
be defined per se, and it need to be evaluated in relation
with the applicative context of the model.

The proposed framework gives a natural way to evalu-
ate the quality of an interpretation. As explained before,
the outcome of the interpretation problem is an inferred se-
quence of input x̂ that most likely led to the observation of
y. Application of the sequence of input (x̂) to the model
lead to a predicted sequence of observations ŷ = M(θ̂, x̂)
that might be compared with the observation by the way
of a cost function C(y, ŷ) evaluating the error. Definition
of the cost function depends on the particular applicative
setting. However, some popular cost function, as the root
mean squared error (rms), are frequently used.

Figure 2: Needed steps for interpretation of mea-
surements

In next section, we will explain the proposed framework
by giving a complete application to two examples: interpre-
tation of active measurements and network tomography.

3. EXPLANATORY EXAMPLES
Previous section has described the interpretation frame-

work in general. In this section we will apply the framework
to two well-known problems, and shows that presented solu-
tions to these problems are in fact employing unconsciously
the interpretation framework as developed before. We will
first describe the interpretation of active measurement prob-
lem.

3.1 Interpretation of active measurement
In active measurement a probe sending process injects

probe packets into the network. At the other end of the
network a measurement agent records some metrics on each
received probe packet. The collected metrics are used to
infer about the QoS that will be seen by other packet flow
crossing the network. The rationale behind active measure-
ment is that end to end QoS as sensed by real application
can be measured by being in competition with the real ap-
plication.

The IPPM group of the IETF has defined some end-to-
end performance metrics [7] to be collected on probe packets.
Three main type of information are extracted from the re-
ceived probe packet flow: packet size, packet loss process
and packet delay process. These information are used to
derive more complex metrics as goodput, loss rate, loss run
length, jitter, etc. The probe packets are usually sent using
ICMP (in ping surveys) or UDP. A lot of active measure-
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ment surveys has been produced during the recent years [8,
9, 10, 9, 11, 12] and some measurement infrastructures have
been deployed [13, 14].

Active measurements are the source of some interesting
and challenging problems. We will describe here the inter-
pretation of loss metrics measured by active measurement.

Let X = (Xt)
T
t=1 be a sampled loss trace measured by

an active measurement flow over an Internet link. The loss
trace is defined as Xt = 0, if the tth active measurement
probe reaches its destination and Xt = 1, if the probe is
lost.

Losses observed by measurement probes are mainly due
to buffer overflow in router in the path. The main cause
that has led to the observation of losses is the cross traffic
competing with the active measurement flow. In this context
interpretation means to find the characteristics of the cross
traffic that have led to the observed loss trace.

µK

Probing traffic

Background
Internet traffic

Figure 3: A priori constructive model of the net-
work used for interpretation

For doing this interpretation, we need an a priori con-
structive model of the Internet path relating the causes (com-
peting cross traffic) to the effects (losses observed on the
probes). We assume a simple constructive model M (fig. 3)
for the network consisting of a single bottleneck model with
transmission capacity µ and buffer size K. The bottleneck
is fed by the probing flow and by the Internet background
traffic. We assume that the background traffic follows a
Markov Modulated Poisson Process (MMPP). The MMPP
traffic model describes the traffic entering the bottleneck,
as the superposition of the background Internet traffic and
measurement probe traffic. This model assumes that the
traffic switches between K different states following a con-
tinuous time homogeneous Markov chain with infinitesimal
transition matrix Q. Each state represents an homogeneous
poisson process with parameter Λi = λi +γ, i ∈ {1, . . . , K},
where Γ is the measurement probe traffic and λi represent
the Internet background traffic. This model is very suitable
as it is able to approximate every type of traffic conditioned
on the number of state is sufficiently large (even long-range
dependence can be approximated with large number of state
and/or semi separable states).

The a priori model M is governed by the parameters θ =
(µ, K, Λ, Γ) and accept as an input the sequence of states of
the MMPP background Internet traffic. The output is the
loss process measured over the measurement flow.

In this context the previously defined modelling and in-
terpretation problem can be stated as :

Modelling problem: Observing a loss trace over the
measurement probes what are the parameter θ = (µ, K, Λ, Γ)
of the a priori model M.

Interpretation problem: What is the particular sample
path of the states of the background Internet traffic that has

caused the observed loss trace.
In the modelling problem, the parameter µ might be esti-

mated faithfully by packet pairs (or packet train) approaches
in the literature [15]. We can therefore assume that it is
known. The modelling problem has been treated in the sim-
ple case of a Poisson traffic model (MMPP with only one
state) in [16]. An extension to the general MMPP case as
described here, has been done in [17]. This paper propose a
formula relating the MMPP parameters to the parameters of
a Hidden Markov Model as described in [18]. [17] shows also
that the parameter K is not very sensitive for the purpose
of interpretation.

