

Design of Customized Web Applications with OntoWeaver
Yuangui Lei, Enrico Motta, John Domingue

Knowledge Media Institute
The Open University

Milton Keynes, MK7 6AA
{y.lei, e.motta, j.b.domingue}@open.ac.uk

ABSTRACT
OntoWeaver is our conceptual modelling methodology and
a tool that support the specification and implementation of
customized web applications. It relies on a number of
different types of ontologies to declaratively describe all
aspects of a web application. This paper focuses on the
OntoWeaver customization framework, which exploits a
user model, a customization rule model, and a declarative
site model, to enable the design and development of
customized web applications at a conceptual level.
OntoWeaver makes use of the Jess inference engine to
reason upon the site specifications and their underlying site
ontologies according to the customization rules and the
valuable user profiles to provide customization support in
an intelligent way. The ontology-based approach enables
the target web applications to be represented in an
exchangeable format. Hence, the management and
maintenance of web applications can be carried out at a
conceptual level without having to worry about the
implementation details. Likewise, the declarative nature of
the site specifications and the generic customization
framework allow the specification of customization
requirements to be carried out at the conceptual level.

Categories and Subject Descriptors
I.2.1 Applications and Expert System

General Terms
Design, Human Factors, Management

Keywords
Web Site Modelling, Customization Modelling, Web Site Design

INTRODUCTION
So far work in the area of customized web application
design has focused on the implementation of the specific
customization methods, such as user model-driven adaptive
approaches [2], automatic personalization methodologies
[15], and manual customization approaches [13]. However,
current tools for web site design and implementation
provide very limited support for web site customization.

To address this problem, a few conceptual web modelling
approaches consider customization issues as an important
modelling dimension. Examples include WebML [3] [4],
OOHDM [16] [17], Hera [5], and OntoWebber [8]. They
support one-to-one web site delivery by providing a
personalization model or a customization model that
describe user groups, individual users, customization
context, and customization rules. The customization
frameworks of these proposals offer mechanisms that allow
site designers to pre-define customization rules or different
site views to enable delivering customized web applications
for user groups or individual users. However, these
approaches do not offer explicit customization specification
models that facilitate specifying customization
requirements for individual users at a high level. For
instance, the WebML approach [3] [4] requires developers
to write business rules to enable the personalization of the
target web applications. However, it does not offer an
explicit specification rule model to allow developers to
complete the task at a high level.
The WUML approach [9] [10] provides a generic
customization model that allows for the specification of
customization rules at high level. However, due to the fact
that it does not provide means to model the target web
application, it requires developers to slice the target web
application into the so-called stable part and variable part,
and define adaptation hooks in the web application to allow
for the specification of customization actions in
customization rules. As a consequence, it limits the
possibilities for customization by forcing developers to
anticipate what may be customized.
In [12], we presented IIPS, an ontology-driven approach to
the design and maintenance of data-intensive web sites.
OntoWeaver extends IIPS, by introducing a generic
customization framework and tools for building and
maintaining customized web applications. The key ideas of
our approach to achieve customization are the following:
• The use of different types of ontologies – the site view

ontology, the presentation ontology, and the domain
ontology, to drive the processes of the design,
management and maintenance of data-intensive web
applications. The ontology-based approach enables the
target web applications to be represented in an
exchangeable format. As a result, site management and
maintenance can be carried out at the conceptual level.
Furthermore, the declarative nature of the site

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
K-CAP’03, October 23–25, 2003, Sanibel, Florida, USA.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

specifications allows for the intelligent presentation of
information according to the requirements of different
contexts (e.g. individual users and devices) as the
specifications can be reasoned upon.

• The provision of a generic customization framework to
enable the customization support in an intelligent way at
a high level of abstraction. The OntoWeaver
customization framework provides meta-level models
that enable the specification for user models and
customization rules at a conceptual level, and makes use
of the Jess inference engine [7] for the intelligent
customization support by reasoning about the site
specifications and the customization rules according to
the profile of user individuals. Unlike WUML [9][10],
OntoWeaver is considerably flexible as everything can
be customized. There is no need for a prior decision
about what can be subject to customization: the entire
model is available to the customization engine.

