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The Effect of Flexible Parsing for Dynamic
Dictionary Based Data Compression ∗

Yossi Matias† Nasir Rajpoot‡ Süleyman Cenk S. ahinalp§

Abstract

We report on the performance evaluation of greedy parsing with a single
step lookahead, denoted as flexible parsing. We also introduce a new finger-
print based data structure which enables efficient, linear time implementation.

1 Introduction

The most common compression algorithms are based on maintaining a dynamic
dictionary of strings that are called phrases, and replacing substrings of an input
text with pointers to identical phrases in the dictionary. Dictionary based com-
pression algorithms of particular interest are the LZ78 method [ZL78], its LZW
variant [Wel84], and the LZ77 method [ZL77] which are all asymptotically optimal
for a wide range of sources.

Given a dictionary construction scheme, there is more than one way to parse the
input, i.e., choose which substrings in the input text will be replaced by respective
codewords. Almost all dynamic dictionary based algorithms in the literature use
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greedy parsing which is fast and can be applied on-line. However, it usually results
in far from optimal parsing/compression: for the LZW dictionary method, there are
strings T which can be (optimally) parsed to some m phrases, for which the greedy
parsing obtains Ω(m3/2) phrases ([MS99]; a similar result for static dictionaries is
in [GSS85]).

In [Hor95] it was demonstrated that the compression achieved by LZW algo-
rithm on some standard benchmark files can be improved by looking ahead a few
steps. However it was noted that: “An optimal parsing scheme would also have to
consider the possibility of matching a short first string and then a short second string
in order to match a very long third string. We will however reject such possibilities
as being too expensive to implement (for minimal expected gain in compression).
Our non-greedy version of LZW will only look ahead by one parsed string when
choosing its course of action.” In fact the algorithm proposed in [Hor95] not only
changes the parsing scheme but also constructs an entirely different dictionary from
that of LZW on a given string – hence compression improvement over LZW is not
guaranteed, and the notion of optimality is not clear. The worst case running time
of this algorithm is O(|T 3/2|), where |T | is the input size.

An interesting fact for static dictionaries is that greedy parsing is optimal for
those dictionaries with the suffix property [CK96]. It follows that if all the input
is available off-line, it can be parsed optimally via a rigt-to-left greedy parsing
provided that the dictionary is static and has the prefix property.

Recently [MS99] demonstrated that for all dictionary construction schemes with
the prefix property, greedy parsing with a single step lookahead is optimal on all
input strings – this scheme is called flexible parsing or FP . A new data structure
which implements the algorithm that uses LZW dictionary construction with FP
in O(|T |) time and space proportional to the number of phrases in the dictionary is
introduced as well. The space and time complexity of this data structure is compa-
rable to that of the original LZW implementation, hence optimal compression can
be achieved without any overhead in complexity. Note that suffix trees can also be
used for this application [RPE81]. However the O(|T |)) space complexity of the
suffix tree is expected to be much larger than the space complexity of the new data
structure which is proportional to the number of output phrases.

In this study, we report an experimental evaluation of FP in the context of LZW
dictionary construction scheme:
(1) We demonstrate that optimality of FP in the context of the LZW dictionary
construction, denoted as LZW-FP, translates into considerable improvement over
greedy parsing in practice. We also consider the algorithm of [Hor95], which uses
flexible dictionary construction, denoted here as FPA. The LZW-FP and FPA al-



gorithms are compared with UNIX compress (LZW) and gzip (LZ77). On the
tested data files, both LZW-FP and FPA perform better, up to 20% improved com-
pression, than UNIX compress. They are both inferior to gzip on small to mod-
erate text files, such as in the Calgary corpus, but are typically superior to gzip for
files larger than 1MB, and for non-textual data files of all sizes. For pseudo-random
strings and DNA sequences, the improvement is up to 35%.
(2) We introduce a new data structure based on Karp-Rabin fingerprints [KR87] to
efficiently implement FP . Currently our algorithms run about 3 − 5 times slower
than compress which is the fastest among all algorithms, both during compres-
sion and decompression. We are in the process of improving our implementations
and hence leave reporting on explicit timing results to the full paper.
(3) We investigate whether better asymptotic properties of LZ78 based algorithms
in comparison to LZ77 translate into improved compression. We demonstrate that
on pseudorandom bit streams (with various distributions) the redundancy in the out-
put of each of the four programs approach to the expected asymptotic behavior very
fast – requiring less than 1KB for each of the different distributions; better asymp-
totic properties of LZW in comparison to LZ77 is very visible.1 For files of size
1MB, compress can improve over gzip up to 20% in compression achieved 2.

