
6 September 2003 QUEUE rants and raves: queue@acm.org QUEUE September 2003 7 more queue: www.acmqueue.com

A
bout once a month the Queue Advisory Board gets to-
gether for dinner to hammer out ideas for upcoming
issues. Well, a few months back we fell into discus-

sion about the problems surrounding software develop-
ment these days. A few of us piped up straight away that
tools are very important. Others countered, “Oh, sure,
but do they help or do they hurt?” And so this issue was
born: software development, tools, and whether or not
they make us more productive.

When we returned to this proposed issue of Queue at a
subsequent get-together to ask ourselves, “What’s differ-
ent these days?”, the problem of scale in today’s systems
came up almost immediately: Many software systems are
enormous, as is the number of folks one often finds work-
ing simultaneously on them. We wanted to ponder a bit
about how on earth one gets a grip on all of it, given size
alone. With this in mind, George Neville-Neil rendered
the delightful phrase, “code spelunking,” whereupon
we immediately compelled him to expostulate: “Explain
yourself, sir!” I’ll come back to that …

As discussion continued, some of the skeptics in our
midst revealed their hands. Such battle cries as “The only
thing worse than tools is developers who trust them,”
and “Tools are not a substitute for (good programmers,
good design, nor least of all) thinking,” were heard.

A while later, we turned to a topic that I think deserves
an issue or two in its own right: Given these large com-
plex systems today, how the heck do you observe what
they’re doing? It’s somewhat along the lines of debug-
ging, but has a bit more of an “after you shipped it,”
runtime tracing, kind of spin to it.

Before the evening was over, a few of us who hadn’t
quite shouted ourselves out on the earlier tirade started
croaking about the tools themselves. What are people
actually using, and what are the problems with some of
those things? We decided to conduct a survey to learn
what the Queue readers are using.

Now you know this topic is pretty broad, and while I’d
been reckless enough to produce an outline for its discus-
sion—which somehow singled me out as the issue’s prime
volunteer—you can understand why I was a bit apprehen-
sive to take it on alone. Enter soft-spoken Terry Coatta

and the truly unsinkable
George Neville-Neil, ready
to coconspire. I must say
that this issue owes greatly
to their excellent work.

Together, here’s what we came up with for the Devel-
opment Tools issue:

We start off with Michael Donat’s superb handling of
one of the more acute sources of complexity these days,
which comes from the recent vogue for multithreading
right on up to the application level. What makes dealing
with asynchronous behavior so hard, and how can you
handle it?

Dear to the hearts of our “please don’t check your
brains at the door” crowd is Donn Seeley’s excellent piece
describing where software productivity really comes from.
Read this. Reread this. We are not worthy!

Very neat, in my opinion, is the Phillips brothers’ “No
Source Code? No Problem!” How often have you found
yourself with functionality that you simply had to keep
going, but had only the binary for?

And finally, remember George’s remark on spelunk-
ing? Well here’s his explanation. The metaphor is just
right, I think, and we “made him” write it down for you.

Along with these features, you’ll find the results of the
survey in which readers told us about some tricky prob-
lems they’ve run into, and the tools they like best.

There are also two other exciting pieces in this issue:
Google is an epicenter of interest these days, and we
were lucky enough to be able to interview Wayne Ros-
ing—Google’s vice president of engineering. We wanted
to ask him how Google deals with these issues. This
reminded some of us that grappling with huge tracts of
code is far from all there is in today’s developers’ alliga-
tor-wrestling matches. There’s another beast to contend
with. Remember Niklaus Wirth’s book, Algorithms + Data
Structures = Programs (Prentice-Hall, 1978)? Yes, you got
it: “Data” (OK, “data structures” to be precise). And—oh
yes—indeed, they do have a little data to manage over at
Google. Wayne and I also had a chance to speculate a bit
on whether the meaning of “software development” and
“tools” might have changed somewhat fundamentally,

The Developer’s Art Today:
Aikido or Sumo?

David J. Brown, Queue Advisory Board Member

Do software

development tools

HELP OR HURT

PRODUCTIVITY?

from the editors

http://crossmark.crossref.org/dialog/?doi=10.1145%2F945131.945159&domain=pdf&date_stamp=2003-09-01

6 September 2003 QUEUE rants and raves: queue@acm.org QUEUE September 2003 7 more queue: www.acmqueue.com

given what’s happened since the advent of the Web. I
think you’ll find his answers quite informative.

Finally, although not on the topic of developer tools,
spam is more than just a concern, these days it’s a prob-
lem crying out for a solution. Eric Allman is Sendmail’s
CTO. He deals with this a little. Don’t you want to know
what he learned about what Big Brother at the FTC is
thinking about doing to “help out?”

Have fun. See you on the wires. Q

DAVID J. BROWN is the commodore of the Classic Yacht
Association’s Northern California Fleet. Once upon a
time, he was a founder of Silicon Graphics and later
received a Ph.D. at Cambridge University for describing
a unified memory architecture for graphics workstations.
After this, they gave him a job at Sun, anyway. Brown
has worked on one or two big and horrible problems of
software systems, including application binary compat-
ibility in Solaris.

GEORGE V. NEVILLE-NEIL has worked with embed-
ded systems for the past eight years as an integrator

of final products and an implementor of off-the-shelf
embedded operating systems. His work has centered on
the networking aspects of embedded systems, but he
has also done general work on broader aspects of the
systems. Neville-Neil developed a device-driver model for
networking devices used in VxWorks, worked on a multi-
instance version of the Berkeley TCP/IP stack, and ported
open source networking code to VxWorks. He is currently
working on a new, commercial, dynamic host configura-
tion protocol (DHCP) server at Nominum.

TERRY COATTA is currently the VP of development
at Silicon Chalk, a small firm in Vancouver, BC, that is
creating realtime collaborative software for use in higher
education. Prior to that he was the director of develop-
ment for distributed systems at Open Text Corporation,
where he arrived via the acquisition of the Network Soft-
ware Group, a consulting company of which he was the
president. He has a Ph.D. in computer science from the
University of British Columbia, where his area of research
was distributed systems. He has worked with and contin-
ues to be interested in distributed component systems.