• To provide with the visual tools that could support the
entire life-cycle of a customized data-intensive web
application at a high level, including modelling, design,
and maintenance.

This paper is organized as follows: first, we describe the
overview of the OntoWeaver methodology for web site
design; then, we present the OntoWeaver customization
framework; in the next section, we use the conference
paper review system as a case to show how the
OntoWeaver approach can be used to design a customized
web application; thereafter we discuss the usages of the
OntoWeaver customization approach; and finally in the last
two sections we describe the related work, conclusion, and
future work.

ONTOWEAVER OVERVIEW
The OntoWeaver methodology is an ontology-based
approach to the design and management of customized
data-intensive web sites. Figure 1 shows the framework of
the OntoWeaver methodology. The key concept behind
OntoWeaver is that it employs a set of ontologies to
abstract all aspects of the target web applications, including
domain data structures, navigational structures, user
interfaces, presentations, end users, and customization
rules. In particular, OntoWeaver proposes a site view
ontology that models navigational structures and user
interfaces, and provides a flexible mechanism that allows
for the composition of user interfaces, by means of a set of
constructs: SiteResource, ResourceComponent,
SubResource, Output, DynamicOutput, LinkItem,
DynamicLinkItem, Input, Command, and Service.
Moreover, OntoWeaver defines a presentation ontology to
separate the specification of visual appearances and layouts
from site views. The target web applications are
represented by the site view specifications and the site
presentation specifications in terms of the site view
ontology and the presentation ontology. These
specifications are then compiled into HTML-based

dynamic web pages automatically. A more detailed
discussion about the site ontologies can be found in [12].1

OntoWeaver strictly separates the domain data model, site
view model, and the presentation model. This architecture
per se already guarantees design time customization
support. Essentially site developers can make use of this
modular approach to define: (1) at the site view level,
different site views over the same domain model for
different user groups or different types of devices; and (2)
at the presentation level, different layouts and appearances
for the same site view thus giving flexibility for the
requirements of different user groups. However, the
dynamic (i.e. run-time) customization requirements of
individual users can not be supported simply by this
modular architecture. The customization should take place
dynamically according to the contextual information of
each user individual. To this purpose, OntoWeaver
proposes a generic customization engine to take an
advantage of the declarative site specifications to enable
individualization of the target web applications. It achieves
this goal by enabling the derivation of customized site
views from the same generic site view according to the rule
specifications and user profiles at run-time.
With OntoWeaver, the design of a customized data-
intensive web application involves two major activities:
specifying a general web site and specifying customization
requirements. The specification of a general web site

1 Please note that [12] actually becomes a slightly older version the one

used in this paper.

Figure 1 The OntoWeaver framework

Generic Web
Applications

Site Designer

Site View Ontology

Site View
Specifications

Site Presentation
Specifications

Customization
Rules

Specifications

Site Customizer

Inference Engine

Online Page Builder

Site Builder

A Customized
Web Page

User Profiles

Domain Ontology User Ontology

Presentation Ontology
Customization Rule

Model

comprises designing the domain ontology, specifying site
views, and specifying the visual appearances and layouts
over the site views. The customization design involves
specifying the user ontology, creating different site views
and presentations for different user roles or devices, and
specifying customization rules for the individualization.
In order to facilitate the specification and management of
web applications, OntoWeaver provides a suite of tools to
allow developers to specify and manage customized web
applications at a conceptual level. The tool suite is made up
of an Ontology Editor allowing users to browse and
manipulate ontologies; a Site Designer supporting the web
application design at design time; a Site Customizer
allowing developers or web administrators to carry out
customization design at a conceptual level; a Site Builder,
which compiles the site specifications into web site
implementations; an Online Page Builder, which generates
customized web pages on the fly according to the inference
results; and an OntoWeaver Server, which is responsible for
providing back-end service supports for the OntoWeaver
tools. The online services include reading and updating
server-side site specifications, customization rules, and user
profiles, and invoking the Jess inference engine to create
customized site specifications.

