N
Check for
Updates

=

VvVBET: a VM-Based Emulation Testbed

Xuxian Jiang
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907, USA

jlangx@cs.purdue.edu

ABSTRACT

With the increasing requirement of robustness and predicta-
bility for network protocols and distributed systems, it be-
comes necessary to develop realistic, customizable, and scal-
able emulation testbeds for the testing and evaluation of
network and distributed protocols. A number of recently
proposed emulation testbeds have clearly demonstrated the
advantage and promise of this approach. Meanwhile, more
efforts are necessary to achieve higher degree of flexibility
and customizability, especially for the creation of arbitrary
network topology and for the customization of network-level
entities.

In this paper, we present vBET, an efficient and flexible em-
ulation testbed using the virtual machine technology. Based
on Linux, vBET can be installed in a high-end desktop or a
commodity server and is therefore easily deployable in a re-
search lab. vBET creates a virtual distributed environment
with both network infrastructure and end systems. Each
entity, such as a router, switch, firewall, or application-level
proxy, is emulated by a virtual machine running unmodified
system or application software. The entities emulated by
vBET are user-configurable. Furthermore, the same (physi-
cal) vBET server can be easily setup as testbed for different
experiments, such as Internet routing, distributed firewalls,
and peer-to-peer networks.

We describe the design, implementation, and application of
vBET. For the design and implementation, we present key
enabling techniques including virtual OS, virtual network-
ing, and small-footprint file system. For the application of
vBET, we demonstrate the creation of different experimen-
tal environments using vBET, including OSPF routing, dis-
tributed firewall, and Chord peer-to-peer network. These
experiments reflect the versatility, customizability, and effi-
ciency of vBET.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SSGCOMM 2003 Workshops August 25&27, 2003, Karlsruhe, Ger-
many.

Copyright 2003 ACM 1-58113-748-6/03/0008 ...$5.00

Proceedings ot the ACM SIGCOMM 2003 Workshops

95

Dongyan Xu
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907, USA

dxu@cs.purdue.edu

1. INTRODUCTION

There has been increasing requirement of robustness and
predictability for network protocols and distributed systems,
such as IP routing [19, 22] and packet scheduling [25], peer-
to-peer systems [9, 11, 18], overlay networks [6, 7], and
computation/data grids [8, 12]. It has become necessary
to develop realistic, customizable, and scalable emulation
testbeds for the testing and evaluation of these protocols
and systems.

Meanwhile, traditional simulation tools, such as the widely
used ns-2 [2], are more available and economical, due to
their easy installation, management, and relatively low re-
source requirements. Unfortunately, simulation-based ex-
periments may be deemed less convincing, due to their lack
of fidelity to real-world environments. On the other hand,
real-world experiments are based on realistic settings and
therefore more credible. However, real-world experiments
are highly complex and costly to set up, control and moni-
tor. Between the two ends, emulation provides a good trade-
off between fidelity and cost. The goal (and challenge) of
emulation testbed development is therefore to achieve con-
trollability, configurability, reproducibility, scalability, and
ease of setup and management. In particular, the emulation
testbed should be flezible enough to create a wide range of
network environments for different experiments.

Recently, a number of real-world or emulation testbeds have
been successfully deployed. Representative testbeds include
PlanetLab[21], Netbed[28], and ModelNet[27]. These testbeds
clearly demonstrate the advantage and promise of emulation-
based experimentation. Still, a number of challenges exist
in the design and implementation of emulation testbeds. In
this paper, we address the following challenges.

e Fasy and wide deployment Like ns-2, it is desirable
that an emulation testbed be easily deployable in any
research lab equipped with commodity servers or high-
end desktops. As a result, researchers will have full
control over the testbed and enjoy more convenient
execution and monitoring of the experiments.

o Setup of arbitrary network topology The testbed should
support flexible setup and re-wiring of network topol-
ogy. This requires a stronger virtualization of network
connections by the testbed.

o Customization of network-level entities In addition to
end-system node customization, the testbed should also

August 2003

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F944773.944789&domain=pdf&date_stamp=2003-08-25

support the customization of network-level entities,
such as the replacement of packet queuing discipline
or IP lookup algorithm of a particular router in the
emulated environment.

e Fast start-up and tear-down of experimental environ-
ment It is expected that the start-up or tear-down be
automatically performed within seconds, so that re-
searchers do not have to experience long waiting time
during the experiments.

In this paper, we present vBET) a flexible and efficient emu-
lation testbed using the virtual machine technology. Based
on Linux, vBET can be installed in a high-end desktop or a
commodity server and is therefore easily deployable in a re-
search lab. vBET creates a virtual distributed environment
with both network infrastructure and end systems. Each
entity, such as a router, switch, firewall, or application-level
proxy, is emulated by a virtual machine running unmodi-
fied system or application software. The entities emulated
by vBET are configurable by users on-demand. Further-
more, the same (physical) vBET server can be easily setup
as testbed for different experiments. The key enabling tech-
niques of vBET include virtual OS, virtual topology, and
small-footprint file system. We have used vBET to create
network environments for experiments with OSPF routing,
distributed firewall, and Chord peer-to-peer network.

The rest of the paper is organized as follows. Section 2
presents an overview of vBET, including a network topol-
ogy modeling language for vBET users. Section 3 describes
vBET implementation in detail. Section 4 demonstrates the
creation of a number of experimental environments using
vBET. Section 5 compares our work with related works. Fi-
nally, Section 6 concludes this paper.