2 The Compression Algorithms

In this section we describe how each of the algorithms we consider work. We give
the descriptions of the standard algorithms as well as new ones for the sake of
completeness. Each of the algorithms fit in a general framework that we describe
below.
Model. We denote a compression algorithm by C, and its corresponding decom-
pression algorithm by C←. The input to C is a string T , of n characters, chosen
from a constant size alphabet Σ; in our experiments Σ is either ascii or is {0, 1}.
We denote by T [i], the ith character of T (1 ≤ i ≤ n), and by T [i : j] the substring
which begins at T [i] and ends at T [j]; notice that T = T [1 : n].

The compression algorithm C compresses the input by reading the input charac-

1The average number of bits output by LZ78 or LZW, for the first n characters of an input string
created by an i.i.d. source is only O(1/ log n) more than its entropy [JS95, LS95]. A similar result
for more general, unifilar, sources has been obtained by Savari [Sav97]. For the LZ77 algorithm,
this redundancy is as much as O(log log n/ logn) [Wyn95].

2All the software, documentation, and detailed experimental results reported in this paper are
available on the WWW [Sou].



ters from left to right (i.e. from T [1] to T [n]) and by partitioning it into substrings
which are called blocks. Each block is replaced by a corresponding label that we
call a codeword. We denote the j th block by T [bj : bj+1 − 1], or shortly Tj, where
b1 = 1. The output of C, hence, consists of codewords C[1], C[2], . . . , C[k] for
some k, which are the codewords of blocks T1, T2, . . . , Tk respectively.

The algorithm C maintains a dynamic set of substrings called the dictionary, D.
Initially, D consists of all one-character substrings possible. The codewords of such
substrings are their characters themselves. As the input T is read, C adds some of
its substrings to D and assigns them unique codewords. We call such substrings
of T phrases of D. Each block Tj is identical to a phrase in D: hence C achieves
compression by replacing substrings of T with pointers to their earlier occurrences
in T .

The decompression algorithm C← that corresponds to C, takes C[1 : k] as input
and computes T [1 : n] by replacing each C[j] by its corresponding block Tj. Be-
cause the codeword C[j] is a function of T [1 : bj − 1] only, the decompression can
be correctly performed in an inductive fashion.

Below, we provide detailed descriptions of the compression algorithms consid-
ered, both the new and the old for the sake of completeness .
LZ-77 Algorithm. The LZ-77 algorithm reads the input characters from left to
right while inserting all its substrings in D. In other words, at the instance it reads
T [i], all possible substrings of the form T [j : `], j ≤ ` < i are in D, together with
all substrings of size one. The codeword of the substring T [j : `], is the 2-tuple,
(i − j, ` − j + 1), where the first entry denotes the relative location of T [j : `],
and the second entry denotes its size. LZ77 uses greedy parsing: the mth block
Tm = T [bm : bm+1 − 1] is recursively defined as the longest substring which is in
D just before C reads T [bm+1 − 1].
LZW Algorithm. The LZW algorithm reads the input characters from left to right
while inserting in D all substrings of the form T [bm : bm+1]. Hence the phrases
of LZW are the substrings obtained by concatenating the blocks of T with the next
character following them, together with all possible substrings of size one. The
codeword of the phrase T [bm : bm+1] is the integer |Σ|+ m, where |Σ| is the size of
the alphabet Σ. Thus, the codewords of substrings do not change in LZW algorithm.
LZW uses greedy parsing as well: the mth block Tm is recursively defined as the
longest substring which is in D just before C reads T [bm+1 − 1]. Hence, no two
phrases can be identical in the LZW algorithm.
LZW-FP Algorithm. The LZW-FP algorithm reads the input characters from
left to right while inserting in D all substrings of the form T [b′m : b′m+1], where b′m
denotes the beginning location of block m if the compression algorithm used were