THE ONTOWEAVER CUSTOMIZATION
FRAMEWORK
The OntoWeaver customization framework is based on four
components: a user ontology, which provides means to
describe user model in the domain specific context; a
customization rule model, which provides mechanisms to
enable the specification of customization rules; a set of site
ontologyies (i.e. the site view ontology and the presentation
ontology), which offer meta models to enable the
specification of declarative site models; and an inference
engine, which reasons about site specifications with
customization rules according to the facts of the user
profiles.

User Model
The user model describes information about end users, e.g.
preferences, knowledge, potential goals, and so on. In most
cases user models are domain dependent. Only site
designers or web administrators can define the user model
in a way that exactly reflects end users in a specific
domain. Hence, OntoWeaver only provides a basic user
ontology that facilitates the definition of the domain-
specified user model on the basis of it.
Since customized web sites should be responsive to the
needs of individual users, the user model is one of the most
important components for customization. First, it enables
customization conditions to be defined at a high level.
Second, its instantiations, user profiles, are used to evaluate
conditions of customization rules, and decide whether the
corresponding customization rules are to be fired or not.
Each customization action takes place only when the
context of end users meets a certain condition. For

example, in a customized conference paper review system,
the device-dependent customization takes place when the
user device meets certain conditions.

Customization Rule Model
In order to provide dynamic customization support for the
target web applications, we propose the usage of a series of
rules, called customization rules, specifying conditions that
certain customizations should happen, and actions that
actually realize customizations.
The OntoWeaver rule model is made up of a condition part
and an action part. The condition part describes a condition
that has to be satisfied for the customization to take place.
The action part describes the adaptation actions, e.g.
adding/hiding/modifying components, or setting
presentation or layout properties for components.

Customization Condition Model
A customization condition can be atomic, which is made up
of a single condition; or composite, which is composed by a
list of conditions by means of the logical operators such as
AND, OR, and NOT. Each condition is represented by
means of a class entity URI, which specifies the relevant
class entity abstracted in the user model; a parameter name
which describes the slot entity of the specified class entity,
the value of which will be evaluated at run time; a relation
operator to express the condition that the value of the
specified slot entity should match with the specified value;
a specific value being used to test the corresponding
condition; and a logical operator, which connects the
current condition with the following one to compose a
complex condition. The logical operators offer OntoWeaver
the capability of composing complex conditions. Figure 2
shows an example that describes a customization condition,
where the user role is “reviewer” or “PC”. The
customization condition is made up of two sub-conditions,
which are connected together by means of the logical
operator ‘OR’.

Customization Action Model
A customization action is made up of three components: a
property siteEntityURI which specifies the URI [1] of the

<rdf:Description rdf:about="customization_rule0/condition" >
 <so:condition>
 <rdf:Description rdf:about="customization_rule0/condition0" >
 <so:classEntityURI>User</so:classEntityURI>
 <so:paramName>role</so:paramName>
 <so:dataType>String</so:dataType>
 <so:paramRelation>=</so:paramRelation>
 <so:paramValue>reviewer</so:paramValue>
 <so:logicalOperator>OR</so:logicalOperator>
 </rdf:Description>
 </so:condition>
 <so:condition>
 <rdf:Description rdf:about="customization_rule0/condition1" >
 <so:classEntityURI>User</so:classEntityURI>
 <so:paramName>role</so:paramName>
 <so:dataType>String</so:dataType>
 <so:paramRelation>=</so:paramRelation>
 <so:paramValue>PC</so:paramValue>
 </rdf:Description>
 </so:condition>
 </rdf:Description>