2. OVERVIEW OF VBET

vBET leverages virtual machine technology to achieve scala-
bility and local deployability: each real-world entity is emu-
lated by an independent virtual machine, which is physically
a ‘slice’ of the vBET server. Figure 1 shows that the same
vBET server can be used to create different experimental
environments: the first one is a simple three-node network
for the evaluation of OSPF protocol; the second one is a
typical multi-LAN environment; and the third one creates a
distributed firewall environment. Each node inside the emu-
lated environments is a virtual machine, inter-connected by
virtual links. To enable the virtual machines, vBET lever-
ages and extends User-Mode Linux (UML) [10], an open-
source Linux-based virtual OS'. vBET is scalable with re-
spect to the number of virtual machines in the vBET server:
In our laboratory, one vBET server (a Dell PowerEdge 2650
server with Xeon 2.6GHz CPU and 2GB memory running
Linux-2.4.19) can support up to 60 virtual nodes?.

2.1 Stepsof vBET Emulation

Our current implementation of vBET is suitable for small-
scale experiments based on Linux. Due to its limited support

'UML is completely different from UMLinux, another vir-
tual machine project, with respect to implementation.

?We use ‘virtual machine’ and ‘virtual node’ interchange-
ably.

Proceedings ot the ACM SIGCOMM 2003 Workshops

96

for resource isolation (Section 3.5), VBET is more suitable
for experiments that evaluate systems or protocols qualita-
tively than for experiments that require quantitative accu-
racy. To perform emulation using vBET, there are three
main steps:

e Topology specification A researcher will use a simple
but expressive topology modeling language (Section
2.2) to specify the experiment network topology.

o Virtual node and topology creation Based on the topol-
ogy specification, the next step is to map the logical en-
tities in the experiment to virtual machines in vBET.
During this step, vBET performs both wirtual node
creation and virtual topology creation. Virtual node
will have the specified capabilities, such as running
a specific routing protocol or performing an intrusion
detection task. Meanwhile, virtual topology creation
makes sure that the topology of the virtual nodes con-
forms to the topology specification. For example, an
OSPF router will be mapped to a virtual node which
runs OSPF software and communicates with its neigh-
bor OSPF routers as in the topology specification.

vBET achieves functionally accurate one-to-one map-
ping from each entity in the topology specification to a
virtual machine. In addition, virtual switches, hubs or
routers may be added when necessary to glue different
virtual nodes. A configuration script is created as the
result of this step, which can be re-used or updated
for multiple runs of the experiment. Currently, each
experiment is performed by one vBET server. The
mapping of one experiment to multiple vBET servers
under the constraints of physical vBET server topol-
ogy and resources is a non-trivial problem [23], and is
not yet supported by vBET.

o Experiment run In this step, vBET starts the exper-
iment by invoking the configuration script created in
the second step. A key feature of vBET is that each
virtual node has a unique reserved IP address, and
port redirect technique is employed to provide remote
researchers with console access to each virtual node for
runtime monitoring and management.

2.2 Network Topology Modeling

The vBET network topology modeling language is similar to
the facilities provided by ns-2, but easier to understand. Yet
it is expressive for the modeling of network and distributed
environments, especially for the composition of complex net-
work topologies based on simple ones.

Currently, the vBET network topology modeling language
supports four different resource types.

e Network A network represents a medium for commu-
nication between network devices. A network can be
logical or physical medium depending on the granular-
ity of topological composition.

e Network Device A network device is a communicating
entity, such as a bridge, switch, router, firewall, NAT
box or even end host. A network device can generate,
forward or accept real packets.

August 2003

Experimental environment 1

OSPF
Router 1

| b

OSPF
Router 2

OSPF
Router 3

VBET Server

Experimental environment 2

(re]
VBET Server

Experimental environment 3

hs |
(o)

m B @ o
VBET Server

Figure 1: Different experimental environments created in a vBET server

e Network Interface Card A network interface card (NIC)
is the entity that handles the actual packet sending and
receiving. It has the flexibility of being dynamically
attached to or detached from a network device.

e Cable A cable refers to the physical or emulated com-
munication link which enables the actual packet trans-
mission between network devices.

Based on the abstract resource types, the language further
defines three pairs of primitive operations.

e alloc/dealloc: A simple resource, such as a network
device, NIC or cable, can be allocated and deallocated
for an experimental environment.

e attach/detach: A NIC can be attached to or detached
from a network device.

o link/unlink: A cable can be used to link two NICs,
which are attached to two network devices, respec-
tively. A link can be broken by the unlink operation.
The link (unlink) operation is achieved by performing
the action of plug (or unplug) on both ends of a cable.

To illustrate the usage of vBET network topology model-
ing language, Figure 2 shows a simple network with three
hosts connected by a switch. The corresponding topology
specification is shown in Figure 3.

NIC1 Switch NIC3
Cablel NIC2
Cable2 Cable3
NIC1 NIC1 NIC1
Host 2

‘ Host 1

Figure 2: Simple Ethernet topology

Host 3 ‘

Proceedings ot the ACM SIGCOMM 2003 Workshops 97

switchl = { attach(alloc(switch), alloc(NIC),alloc(NIC), aloc(NIC))}

host1 = attach(alloc(host), alloc(NIC)) host2 = attach(alloc(host), aloc(NIC))
host3 = attach(alloc(host), alloc(NIC)) cable3 = aloc(cable)

cablel = aloc(cable) cable2 = dloc(cable)

plug(cablel, NIC(switchl)
plug(cablel, NIC(host1))

plug(cable2, NIC(switchl))
plug(cable2, NIC(host2))

plug(cable3, NIC(switchl))
plug(cable3, NIC(host3))

Figure 3: Topology specification

3. VBET DESIGNANDIMPLEMENTATION

In this section, we presents vBET’s design goals of flexibility,
scalability, and customizability, as well as its implementa-
tion details, including virtual OS, virtual networking, small
footprint file system and resource isolation.