The modelling problem, i.e. estimation of remaining pa-
rameters θ = (Λ, Γ), is solved by using the Expectation Max-
imization method that will be described further in section
4. The interpretation problems is solved using the viterbi
algorithm or a Maximum a posteriori methodology that will
be also describe 4.

3.2 Network tomography
Another example of application of the described interpre-

tation framework is given by the so called “Network tomog-
raphy” problem. This name was first coined by Vardi in [4]
for the problem of traffic matrix estimation based on ob-
served volume of traffic in network links. The name was
later extended to a large class of problems consisting of in-
ferring internal network characteristics based on end-to-end
measurements [6]. Even if these two problems seem to be
far apart, however the mathematical formulation of them
remains the same, explaining the similarity of the name at-
tributed to them. These two problem can be reduced to
the solution of a highly under-dimensioned linear equation
of the form AX = Y , where A is a kind of routing matrix,
X is the vector of unknowns characteristics to infer and Y
is the vector of observations.

For the sake of simplicity we will only described here
the first network tomography problem as defined by Vardi,
which consist of estimating the traffic matrix based on some
partial observation of the traffic volume on internal network
link. However the approach can be also applied to the sec-
ond class of network tomography problems.

A Traffic Matrix (TM) represents the volume of traffic
that flows between all source-destination pairs in a network.
In a TM X = (Xij), rows and columns represent nodes in
the network, and element xij represents the volume of traffic
exchanged from node i to j. Traffic matrix is an important
parameter for designing and dimensioning network topology
and architecture as it gives the traffic demand. However,
deriving directly this matrix is unfeasible. A lot of works
have dealt with the estimation of traffic matrices using traf-
fic count on network links that can be easily measured by
SNMP MIBs [4, 19, 20, 5, 21].

However, traffic matrix have also another meaning that
is relevant to the subject of this paper: the volume of traf-
fic Xij exchanged between nodes is the cause of the traffic
observed in network links. If somebody wish to interpret
traffic count measured on network links at time t, he will
have to estimate the traffic matrix at time t. The presented
framework might be applied to this problem. In fact pro-
posed solutions to the matrix tomography problem follow
unconsciously the framework that we have described.

For dealing with this interpretation problem, the a pri-
ori constructive model used is the following. Let c be the
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number of origin-destination (OD) pairs. If the network has
n nodes, then c = n ∗ (n − 1). Rather than represent the
amount of data transmitted from node i to node j as Xij ,
it is preferable to represent the list of OD pairs as a vector.
We thus order the pairs and let Xk be the amount of data
transmitted by OD pair k. Let Y = (y1, ...yr) be the vector
of link counts where yl gives the link count for link l, and r
denotes the number of links in the network. The link counts
refer to the link load which is obtained via SNMP data. The
vectors X (causes) and Y (observations) are related through
a routing matrix A, which is an r by c matrix. Each routing
matrix component aij ∈ 0, 1 where aij = 1 if link i belongs
to the path used for OD pair j, and aij = 0 otherwise. The
OD flows are thus related to the link counts according to
the linear relation:

Y = AX (1)

This means that the traffic matrix estimation problem is
equivalent to solving the previous linear equation. How-
ever this linear equation is largely under-dimensioned as the
number of link in a network is largely smaller than the num-
ber of OD pairs. Nevertheless, this equation can be used as
the base of an a priori model for interpretation. We need
to define a parametric structure for the distribution of the
unobserved causes X. Let’s suppose that X follows a proba-
bility distribution P(α) with unknows parameters α, e.g. a
normal distribution with α = (µ, σ) or a Poisson distribution
with α = λ, etc..

The a priori model M(θ,X) is governed by θ = (A, α),
where α is the unknown parameters of the probability dis-
tribution of X. The routing matrix A of an IP networks can
be obtained by gathering the OSPF or IS-IS links weights
and computing the shortest-paths between all OD pairs. We
need only to estimate α.

In this context the previously defined modelling and in-
terpretation problem can be stated as :

Modelling problem: Observing a link traffic count vec-
tor Y what are the parameter θ = (α) of the a priori model
M.

Interpretation problem: Knowing the parameter θ,
i.e. parameters of the distribution of OD pairs, and observ-
ing a link traffic count vector Y, what is the OD pairs vector
X that have led to observation of Y. In other terms the in-
terpretation problem consists of solving the linear equation
AX = Y knowing the probability distribution of the hidden
values X.