LZW. Hence for dictionary construction purposes LZW-FP emulates LZW: for any
input string LZW and LZW-FP build identical dictionaries. The output generated
by these two algorithms however are quite different. The codeword of the phrase
T [b′m : b′m+1] is the integer |Σ| + m, where |Σ| is the size of the alphabet Σ. LZW-
FP uses flexible parsing: intuitively, the mth block Tm is recursively defined as
the substring which results in the longest advancement in the next iteration. More
precisely, let the function f be defined on the characters of T such that f(i) = `
where T [i : `] is the longest substring starting at T [i], which is in D just before C
reads T [`]. Then, given bm, the integer bm+1 is recursively defined as the integer α
for which f(α) is the maximum among all α such that T [bm : α − 1] is in D just
before C reads T [α − 1].
FPA Algorithm. The FPA algorithm reads the input characters from left to right
while inserting in D all substrings of the form T [bm : f(bm)], where the function
f is as described in LZW-FP algorithm. Hence for almost all input strings, FPA
constructs an entirely different dictionary with that of LZW-FP. The codeword of
the phrase T [bm : f(bm)] is the integer |Σ|+m, where |Σ| is the size of the alphabet
Σ. FPA again uses flexible parsing: given bm, the integer bm+1 is recursively defined
as the integer α for which f(α) is the maximum among all α such that T [bm : α−1]
is in D.

3 Data Structures and Implementations

In this section we describe both the trie-reverse-trie data structure, and the new
fingerprints based data structure for efficient on-line implementations of the LZW-
FP , and FPA methods. The trie-reverse-trie pair is a deterministic data structure,
and hence guarantees a worst case linear running time for both algorithms as de-
scribed in [MS99]). The new data structure based on fingerprints [KR87], is ran-
domized, and guarantees an expected linear running time for the algorithm.

The two main operations to be supported by these data structures are (1) insert
a phrase to D (2) search for a phrase, i.e., given a substring S, check whether it is
in D. The standard data structure used in many compression algorithms including
LZW, the compressed trie T supports both operations in time proportional to |S|.
A compressed trie is a rooted tree with the following properties: (1) each node with
the exception of the root represents a dictionary phrase; (2) each edge is labeled
with a substring of characters; (3) the first characters of two sibling edges can not
be identical; (4) the concatenation of the substrings of the edges from the root to
a given node is the dictionary phrase represented by that node; (5) each node is



labeled by the codeword corresponding to its phrase. Dictionaries with prefix prop-
erties, such as the ones used in LZW and LZ78 algorithms, build a regular trie rather
than a compressed one. The only difference is that in a regular trie the substrings of
all edges are one character long.

In our data structures, inserting a phrase S to D takes O(|S|) time as in the
case of a trie. Similarly, searching S takes O(|S|) time if no information about
substring S is provided. However, once it is known that S is in D, searching strings
obtained by concatenating or deleting characters to/from both ends of S takes only
O(1) time. More precisely, our data structures support two operations extend and
contract in O(1) time. Given a phrase S in D, the operation extend(S, a) for a
given character a, finds out whether the concatenation of S and a is a phrase in D.
Similarly, the operation contract(S), finds out whether the suffix S[2 : |S|] is in D.
Notice that such operations can be performed in a suffix tree, if the phrases in D are
all the suffixes of a given string as in the case of the LZ77 algorithm [RPE81]. For
arbitrary dictionaries (such as the ones built by LZW) our data structures are unique
in supporting contract and extend operations in O(1) time, and insertion operation
in time linear with the size of the phrase, while using O(|D|) space, where |D| is
the number of phrases in D.
Trie-reverse-trie-pair data structure. Our first data structure builds the trie, T , of
phrases as described above. In addition to T , it also constructs T r, the compressed
trie of the reverses of all phrases inserted in the T . Given a string S = s1, s2, . . . , sn,
its reverse Sr is the string sn, sn−1, . . . , s2, s1. Therefore for each node v in T ,
there is a corresponding node vr in T r which represents the reverse of the phrase
represented by v. As in the case of the T alone, the insertion of a phrase S to this
data structure takes O(|S|) time. Given a dictionary phrase S, and the node n which
represents S in T , one can find out whether the substring obtained by concatenating
S with any character a in is D, by checking out if there is an edge from n with
corresponding character a; hence extend operation takes O(1) time. Similarly the
contract operation takes O(1) time by going from n to n′, the node representing
reverse of S in T r, and checking if the parent of n′ represents S[2 : |S|]r.
Fingerprints based data structure. Our second data structure is based on building
a hash table H of size p, a suitably large prime number. Given a phrase S = S[1 :
|S|], its location in H is computed by the function h, where h(S) = (s[1]|Σ||S| +
s[2]|Σ||S|−1 + . . .+s[|S|]) mod p, where s[i] denotes the lexicographic order of S[i]
in Σ [KR87]. Clearly, once the values of |Σ|k mod p are calculated for all k up to the
maximum phrase size, computation of h(S), takes O(|S|) time. By taking p suffi-
ciently large, one can decrease the probability of a collision on a hash value to some
arbitrarily small 1/ε value; thus the average running time of an insertion would be