3.1 Design Goals

Besides easy deployment and versatility for a wide range
of network and distributed experiments, the design goals of
vBET also include:

e Topology flexibility Topology flexibility is desirable for
on-demand creation of arbitrary network topologies,
especially the ones composed from basic network topolo-
gies such as ring, star, or switch-enabled LAN. There
should be no physical limit on the number of physical
network connections for each network device.

e Node customizability Every node in the experimental
environment should be further customizable for exper-
iments with different network services and software,
such as different service disciplines and routing algo-
rithms. Support for customization should be provided
not only for end-systems, but also for network-level
entities (such as routers).

o Scalability Instead of scaling the number of physical
servers in the testbed, vBET focuses on the scalability
with respect to the number of virtual machines in one
physical vBET server. Current virtual machine tech-
niques, such as VMWare [4] and the original UML [10],

August 2003

Virtualized Resources

Implementation Details

User/Kernel Mode : ptrace tracing on/off

Context Switch: one—to—one process mapping and memory/signal handling restoration

CPU*

Memory System Call
Virtualization

Timer 7>

Network

Disk

Physical Memory: mmapping a physical memory sized file
Kernel/Virtual Memory: mapping individual pages from the file

RTC Watchdog: SIGALRM/SIGVTALRM

NIC: TUN/TAP devices, socket served by a routing daemon ...

Disk: VFS mechanisms with hostfs virtual file system

* Faults and traps are emulated by corresponding signals: Device interrupt (SIGIO), Timer(SIGALRM), Memory faults (SIGSEGV)

Figure 4: Summary of resource virtualization in UML

are not lightweight enough to enable many virtual ma-
chines needed in a typical emulation experiment. We
also expect to contribute our techniques for scalability
to the existing emulation or real-world testbeds.

3.2 Virtual OS

To implement virtual machines, techniques at three lev-
els are involved: guest OS, virtual machine monitor, and
host OS. Guest OS provides a confined environment for
all processes running inside it, thus achieving administra-
tion, fault/attack, and resource isolation between virtual
machines [17]. Virtual machine monitor provides fundamen-
tal underlying resource virtualization. Host OS provides the
ultimate physical I/O and memory access for virtual ma-
chines, and schedules virtual machine processes as regular
processes based on certain scheduling policy, such as round-
robin or fair queuing [26].

vBET supports Linux as the host OS, and it leverages and
extends UML, an open-source virtual OS project. UML can
support most Linux applications without modification inside
a virtual machine, except some applications involving priv-
ileged instructions, such as hwclock using iopl and inb/outb.
Unlike other virtual machine techniques such as VMWare
[4], a UML runs directly in the unmodified user space of the
host OS. Processes within a UML will be executed in the
guest OS exactly the same way as they would be executed
in a native Linux machine, which gains performance benefit
in contrary to the overhead of instruction-level interpreta-
tion such as in Java VM [13]. In UML, a special thread is
created to intercept the system calls made by all process in-
side the UML and to redirect them into the host OS kernel.
An additional process context environment may be created
to store or restore context information at the entry or exit
point of a system call, which can reduce context switching
overhead.

One major challenge in virtual OS is to achieve resource vir-
tualization, including process address space assignment for
guest kernel /user mode differentiation, system call intercep-
tion and virtualization which involves context switch, virtual
memory emulation, network interface emulation, and RTC
timer emulation for preemptive scheduling. Figure 4 sum-
marizes the virtualization mechanisms in UML. Interested
readers are referred to [10] for more details.

We have extended the host OS (Linux) to improve UML

Proceedings ot the ACM SIGCOMM 2003 Workshops

98

scalability and isolation. More specifically, a small footprint
root file system (Section 3.4) is implemented to improve
UML scalability and a CPU scheduling algorithm (Section
3.5) is implemented to improve resource isolation between
virtual machines.

3.3 Virtual Networking
Virtual networking enables communications between virtual
nodes, and is essential to topology flexibility. In the follow-
ing sections, we describe VBET networking techniques for
different types of virtual nodes.

3.3.1 \Virtual Hub/Switch

Like a regular physical hub (switch), a virtual hub (switch)
enables simple packet forwarding and constructs a basic
LAN environment with multicast capability. Virtual hub
will forward every packet received to every available port,
which may result in degraded performance due to the mul-
tiple packet copies. Virtual switch adds some intelligence
to packet forwarding, so that only designated receivers will
receive the packet.

‘We have two options to emulate virtual hub or switch: TUN
/TAP and socket tunneling.

e TUN/TAP dynamically creates or deletes a new in-
terface in the host OS, and thus requires routine with
root privilege or setuid root privilege. This may not
be desirable and may limit its portability.

e Socket tunneling encapsulates real packets as socket
packet payload and provides one uniform, portable
and flexible way of virtualization, at the cost of higher
overhead than TUN/TAP. Socket tunneling will also
enable emulations based on multiple vBET servers,
which can not be achieved by TUN/TAP.

In vBET, we adopt the socket tunneling approach. In our
current single-vBET-server environment, one temporary

UNIX domain socket is created as the point of contact in
a virtual hub (or switch)®. It receives incoming connection
requests and creates one virtual port for each incoming con-
nection. The established UNIX socket connection will serve

3In a multiple-vBET-server environment, a UDP socket dae-
mon will be created instead of a UNIX domain socket.

August 2003

as the ‘cable’ connecting to the corresponding virtual NIC of
a virtual machine. UNIX socket connections do not impose
a physical limit on the number of ports created, although
they do incur some overhead. Various packet queuing and
forwarding polices can be implemented in the UNIX socket
server of a virtual hub (or switch), in order to emulate link
characteristics such as bandwidth, delay, loss rate, and con-
gestion.

Figure 5 shows the virtual hub and the creation of ports in
virtual hub. The poll system call is used by the virtual hub to
poll the arrival of packets and perform corresponding packet
processing such as queuing, forwarding or dropping. Differ-
ent packet queuing and forwarding polices can be applied at
this point. Poll system call also notifies the UNIX socket
daemon (emulating virtual hub or switch) of the arrival of a
connection request, so that the daemon can allocate a new
port to a new request. The total number of ports that can
be created in the virtual hub may be configured when the
UNIX socket daemon is started.