As explained before several researches have dealt with
these two problems. Some of these researches differ in the
parametric hypothesis for the a priori probability distribu-
tions of OD pairs P(α), e.g. [4, 20] assume a Poisson distri-
bution, [19] assumes a Gaussian distribution where the mean
and the variance are related by σ2

i = γµc
i and [21] assume a

MMPP model for the OD pairs. These researches differ also
in the resolution method used for solving the modelling and
interpretation problem, e.g. [4] use a method of moment
for solving the modelling problem, [20] use a Bayesian esti-
mation framework for solving the modelling and interpreta-
tion problem, [19] use an EM method for solving the mod-
elling problem and an Iterative Proportional Fitting (IPF)
for solving the interpretation problem. [5] make a compari-
son of these different approaches.

In this section, we have applied the proposed interpreta-
tion framework to two problems. We have demonstrated

that even if these two problems seems far away, the reso-
lution framework for the two is essentially the same. This
conclusion might be reached over a large class of problem in
Internet measurement analysis. In next section we will de-
scribe how to solve the interpretation and modelling problem
and compare the different approach to the problem.

4. HOW TO SOLVE IT
Previous sections have introduced the interpretation of

measurement obtained over Internet as an inversion esti-
mation problem. This section will give some guidelines for
solving the modelling problems as described before. Three
main approach are detailed here : the EM method based on
the maximum likelihood paradigm, the Bayesian approach
based on the Bayes theorem and the Maximum a posteri-
ori approach and the regularization approach related to the
maximum entropy paradigm. For the sake of simplicity, we
will explain here the discrete variable framework where all
variables, i.e. X,Y, θ etc., are discrete random variables
and it is meaningful to speak about Prob

{
.
}
. The presenta-

tion can be easily extended to the continuous variable case
by replacing the probability, density function and summa-
tions by integrals.

The interpretative model M(X, θ) defines two probability
distribution function : an a priori distribution function for
the hidden input of the model Prob

{
X; θ

}
and a conditional

distribution function Prob
{
Y|X; θ

}
giving the input-output

relationship. These two distribution are the basis of the
inverse statistical problem we have to solve for interpreting
measurements.

4.1 EM method
The first approach for dealing with the modelling prob-

lem is based on the maximum-likelihood paradigm. Recall
the definition of the maximum-likelihood paradigm. Let
suppose that we have observed a realization x of a ran-
dom vector X, the log-likelihood function given the observed
sequence x is defined as L(θ|x) = log Prob

{
X = x; θ

}
.

One important point is that in the maximum likelihood
paradigm, the parameter θ is not a random variable and
it is rather an hidden fixed value that have to be computed.
It is therefore meaningless to condition a probability by θ.
This point is emphasized by using in notations a semi-colon
to separate θ from other variables. The log-likelihood func-
tion might be thought of as a function of the parameters
θ where the observed vector x is fixed. In the maximum
likelihood paradigm, the value of θ is chosen such that it
maximizes the log-likelihood function.

θ̂ = Arg max
Θ

L(θ|X)

Depending on the form of the density function Prob
{
X =

x; θ
}

this problem can be easy or hard to solve. For some
problem it is not possible to find simple analytical expres-
sions for the log-likelihood function, and we must resort to
other techniques, as the EM method that will be described.

The modelling problem could be rewritten in the maxi-
mum log-likelihood context as finding the value θ̂ that max-
imizes the complete-data log-likelihood function given the
observation of y defined as L(θ|X,Y = y) = log Prob

{
X,Y =

y; θ
}
.

θ̂ = Arg max
Θ

L(θ|X,Y = y)
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The complete-data log-likelihood function is obtained us-
ing Prob

{
Y,X; θ

}
= Prob

{
Y|X; θ

}
Prob

{
X; θ

}
that is com-

putable as we have the interpretation modelM. However, as
the vector X is hidden the previous optimization cannot be
done easily. EM method is used to deal with situation where
we have missing values, due to problems with or limitations
of the observation process. This is exactly the situation we
have to deal with.

As X is hidden, the complete-data log-likelihood function
L(θ|X,Y = y) can be assumed as a random variable. By
fixing the value of the parameter θ = θ̂(i), the marginal
distribution of the unobserved input vector X can be ob-
tained as γ(i)(X) = Prob

{
X|Y = y; θ = θ̂(i)

}
. The function

Q(θ, θ̂(i)) can be defined as the expectation of the complete-
data log-likelihood function over the marginal distribution
γ(i)(.):

Q(θ, θ̂(i)) = E
{
L(θ|X,Y = y)|Y = y; θ̂(i)}

In some case the distribution γ(i)(.) is a simple analytic ex-
pression of the assumed parameter θ̂(i) and the observed
data y. This favourable case occurs when X and Y are
jointly Gaussian or when we are in the Hidden Markov
Model context where Baum-Welches backward and forward
equations apply [22]. In worst case this marginal distribu-
tion might be difficult to compute and we have to use in
place of it Prob

{
X,Y = y; θ = θ̂(i)

}
which is more easy to

derive. This will not affect the overall convergence of the
EM methods, but it might slow down it.