Figure 2 An example of a customization condition

element in the site view model that the customization will
work on; a property objectType which specifies the
customization type (e.g., site view, presentation, and
layout); and a modification part which expresses the
customization details i.e. how to change the value of the
specified slot of the intended customization object (e.g.
content, presentation, and layout) about the specified
element.
OntoWeaver supports three types of customization actions:
site view customization, which customizes site structures,
user interfaces and data content; presentation
customization, which tailors visual appearances; and layout
customization, which individualizes the constructive
organizations for site view components, e.g., web pages
and their components.
Regarding the site view customization, OntoWeaver
distinguishes five typical customization actions: hiding
/removing components, modifying the content of
components, adding pre-existing components, and creating
new components. It is made possible by using the URI
mechanism [1] to represent components of the site view
model in OntoWeaver. Each component can be retrieved
and manipulated by referencing its URI. Hence,
OntoWeaver supports the customization actions over the
site structures, user interfaces, and presentations. In
addition, OntoWeaver allows the customization of data
content by means of specifying parameters for user
interface elements that deal with dynamic data content.
OntoWeaver relies on a class called Modification to
abstract the customization action information according to
the feature of the component, and its relevant definitions,
by means of the slotName-value pair. The slotName
expresses the slot name of the intended customization
object, and the value describes the customized value for the
specified slot.

Declarative Site Model
It is very hard if not impossible to achieve the goal of
customization if the specifications of web applications are
hidden from the customization framework. The
OntoWeaver approach overcomes this problem by
considering the customization modelling together with the
web applications modelling. As a result, everything can be
customized. There is no need for a prior decision about
what can be subject to customization: the entire model is
available to the customization engine.
The declarative site model serves as the foundation to
facilitate the customization. First, the declarative site
specifications and their underlying ontologies make it
possible to specify customization actions precisely at a
conceptual level. OntoWeaver employs RDF models [19]
to represent specifications. As a result, each item possesses
a URI [1] to identify itself. Moreover, its underlying
ontology definition allows for the precise specification of
the modifications that the action will perform. For
example, if we want to customize a particular Output
element to a particular user context, we need to be able to

specify this output item using its URI, and specify the
modification information about its content, e.g. changing
the output style, and associating/removing hyper links
with/from it, according to the definition of the class entity
Output in the site view ontology. Second, the declarative
site model provides facts to be reasoned upon to generate
customized site models.

Inference Engine
Jess [7] is a Java expert system shell, which provides a
scripting language to define facts and rules, and offers an
inference engine to perform inferences. To enable
deployment of the inference engine, we have developed a
RDF-to-Jess compiler, which compiles OntoWeaver site
ontologies, site specifications, user models, user profiles,
and customization rules into Jess templates, facts, and rules.
In particular, the condition part of the customization rule
model is compiled into the left-hand-side part of the Jess
rules, and the customization action part is converted into
the right-hand-side. A rule in Jess looks like: LHS => RHS,
where LHS is a conjunction of conditions and RHS is a
conjunction of actions.

A CASE STUDY
In this section, we use the conference paper review system,
which has been used as a customization example in [17]
and [10], as a case to demonstrate the capability of the
OntoWeaver approach to the design and development of
customized web applications.
The paper review system involves three kinds of user roles:
authors, reviewers, and program committees. Each user is
concerned with different information. Authors pay visit to
the web site for browsing the conference information and
submitting papers; reviewers get assigned papers from and
submit review articles to the conference; Program
Committees (PCs) should be able to upload information
about calls for papers, workshops and tutorials, browse
detail information and review recommendations about each
paper. In the following section, we detail the steps involved
in the design of customized web applications with
OntoWeaver.

Figure 3 The domain ontology of the conference paper
review system in the OntoWeaver Ontology Editor

Specifying the Domain Ontology
Figure 3 shows the domain ontology of the conference
paper review system displayed in the OntoWeaver
Ontology Editor. The domain ontology abstracts the
underlying domain data model, by means of a set of classes
and properties. The class Conference_Event abstracts
events such as conferences, workshops, and tutorials. The
class Call models the calls for papers, workshops, and so
on. The class Topic describes the topics of the conference.
The class Paper abstracts the submitted papers. The class
Review expresses the review information about papers. The
class Person models people involved in the paper review
system. Finally, the class Deadline describes the important
dates. The instantiation of this domain ontology forms the
information about a specific conference.

Specifying the User Ontology
As mentioned before, the paper review system involves
three kinds of user roles: author, reviewers and program
committees. A user model can be very complex to abstract
all kinds of user-specified information including
preferences, interests, knowledge background, and so on.
To enable the readability of the illustration, we extend the
basic user ontology provided by the OntoWeaver
customization framework, by adding a property called
interestedTopic to abstract the interested topics of user
individuals, a property called device to describe the devices
end users use to access the system, and a set of properties to
express the preference colour schemes.