Virtua hub

1: VM initiates a unix socket connection request to a specified unix socket daemon (control port)
2: Therequest is acceptted by the unix socket daemon, and a new port is created
3. VM establishes physical connection to virtual hub viaVNIC

Figure 5: Virtual hub and port creation procedure

To evaluate the throughput and scalability (with respect
to the number of ports) of a virtual hub/switch, we perform
the following measurement as set up in Figure 6. In a vBET
server (Dell PowerEdge 2650 server with Xeon 2.6GHz CPU
and 2GB memory running Linux-2.4.19), we create a num-
ber of virtual nodes as senders and one virtual node as re-
ceiver - they are interconnected by one virtual switch. We
then measure the aggregated throughput observed by the
receiver using ttcp, under different number of senders (and
thus different number of ports created in the virtual switch).

Senders
VM1 E Virtual Switch
\ Recelver
10
VM2 [\
- T vMo

! 11
VMioE/

Figure 6: Setup for virtual switch throughput mea-
surement

Figure 7 shows the measurement results. The maximum
throughput observed by the receiver is 128Mbps, and the
throughput is not seriously degraded while the number of

Proceedings ot the ACM SIGCOMM 2003 Workshops

99

ports created in the virtual switch increases from 3 to 11.
However, when the number of ports continues to grow, the
packet encapsulation overhead due to socket tunneling will
increase and finally limit the scalability of vBET. As an al-
ternative, pipe [24, 27] or some similar mechanism may be
used to lower the overhead. Unfortunately, that will dis-
able the emulation of traceroute-like network protocols; and
it does not support physical multicast. Overall, for small-
scale experiments, our experience shows that the overhead
of socket tunneling is outweighed by the flexibility it brings
to the creation of arbitrary network topology.

P
/ T ~~
7 = '//\
@ —
Q
2 —
2 100 |
=
£
% 8ol
]
S
£
3 60l
IS}
2
g a0t
5
2
o
£ 20t
o
3 4 5 6 7 8 9 10 1

Number of ports created in the virtual switch

Figure 7: Virtual switch throughput under different
number of ports

3.3.2 \Virtual Link/NIC

A virtual link is created when establishing a connection with
a virtual switch (or hub). For implementation convenience,
we shift the responsibility of emulating link characteristics
to virtual hub/switch.

vBET achieves the flexibility of on-demand addition or re-
moval of virtual NIC, even when the virtual machine is ac-
tive. Since NICs are virtualized, it is possible to dynam-
ically create, configure, or delete a virtual NIC. When a
virtual machine is started, it will also act as a server, which
opens another domain socket (which can be a UNIX domain
socket or a UDP or TCP socket) for configuration requests.
When a new configuration request for adding another virtual
NIC arrives, the virtual machine, after proper authentica-
tion, will configure the virtual machine kernel to accommo-
date the new virtual NIC by initializing and registering the
corresponding device data structures and function pointers.
After the virtual NIC creation, a user can configure the new
network interface using some user level configuration tools
such as ifconfig or iproute2. Such flexibility brings non-stop
reconfigurability to vBET, which means that a user will not
have to terminate and restart the entire experiment for re-
configuration.

In a multiple-vBET-server environment, a new challenge is
to deal with the non-uniform delay on different virtual links
between the same virtual hub and different vBET servers.
Such a situation leads to the testbed mapping problem ad-
dressed in [23].

3.3.3 \Virtual Router/Firewall

Routers perform packet forwarding, while firewalls perform
packet filtering and content inspection. Via the small foot-
print file system (Section 3.4), it is easy to configure a virtual

August 2003

node, so that it possesses the specific functions to serve as
a router or a firewall.

Current UML kernel (Linux 2.4.19 in vBET), especially the
network subsystem, provides a convenient basis for further
customization of router and firewall features. The distributed
firewall experiment (Section 4.2) illustrates one example. In
addition, UML provides an authentic /proc environment and
supports the QUEUFE target for iptables. The QUEUE tar-
get in iptables is similar to divert mechanism in ipfw, which
delivers packets to a userspace (with respect to guest OS) in-
terface where they can be collected, modified, and inspected.
Snort-inline [1] is one such application which inspects pack-
ets in real-time for DoS attack analysis.

3.4 Root File System

Upon finishing the boot sequence, the virtual machine ker-
nel attempts to locate and mount a root file system. In
order to achieve scalability with respect to the number of
virtual machines in one vBET server, the root file system
needs to have a small memory footprint, and it should be
properly tailored by excluding the unnecessary services. In
the vBET prototype, we impose a space size of 32MB for a
root file system (with type ext2), which is reasonably small
yet sufficient to include the basic services. With this small
size, the root file system can be mounted in a ramdisk for
better runtime performance.

Firewall module

Minimal Linux
ext2 file system

Proxy module

Figure 8: Optional file system packages and the min-
imal Linux system

Routing module Traffic shaper modul€

Prformance measurement
module

NAT module

Figure 8 illustrates six optional packages in the current vBET
prototype. The Firewall module contains code that imple-
ments an Internet firewall subsystem, and it provides state-
less or stateful packet filtering. The NAT module handles
packet header translation and even packet payload mangling
(such as for the FTP data connection) needed for network
address translation. NAT can be integrated with a firewall
or be used separately. The routing module contains code
for routing protocols, including RIP, OSPF, and BGP taken
from zebra [16] package. The Prozy module provides func-
tionality of SOCKS proxy services. and Traffic shaper mod-
ule can be employed to experiment with transmission rate
monitoring and policing. Performance measurement module
includes some performance measurement routines, such as
ttep [3]. All of the modules depend on the underlying Min-
imal Linuz file system, which contains system-wide* basic

“Here, system means one virtual node.