The EM method consists of iterations of two steps: an
Expectation step where the function Q(θ, θ̂(i)) is evaluated
and a Maximization step where the maximum-likelihood
paradigm is applied to previously define mean log-likelihood
computed by Q(θ, θ̂(i)) which is maximized with respect to
θ to derive the next value θ̂(i+1).

Expectation Step: In this step, we have to compute the
expectation of the log-likelihood over the marginal distribu-
tion γ(i)(X) to derive Q(θ, θ̂(i). In some case Q(θ, θ̂(i)) have
a simple analytic form that simplify the maximization step.

Maximization Step: Maximize function Q(θ, θ̂(i)) with
respect to θ and derive the new estimate θ̂(i+1):

θ̂(i+1) = Arg max
Θ

Q(θ, θ̂(i)).

If Q(θ, θ̂(i)) has analytic form, the maximization might be
done by solving the following equation :

∂Q(θ, θ̂(i))

∂θ
= 0.

The maximization might lead to simple analytic formula in
some case where Q(θ, θ̂(i)) have suitable form. However in
some case, the maximization is too complex to be done com-
pletely. We might use the generalized EM method which
differ from the EM method by the fact that θ̂(i+1) is set
such that Q(θ, θ̂(i+1)) > Q(θ, θ̂(i)), i.e. θ̂(i+1) is not suppose
to maximize Q(θ, θ̂(i)).

These two steps are repeated as necessary to be con-
vinced of the convergence to a fixed point. Each itera-
tions is guaranteed to increase the log-likelihood and the
algorithm is guaranteed to converge to a local maximum
of the log-likelihood function. However, the local minimum
is not necessarily a global minimum. This problem have
motivated some statistical variation of the EM method, as

the SAEM (Simulated Annealing Expectation maximiza-
tion) [23]. These variations introduce some controlled amount
of noise into the process to push out the optimization from
local minimum. But even with such methods, the EM method
is highly sensitive to the initial value θ0 used in the first it-
eration. The better this initial guess is, the lower the chance
to get stick in a local minimum. It is therefore helpful to
have an intelligent choice of this initial value. How to make
this intelligent choice is a question of expertise and deep
knowledge of the problem to analyze.

The next step after inferring the parameter θ̂ and solv-
ing the modelling problem is to deal with the interpretation
problem. As explained before we need to derive the distri-
bution γ(i)(X) = Prob

{
X|Y = y; θ = θ̂(i)

}
in each step of

the EM method. At the last step we have the a posteriori
probability Prob

{
X|Y = y; θ = θ̂

}
as a side result of the

EM estimation. This probability might be used to estimate
X̂ and solve the interpretation problem :

X̂ = Arg max
X

Prob
{
X|Y = y; θ = θ̂

}
In some case, we might add some constraint in the previous
optimization and reduce the search space, e.g. in the matrix
tomography problem the constraint AX = Y is added to
validate the traffic constraint.

We have presented here the EM method in its most gen-
eral form. The details of the steps required to compute
the given quantities are very dependent on the particular
application. [19] illustrate the application of EM method
to the network tomography problem. [18, 17] presents the
application of EM method to the interpretation of active
measurement and [24] use SAEM method in the context of
flow classification.

In next section we will describe the solution of the mod-
elling problem in the context of Bayesian analysis.

4.2 Bayesian framework
The second approach for solving the modelling problem

is based on the Bayesian framework. The main difference
between this approach and the previously described Maxi-
mum likelihood approach is that in the Bayesian framework
θ is a random variable that will have a probability distribu-
tion function π(θ) and it is meaningful to define a proba-
bility conditioned on θ, where in the previous approach θ is
seen as an unknown but fixed parameter. This comment is
not anecdotal, as it traduces profound methodological differ-
ences between the two approaches. The Bayesian approach
is completely based on the definition of a prior distribution
π(θ), where maximum likelihood do not need any prior dis-
tribution hypothesis. Use of prior is the most critical and
most criticized point of Bayesian analysis.