O(|S|) as well. Given the hash value h(S) of a string, the hash value of its exten-
sion by any character a can be calculated by h(Sa) = (h(S)|Σ| + lex(a)) mod p,
where lex(a) is the lexicographic order of a in Σ. Similarly, the hash value of its
suffix S[2 : |S|] can be calculated by h(S[2 : |S|]) = (h(S) − s[1]|Σ||S|) mod p.
Both operations take O(1) time.

In order to verify if the hash table entry h(S) includes S in O(1) time we (1)
give unique labels to each of the phrases in D, and (2) in each phrase S in H , store
the label of the suffix S[2 : |S|] and the label of the prefix S[1 : |S| − 1]. The
label of newly inserted phrase can be |D|, the size of the dictionary. This enables
both extend and contract operations to be performed in O(1) time on the average:
suppose the hash value of a given string S is h, and the label of S is `. To extend
S with character a, we first compute the hash value h′ of the string Sa. Among the
phrases whose hash value is h′, the one whose prefix label matches the label of S
gives the result of the extend operation. To contract S, we first compute the hash
value h′′ of the string S[2 : |S|]. Among the phrases whose hash value is h′′, the one
whose label matches the suffix label of S gives the result of the contract operation.
Therefore, both extend and contract operations take expected O(1) time.

Inserting a phrase in this data structure can be performed as follows. An insert
operation is done only after an extend operation on some phrase S (which is in D)
with some character a. Hence, when inserting the phrase Sa in D its prefix label is
already known: the label of S. Once it is decided that Sa is going to be inserted,
we can spend O(|S| + 1) time to compute the suffix label of Sa. In case the suffix
S[2 : |S|]a is not a phrase in D, we temporarily insert an entry for S[2 : |S|]a in
the hash table. This entry is then filled up when S[2 : |S|] is actually inserted in D.
Clearly, the insertion operation for a phrase R takes expected O(|R|) time.
A linear time implementation of LZW-FP . For any input T LZW-FP inserts
to D the same phrases with LZW. The running time for insertion in both LZW and
LZW-FP (via the data structures described above) are the same; hence the total
time needed to insert all phrases in LZW-FP should be identical to that of LZW,
which is linear with the input size. Parsing with FP consists of a series of extend
and contract operations. We remind that: (1) the function f on characters of T is
described as f(i) = ` where T [i : `] is the longest substring starting at T [i], which
is in D. (2) given bm, the integer bm+1 is recursively defined as the integer α for
which f(α) is the maximum among all α such that T [bm : α − 1] is in D. In order
to compute bm+1, we inductively assume that f(bm) is already computed. Clearly
S = T [bm : f(bm)] is in D and S ′ = T [bm : f(bm)] is not in D. We then contract
S by i characters, until S ′ = T [bm + i : f(bm) + 1] is in D. Then we proceed with
extensions to compute f(bm + i). After subsequent contract and extends we stop



once i > f(bm). The last value of i at which we started our final round of contracts
is the value bm+1. Notice that each character in T participates to exactly one extend
and one contract operation, each of which takes O(1) time via the data structures
described above. Hence the total running time for the algorithm is O(n).