Proceedings ot the ACM SIGCOMM 2003 Workshops

100

configuration and daily routines and is thus required for the
operation of every virtual node.

The optional packages needed by a specific virtual node are
included during the virtual node creation step. At the same
time, a startup script is linked into /etc/rc.d/rc8.d, which
will automatically start all the required services. In vBET,
it takes less than one second to start the virtual machine
kernel, and another second to mount the root file system and
start the customized set of services. As a result, a virtual
machine in vBET can be started in as short as 2 seconds
and be torn down in as short as one second.

3.5 Resource lsolation

To achieve performance isolation of each virtual machine
and thus accuracy of vBET-based experiments, resource guar-
antee or isolation must be provided to each virtual machine.
This is our on-going work and we have only initial results.
In vBET, resource isolation is realized by extending the host
OS (Linux).

e CPU isolation We have implemented a coarse-grain
CPU proportional sharing scheduler in the host OS
kernel . The scheduler enforces the CPU share allo-
cated to each virtual node. The CPU sharing of a vir-
tual node is decided during the virtual node creation.
Within one virtual node, all processes bear the same
user id, and host OS CPU scheduler performs resource
consumption accounting and enforces resource usage
limitation for virtual nodes based on their user ids.

However, proportional sharing is not sufficient for CPU
isolation. We are extending the CPU scheduler to
support guaranteed CPU reservation and enforcement.
Furthermore, we are refining vBET’s virtual node cre-
ation process in order to predict the amount of CPU
needed by each virtual node, based on the real-world
capacities of entities in an experiment.

Network traffic isolation We are implementing both
intra-server traffic isolation and inter-server traffic iso-
lation. Intra-server traffic is generated within one vBET
server, and does not consume real-world network band-
width. Inter-server traffic incurs real-world network
traffic between vBET servers (in the multiple-vBET-
server environment). For intra-server traffic, we pro-
vide each upstream virtual node with traffic shaping
capability by including the traffic shaper module in its
root file system. For inter-server traffic, a traffic shaper
running inside the host OS enforces the bandwidth
reservation between virtual nodes in different vBET
servers.

Memory isolation vBET leverages the memory usage
lemit feature of UML, which limits the amount of phys-
ical memory allocated to each virtual machine. Such
limit (32MB in vBET) is enforced by the UML kernel.
As a result, one vBET server with 2GB memory can
support up to 2G/32M = 64 virtual machines.

Disk isolation is another challenge for vBET. Disk access
activities of different virtual machines, as well as the block

August 2003

cache management policy in the disk device driver may vi-
olate the performance isolation between virtual machines.
vBET does not yet support disk isolation.

4. APPLICATION OF VBET

We have created a number of experimental environments to
demonstrate the application of vBET. Three environments
are presented in this section: The first experiment tests rout-
ing flapping in OSPF, which shows that an infrastructure-
critical routing protocol can be deployed and customized
in vBET virtual machines. The second experiment is the
evaluation of distributed firewall. A star topology is created
to enable the coordination of a set of distributed firewalls
to protect a central server. The third experiment emulates
application-level peer-to-peer lookup service, and subjects
the service to different types of failures (such as peer failure
and network partition) based on different network topolo-
gies.

4.1 Routing Flapping in OSPF

This experiment examines an interesting scenario involving
the OSPF protocol, which demonstrates that baneful persis-
tent route flaps may exist. The logical network topology for
this experiment is shown in Figure 9. The corresponding
topology modeling script is shown in Figure 10. To high-
light the efficiency of vBET, we note that the whole system
is bootstrapped within 6 seconds, and can be torn down
within 4 seconds.

OSPF configuration for ospf2
!

router ospf

redistribute connected
network 192.168.1.0/24 area 0
network 192.168.2.0/24 area 0

eth0: 192.168.0.1/24 ethl: 192.168.1.1/24 eth0: 192.168.2.2/24 ethl: 192.168.0.1/24

OSPF OSPF
Ruuler 1 Router 2 Router 3

eth0: 192.168.1.2/24 ethl: 192.168.2.1/24))
OSPF configuration for ospf3
1

OSPF configuration for ospf1
!

router ospf router ospf

redistribute connected redistribute connected metric 10
network 192.168.1.0/24 area 0 network 192.168.2.0/24 area 0

! !

Figure 9: Network topology for experiment with
OSPF

In Figure 9, there are three routers - Ri, R» and Rg3, each
of which is running ospfd from Zebra routing software [16].
Each of routers R1 and Rs intentionally has one interface
configured to have the same IP address 192.168.0.1/24, and
router R; advertises route entry for 192.168.0.1/32 with
metric 20 (default value) and router R3 advertises for same
destination with smaller metric 10. Since router R3 incurs
lower cost to reach destination 192.168.0.1/24, router R:
should choose R3 for destination 192.168.0.1/24 when the
network is stabilized. Detailed OSPF configuration and IP
address assignment for each router are shown in Figure 9.

At the beginning, router R; and R are bootstrapped, then
R3 is started. When routing tables are stabilized in all
three routers, from the screenshot in Figure 11, we can see
the router Ry (i.e., ospf2 in Figure 11) adopts the route to
192.168.0.1/24 via router R3 (i.e., ospf3 in Figure 11), which
is correct since R3 contains smaller metric for destination
192.168.0.1/24.