Recall a description of the Bayesian approach. The frame-
work is based on the Bayes theorem relating the conditional
probability of two events A and B :

Prob
{
A|B

}
=

Prob
{
B|A

}
Prob

{
A

}∑
alleventsE Prob

{
B|E

}
Prob

{
E

}
This theorem is very helpful for interpreting measurement.
As described in previous section, the a prior model M de-
fines a conditional probability distribution function Prob

{
Y|X, θ

}
.

However as we have observed y and X and θ are missing, we
would rather be interest on knowing the inverse conditional
probability Prob

{
X, θ|Y = y

}
. The Bayes theorem enable
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us to compute Prob
{
X, θ|Y = y

}
by :

Prob
{
X, θ|Y = y

}
=

Prob
{
Y|X, θ

}
Prob

{
X|θ

}
π(θ)∑

Z,Ω Prob
{
Y|Z, θ

}
Prob

{
Z|θ

}
π(ω)

After obtaining the so called a posteriori probability dis-
tribution Prob

{
X, θ|Y = y

}
, we might compute marginal a

posteriori probability defined as :

Prob
{
θ|Y = y

}
=

∑
X Prob

{
X, θ|Y = y

}
Prob

{
X|Y = y

}
=

∑
Θ Prob

{
X, θ|Y = y

}
and apply a maximum a posteriori probability criteria to
derive the needed parameter :

θ̂ = Arg maxΘ Prob
{
θ|Y = y

}
X̂ = Arg maxX Prob

{
X|Y = y

}
One nice property of the Bayesian framework is that it

might be extended to deal with cost functions. As explained
before, we might define a suitable cost function C(Y,M(X̂, θ̂))
that will be used to evaluate the quality of the interpre-
tation. To simplify notations, we will position ourself in
the continuous situation where X, θ and Y are continuous
random variables that are related by conditional defined by
the a priori interpretive model M as f(Y|X, θ) and g(X|θ),
moreover we will assume an distribution prior π(θ) for the
parameters. We suppose that the inference is done by a
function delta(.) such that X̂, θ̂ = δ(y). The overall cost re-
sulting from using the inference rule δ for solving the mod-
elling and interpretation problems, can be derived as :

c(δ) =

∫
Θ

∫
X
C(y,M(δ(y)))f(Y = y|X, θ)g(X|θ)π(θ)dXdθ

The best inference rule for the interpretation problem is
the rule that minimize this overall cost :

δ∗ = Arg min
δ

c(δ)

Such an estimator is called a Bayes estimator. The rich
literature in Bayesian decision theory [25], give such Bayes
estimator for specific cost function, e. g. for the popular
mean square error cost function C(x, y) = |x−y|2, the Bayes
estimator is given by :

δ∗(y) = Eπ

{
θ|Y = y

}
The previous discussion has shown that the main technical

point in Bayesian analysis is how to calculate the involved
integral. These integrals occurs for calculating the a posteri-
ori probability as well as for deriving the total cost. Numer-
ical integral evaluation have a complete and rich literature,
however as we are in a statistical estimation context some
specific methods have been designed to deal with integrals
coming from Bayesian analysis. The Markov Chain Monte
Carlo (MCMC) method is one of the most popular approach
[25]. The idea here is to define a Markov chain that will con-
verge to a stationary distribution that will follow the needed
a posteriori distribution. The Bayesian inference problems
might be addressed by MCMC approach.

MCMC approach have been applied to deal with the in-
terpretation as defined in this paper. Examples of this appli-
cation are [20] that use the Bayesian framework for solving
the network tomography problem; [21] refines this approach
by integrating an MMPP traffic into the a priori model. [26]

apply the Bayesian methodologoy and the MCMC method
to another type of network tomography problem where the
goal is to identifying lossy links in the interior of the In-
ternet by passively observing the end-to-end performance of
existing traffic between a server and its clients.

5. CONCLUSION AND PERSPECTIVES
In this paper we developed a new modelling methodol-

ogy for analyzing and interpreting QoS as measured by ac-
tive measurement with the help of an a priori constructive
model. This approach is original as it starts with observed
performance (or QoS) measure and find inputs that had lead
to these observation.

This approach needs the introduction of the hidden vari-
able statistical framework. We have described this frame-
work and given some guidelines into the EM algorithm. This
framework provides the mean to formalize the approach in
the context of the well documented Hidden Markov Model.

Finally, we have illustrated the methodology in the con-
text of the modelling of the loss observed in an internet
path. This example shows that the proposed approach can
be valuable in the context of interpretation of QoS measured
by active measurements.

It is clear that this methodology needs more complete
explanation and case studies. It enables to build a calibrated
model that provides a good tradeoff between accuracy and
complexity.
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