4 Experiments

In this section we describe in detail the data sets we used, and discuss our test results
verifying how well our theoretical expectations were supported.
The test programs. We used gzip, compress, LZW-FP and FPA programs for
our experiments. In our LZW-FP implementation we limited the dictionary size
to 216 phrases, and reset it when it was full as in the case of compress; we also
experimented with the extended version of LZW-FP which allows 224 phrases.
Similarly we experimented with two versions of FPA: one with 216 and the other
with 224 phrases maximum.
The data sets. Our data sets come from three sources: (1) Data obtained via UNIX

drand48() pseudorandom number generator - designed to measure the asymp-
totic redundancy in algorithms. (2) DNA and protein sequences provided by Center
for BioInformatics, University of Pennsylvania and CT and MR scans provided by
the St. Thomas Hospital, UK [Sou]. (3) Text files from two data compression
benchmark suites: the new Canterbury corpus and the commonly used Calgary cor-
pus [Sou].

Specifically, the first data set includes three binary files generated by the UNIX

drand48() function. The data distribution is i.i.d. with bit probabilities (1) 0.7−
0.3, (2) 0.9 − 0.1, and (3) 0.97 − 0.03. The second data set includes two sets of
human DNA sequences from chromosome 23 (dna1, dna2), one MR (magnetic
resonance) image of human (female) breast (mr.pgm), and one CT (computerized
tomography) scan of a fractured human hip ct.pgm in uncompressed pgm format in
ASCII [Sou]. The third set includes the complete Calgary corpus; the corresponding
table is ommited here for lack of space, and can be found at [Sou]. It also includes
all files of size > 1MB from the new Canterbury corpus: a DNA sequence from
E-coli bacteria, E.coli, the complete bible bib.txt , and world192.txt.
Test results. In summary, we observed that LZW-FP and FPA implementations
with maximum dictionary size 224 performs the best on all types of files with size
> 1MB and shorter files with non-textual content. For shorter files consisting text,
gzip performs the best as expected.

Our tests on the human DNA sequences with LZW-FP and FPA show similar



improvements over compress and gzip - with a dictionary of maximum size 216, the
improvement is about 1.5% and 5.7% respectively. Some more impressive results
were obtained by increasing the dictionary size to 224, which further improved the
compression ratio to 9%. The performance of LZW-FP and FPA on mr and ct
scans differ quite a bit: LZW-FP was about 4% − 6% better than compress and
was comparable to gzip; FPA’s improvement was about 15% and 7% respectively.
As the image files were rather short, we didn’t observe any improvement by using
a larger dictionary. One interesting observation is that the percentage improvement
achieved by both FPA and LZW-FP increased consistently with increasing data
size. This suggests that we can expect them to perform better in compressing mas-
sive archives as needed in many biomedical applications such as the human genome
project.

Our results on text strings varied depending on the type and size of the file com-
pressed. For short files with long repetitions, gzip is still the champion. However,
for all text files of size > 1MB, the large dictionary implementation of FPA scheme
outperforms gzip by 4.7% − 8.5%, similar to the tests for DNA sequences. The
following tables demonstrate the relative performances of the test programs on the
data sets: Column 1 shows original file size (with some prefixes), column 2 and
column 3 show the compressed file size by gzip and compress respectively, and the
remaining columns show the improvement (%) made by LZW-FP, FPA, FP-24, and
FPA-24 over gzip and compress.

File Size gzip comprs LZW-FP FPA FP-24 FPA-24
(KB) (KB) (KB) ↑g (%) ↑c (%) ↑g (%) ↑c (%) ↑g (%) ↑c (%) ↑g (%) ↑c (%)

E.coli 4530 1341 1255 6.91 0.56 6.43 0.05 8.84 2.63 8.48 2.24
bible.txt 3953 1191 1401 -12.87 4.11 -7.79 8.42 0.13 15.15 4.68 19.01

world192.txt 2415 724 987 -31.70 3.32 -20.36 11.64 -2.38 24.84 6.54 31.39

Table 1: Compression evaluation using files in the Canterbury corpus (Large Set)
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