Proceedings ot the ACM SIGCOMM 2003 Workshops

rl = attach(alloc(router), aloc(NIC), aloc(NIC))
r2 = attach(alloc(router), aloc(NIC), aloc(NIC))
r3 = attach(alloc(router), aloc(NIC), aloc(NIC))

link(NIC(r1,2), NIC(r2, 1))
link(N1C(r2,2), NIC(r3, 1))

Figure 10: Network topology modeling script for the
OSPF experiment

ate xternal-LSA to 1‘32 X1
S—external-LSA iz self originated
2003/04/29 22:29:06 0SPF: Route[External]: Calculate AS-external-LSA to 192.168.0.0/24
200Z/04,29 22:29:05 05PF: Route[External]: type-2 created,
6003/04/29 22:29:06 05PF: Route[Externall: Adding a new route 192,168,0,0/24

Route[Externa
Route[Externa

¢ Virual Router: o5p&2

1 Route[Externall: tuype-2 created.

+ Route[External]1 Adding a new route 152,168,0,0/24

H Route[External]: Calculate AS-external-LSA to 102,168.0.0/24
2003/04/29 221 29 0E 0SPF: Route[Externall: tupe-2 created.

ElUOZ/Ud/ZS 22129:06 05FF: Route[Externall: MNew route is better

Virtual Router; ospi3
2003¢04/29 22:29:07 0SPF: Route[Externall: Calculate AS-external-LSA to 192,168.0.0/24
2003404,29 22:29:07 0SPF; Route[External]: type-2 created,

2003/04/29 22:29:07 05PF1 Route[External]: Adding a new route 152,168,0,0/24
200304723 22:29;07 05PF; Route[Externall: Calculate AS-external-LSA to 132,168.0.0/24
2002/04,/29 22:29:07 0SPF: Route[Externall: AS-external-LSA is self originated

Lt |

Figure 11: Screenshot of OSPF experiment when all
routers are working

When we intentionally disable interface 192.168.0.1/24 in
router R3, R3 notifies Ry that the corresponding link state
age has reached MazAge, and thus is considered not usable
anymore. As a result, a more expensive route (with metric
20) to 192.168.0.1/24 via router R; (ospfl in Figure 12) is
adopted by router Rs.

| Virtual Router: ospfl -

2003/04,29 22:30:41 05PF: Route[Externall: Calculate AS-external-L94 to 192,168.0.0/24
1303 + Route[External]: AS-external-LSA iz self originated

 Route[Externa alculate AS-external-L5A to 192,168,0,0/24

2003/04,/29 22:30:41 DSPF: Route[Externall: AS-external-LSA is MAMAGE

5003/04/29 22:20:43 0SPF: Link State Update: LS age is equal to Maxfige.

I

% | Virtual Router: ospf2

2003/04/29 22 41 05PF: Route[Externall: tupe-2 created,

2003/04,/29 22 41 0SPF: dding & new route 192,168.0.0/24
2003/04/23 22 41 0SPF: alculate AS-external-L5A to 192,168,0,0/24
2003/04,/29 22:30341 05PF: Route[Externall: AS-external-LSA is MAKAGE

5003/044’23 22:30:43 0SPF: Link State Update: LS age is equal to HaxPge.

‘Wirtual Router: ospf3

[rootBISPF3 Arootl#ifconfig ethl down

* route del -host 192,168.0.1 dew tapl

bash -z echo 0 > fproc/sys/retsipwddconf/tapl/proxy_arp
% arp -1 tapd —d 192,168,0,1 pub

Ltroctensprs /roct 140 .

Figure 12: Screenshot of OSPF experiment when
the better route to 192.168.0.1/24 is down

Then, we re-enable interface 192.168.0.1/24 at router Rs
to examine the routing flapping effect in OSPF. Figure 13
shows that router R» has found the new route via router R3
is better than current route via router R; for destination
192.168.0.1/24. As a result, better route for the destination
is updated in router Rs.

After several rounds of enabling and disabling interface

192.168.0.1/24 at router Rs, persistent route flapping effect
is clearly exhibited. Route flapping is a baneful phenomenon
and needs to be eliminated for more stable and robust net-
works. Also it suggests that more advanced OSPF route flap
damping features should be introduced and that the OSPF
protocol performance may be improved by learning from the

August 2003

"% | Virtual Router: aspil
2003/044258 221 H RDutE[Exter‘nal]Z Calculate AS-external-LSA to 132 158 0.0 4
2003/04/23 + Route[External]: AS-external-L5A is self originat

2003/04/23 22:422 : Route[External]: Calculate AS-external-LSA to 192 158 0.0/24
2003,/04/23 22142106 ¢ Route[Externall: tupe—2 creatsd.

6003/04/28 221423 t+ Route[Externall: Adding a new route 192,168,0,0/24

2003/04423 t Route[Externallt type-2 created,

2003/04/29 22142308 0SPF: Route[External]: Adding a new route 192,188,0,0/24

2003704729 22:42:06 0SPF: Route[Externall: Calculate AS-external-LSA to 192,168.0.0/24
+42306 05SPF: Route[External]: tupe—2 created,

6003/04/28 22142308 0SPF: Route[Externall: Mew route is better

rtual Router: ospl3
* ifconfig tapl 1592,168.0,250 netmask 255,265, 266,255 up
* bash - echo 1 > Jproc/sus/net/ipvd/ip_forward

* route add —host 192.168.0.1 dev tapl

¥ bash —c echo 1 > /proc/sys/net/ipud/confetapl/proxy_arp
% arp -Ds 152,168,0.1 tapd pub

N [r00t205PFS sroct 14l i |

Figure 13: Screenshot of OSPF experiment when
better route to 192.168.0.1/24 is up again

routing flapping history and being lazy and conservative in
adopting new or better route entries. The trace logs as well
as a video clip showing the experiment can be accessed at
http://www.cs.purdue.edu/homes/jiangx/vBET.

4.2 Distributed Firewall

This experiment enables the creation of a topology shown
in Figure 14, in which several network connections are es-
tablished for the provision of a web service. A set of edge
firewalls examining incoming requests for the service need to
be coordinated to ensure that the total request load for the
service does not exceed the server’s capability. The whole
system is bootstrapped within 13 seconds, and can be torn
down within 7 seconds.

€th0:'192.168.3.1

\58 Firewall_3 /
ho: 192.168.2.1 atho: 192468.4.1
T ahl: 10216803
Firewall_2 l |
etht: 192 \B,o\.z ,a/
an0: 19216851

Firewall_5
ethl: 192.168.0.5

eth0: 192.168.1.1

-
‘ Firewall_1 H Switch

ethl: 192.168.0.1 t!
etho: 152968.0.250

Server

Figure 14: A distributed firewall environment

The virtual network topology is modeled by the script in
Figure 15.

server = attach(alloc(host), alloc(NIC))

fw1 = attach(alloc(firewall), alloc(NIC), ...)
fw2 = attach(alloc(firewall), dloc(NIC), ...)
fw3 = attach(alloc(firewall), dloc(NIC), ...)
fw4 = attach(alloc(firewall), aloc(NIC), ...)
fws = attach(alloc(firewall), aloc(NIC), ...)

link(alloc(switch), server, NIC(fw1, 1), NIC(fw2,1), NIC(fw3,1), NIC(fw,1), NIC(fw5,1))

Figure 15: Network topology modeling script for the
distributed firewall environment

We create and compare two simple scenarios to demonstrate
the effectiveness of distributed firewall. In the first scenario,

Proceedings ot the ACM SIGCOMM 2003 Workshops

every firewall forwards requests to the central server without
any limitation, similar to a DDoS attack on the server. In
the second scenario, every firewall restricts the traffic toward
the central server in order to prevent the DDoS attack pro-
actively.

‘We measure the in-bound traffic rate observed by the server
in both scenarios. In the first scenario, the server receives
traffic at a rate of 84.66Mbps. In the second scenario, traffic
destined to the server is limited to 640kbps at each firewall
with t¢ command and as a result, the server only receives
traffic at a rate of 2.8Mbps. The individual traffic rates via
the five firewalls are shown in Table 1.

Firewall | Amount of traffic
FW1 578.8kbps
FWwW2 579.9kbps
FW3 579.4kbps
FwW4 579.9kbps
FW5 580.0kbps

Table 1: Inbound data (web service requests) rate
regulated by each firewall

Though conceptually simple and straightforward, such ex-
periment is difficult, if not impossible, to setup and experi-
ment with in real world without a dedicated testbed.

4.3 P2P Network

Finally, we create Chord, a peer-to-peer overlay lookup ser-
vice using vBET. The peer-to-peer network is deployed over
nodes in a network topology depicted in Figure 16. The en-
tire network is bootstrapped within 2 minutes, and can be
torn down within 1 minute.

50

Chord Ring

&

.

H55

.

Virtual Chord Ring Emulated Network Topology
Figure 16: A Chord P2P overlay network with 55
peers

In Figure 16, there are 55 Chord peers, which are instanti-
ated around the Chord ring. One Chord node assumes the
responsibility as bootstrapping node. The 55 chord nodes re-
sides in two LANSs, which are connected by a virtual router.
Such topology is useful to demonstrate and validate the re-
action of Chord to different types of failures such as network
partition.

August 2003

More complicated topologies can be created to evaluate dif-
ferent aspects of Chord-based peer-to-peer services, such as
CFS [9] - a peer-to-peer storage service based on Chord.
Our purpose here is to show vBET’s flexibility of creating
experimental network topology and its customizability for
every node inside the topology.

5. RELATED WORK

There have been some previous efforts in investigating the
use of emulation in the context of their specific research
[14, 15, 20]. Recently, several general-purpose emulation
testbeds have been proposed and deployed [5, 21, 27, 28].
vBET shares the same goal of providing high-fidelity em-
ulation or real environment for the experimentation with
distributed systems and network protocols.

PlanetLab [21] is in the process of deploying hundreds of
nodes across the Internet to create Point of Presence (or
PoP), so that wide-area distributed systems can be deployed
and evaluated using real Internet traffic. Though extremely
valuable because of real deployment, the experiment envi-
ronment is difficult for an individual researcher to gain full
control. And core routers are not allowed to run customized
software. As a result, it may not be practical to experiment
with infrastructure-critical systems and protocols, such as
distributed routing and distributed firewall®. vBET com-
plements PlanetLab: the former can be installed in a PoP
of the latter, so that experiments with infrastructure-critical
systems can be carried out locally.

Netbed [28] allows users to configure a subset of network
resources for isolated distributed systems and networking
experiments. It provides an integrated environment that
allows users to set up target operating systems and net-
work configurations. Again, vBET can be integrated with
Netbed, especially by contributing the scalability (with re-
spect to the number of virtual nodes within one physical
machine) and flexibility (of topology setup) features to the
latter.

ModelNet [27] targets scalable and flexible emulation envi-
ronment, which can perform full hop-by-hop network em-
ulation. The basic mechanism for scalability is the pipe
technique from dummynet [24]. As a result, it is difficult
for ModelNet to support traceroute-like applications. One
important property of ModelNet is that it balances scalabil-
ity and efficiency by employing both emulation and simula-
tion techniques. vBET, on the other hand, provides com-
plete control and customization over network-level entities,
so that third-party software for routing, advanced stateful
packet filtering and other network services can be executed
by the network-level entities.

Umlsim[5] is another recent effort parallel to ours which
exploits the virtual machine technology to create simula-
tion/emulation platforms. Instead of focusing on a specific
application or protocol (such as TCP), vBET aims at pro-
viding a general-purpose testbed for different applications
and protocols.

5PlanetLab is able to emulate routers - at the overlay level.

Proceedings ot the ACM SIGCOMM 2003 Workshops

103

6. CONCLUSION

Emulation testbeds are expected to be easily and widely de-
ployable. In an emulation testbed, arbitrary network topol-
ogy can be created for different experimental systems and
protocols. Furthermore, it is desirable to support customiza-
tion of network-level entities, such as fault injection, param-
eter configuration, and modification or replacement of key
software component such as the routing module. In this pa-
per, we present the design and implementation of vBET, as
our initial efforts towards meeting these goals. The salient
features of vBET include easy deployment, customizability,
and efficiency. Our experiments with different network and
distributed systems demonstrate the versatility of vBET.
Furthermore, vBET complements existing emulation or real-
world testbeds and can be readily integrated into the exist-
ing systems.

The current version of vBET has limitation in the scale and
quantitative accuracy of experiments. To overcome the lim-
itation, we are enhancing vBET to support resource usage
prediction and guaranteed reservation. We will also extend
vBET to a multiple-vBET-server environment based on ex-
isting solutions to the testbed mapping problem, so that
better scalability and resource utilization can be achieved.

Acknowledgments

We would like to thank the anonymous reviewers for their
highly constructive and detailed comments. We also thank
Weichao Wang and Minseok Kwon for helpful discussions.
This work was supported in part by a grant from the e-
Enterprise Center at Discovery Park, Purdue University.

7. REFERENCES
[1] Snort-inline. http://www.snort.org/.

[2] The Network Simulator ns-2 .
hitp://www.isi.edu/nsnam/ns/.

3]

ttep.
ftp://ftp1.sunet.se/pub/network/monitoring/ttcp.

VMWare. http://www.vmware.com.

W. Almesberger. UML simulator.
http://www.almesberger.net/umlsim/.

D. G. Andersen, H. Balakrishnan, M. F. Kaashoek,
and R. Morris. Resilient Overlay Networks. Proc. 18th
ACM SOSP, Banff, Canada, Oct. 2001.

R. Braynard, D. Kostic, A. Rodriguez, J. Chase, and
A. Vahdat. Opus: an Overlay Peer Utility Service.
Proceedings of the 5th International Conference on

Open Architectures and Network Programming
(OPENARCH), June 2002.

A. Chervenak, I. Foster, C. S. C. Kesselman, and

S. Tuecke. The Data Grid: Towards an Architecture
for the Distributed Management and Analysis of
Large Scientific Data Sets. Proceedings NetStore’99,
Oct. 1999.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS.
Proceedings of the 18th ACM Symposium on Operating
Systems Principles(SOSP’1), Oct. 2001.

[7]

August 2003

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

18]

[19]

20]

(21]

[22]

(23]

Proceedings ot the ACM SIGCOMM 2003 Workshops

J. Dike. User Mode Linux.
http://user-mode-linuz.sourceforge.net.

P. Druschel and A. Rowstron. PAST: A large-scale,
persistent peer-to-peer storage utility. HotOS VIII,
Schoss Elmau, Germany, May 2001.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration.
Open Grid Service Infrastructure WG, Global Grid
Forum, June 2002.

E. Gagnon and L. Hendren. SableVM: A Research
Framework for the Efficient Execution of Java
Bytecode. Java Virtual Machine Research and
Technology Symposium (JVM °01), Apr. 2001.

G.Banga, J. Mogul, and P. Druschel. A scalable and
explicit event delivery mechanism for UNIX.
Proceedings of the USENIX 1999 Annual Technical
Conference, Monterey, CA, June 1999.

H.Yu and A. Vahdat. The Costs and Limits of
Availability for Replicated Services. Proceedings of the
Eighteenth ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2001.

K. Ishiguro. Zebra. http://www.zebra.org/.

X. Jiang and D. Xu. SODA: a Service-On-Demand
Architecture for Application Service Hosting Utility
Platforms . Proceedings of The 12th IEEE
International Symposium on High Performance
Distributed Computing (HPDC-12), Seattle, WA, June
2003.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,

P. Eaton, D. Geels, R. Gummadi, S. Rhea,

H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An Architecture for Global-Scale
Persistent Storage. Proceedings of the Ninth
international Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS 2000), Nov. 2000.

J. Moy. OSPF Version 2.
http://www.ietf.org/rfc/rfc2328.txt, Apr. 1998.

B. Noble, M. Satyanarayanan, G. Nguyen, and
R. Katz. Trace-Based Mobile Network Emulation.
Proceedings of ACM SIGCOMM 1997, Cannes,
France, Sept. 1997.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet. Proceedings of ACM HotNets-1
Workshop, Princeton, New Jersey, USA, Oct. 2002.

Y. Rekhter and T. Li. Border Gateway Protocol 4
(BGP-4). http://www.ietf.org/rfc/rfc1771.tzt, Mar.
1995.

R. Ricci, C. Alfeld, and J. Lepreau. A Solver for the
Network Testbed Mapping Problem . ACM
SIGCOMM Computer Communication Review, Apr.
2003.

104

[24] L. Rizzo. Dummynet and Forward Error Correction.
Proceedings of the USENIX Annual Technical
Conference, June 1998.

[25] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless
Fair Queueing: Achieving Approximately Fair
Bandwidth Allocations in High Speed Networks.

Proceedings of SIGCOMM’98, Sept. 1998.

[26] V. Sundaram, A. Chandra, P. Goyal, and P. Shenoy.
Application Performance in the QLinux Multimedia
Operating System. Proceedings of the Eighth ACM

Conference on Multimedia, Nov. 2000.

[27] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,

D. Kostic, J. Chase, and D. Becker. Scalability and
Accuracy in a Large-Scale Network Emulator.
Proceedings of 5th Symposium on Operating Systems

Design and Implementation (OSDI), Dec. 2002.

B. White, J. Lepreau, L. Stoller, R. Ricci,

S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. Proceedings of
5th Symposium on Operating Systems Design and
Implementation (OSDI), Dec. 2002.

28]

August 2003