Specifying the Site Views
A site view describes the site structures and user interfaces
for web applications by means of the site view ontology.
Here, we specify a general paper review system for generic
users, who can browse the conference information and
submit papers to the conference.
The general paper review system comprises six page nodes:
an index page, a call-for-paper page, a call-for-workshop
page, a call-for-tutorial page, a paper-submission page,
and a program-committee page. Each web page is
connected with other pages through the same navigation

pattern. Hence, we create one navigational component
describing the navigation pattern, which comprises a list of
hyperlink items. The navigational component is added to
each web page to enable the navigation between web pages.
Figure 4 shows the simplified navigational structure of the
general paper review system. Due to the fact that each web
page shares the same navigation structures, the site
structure is simplified to show the navigation path from the
index page to other pages.
Now let us investigate the specification of the user interface
for web pages. Here, we use the index page as an example
to illustrate the composition of user interfaces for web
pages. The index page comprises two components: the
navigation component stated in the last paragraph and the
data component that details the particular information about
a specific conference. Each component contains a list of
interface elements. Figure 5 shows the screenshot of the
compositional structure of the index page visualized in the
OntoWeaver Site Designer. The left pane shows the
compositional structure of the index page. The right pane
presents the declarative content of the selected user
interface elements. It should be noted that we do not
concern about the visual appearances and organizations of
the web pages at this stage.

Presentation Specification
At this stage, site developers specify visual appearances
and organizations for user interface elements of web pages
in terms of the presentation ontology. Due to the limited
space, we will not detail the specification process here.
Nevertheless, OntoWeaver provides a set of constructs and
visual tools to facilitate the specification process.

Customization Specification
In this section, we focus on the customization rule
specification, which facilitates tailoring web pages for user
individuals. To facilitate the specification and management
of customization rules, OntoWeaver provides a visual tool

Figure 5 The screenshot of the compositional structure of
the index page. The left pane shows the compositional
structure of the index page. The right pane shows the
content of the selected user interface element.

Figure 4 The simplified navigational structure of
the general paper review system

called Site Customizer (as shown in figure 6) to allow the
customization rules to be defined and managed by means of
user friendly interfaces.
The customization condition has been illustrated in the
section of customization condition. Here we use one
example to illustrate the specification of customization
actions: Creating a hyperlink in the navigation component,
connecting to the suggested papers for a PC when he or she
shows special interests in some topics. The condition part
of the customization rule should state the role of the user is
‘PC’; the action part comprises three adaptation actions: (1)
creating an Output element to present the hyperlink item for
paper browsing; (2) creating a LinkItem element to specify
the actual link details that are associated with the Output
element; and (3) creating a parameter ensuring the
contextual information flow through the link to refine the
data content.

Figure 7(a) shows the specification of the first
customization action. It involves creating a new Output
element, and assigning the output value and the URI of the
associated link item. The objectType specifies that the type
of this customization action belongs to the site view
customization. The actionType and the siteEntityType
further indicate that the type of the site view customization
is to create an Output element. The parentSiteEntityURI
and siteEntityURI describe the URIs of the parent interface
element and the new element. The modification part
describes the content for the new element.

Figure 7(b) details the specification about the second
adaptation action, which creates a new link item. The new
link item specifies the URI and the type of the linked
resource; and the URI of the associated parameter. The
parameter works to refine the instances of the domain class
Paper in the paper browsing web page by using the value
of the slot interestedTopic as a filter. As a result, it enables
the dynamic personalization of the paper browsing web
page according to the different interest of user individuals.
However, because of the limited space we will not detail
the specification of the creation of the parameter.
Nevertheless, the specification principles are the same.
Regarding the presentation customization and the device-
dependent customization, they can be achieved by
specifying customization conditions and actions according
to requirement of different devices and individual users.

DISCUSSION
With the OntoWeaver methodology, customization can be
achieved at different levels. First, different site views can
be created over the same domain model for different user
groups or different environments. Second, different
presentations can be specified to present the same site
views in different ways. Finally, the individualization of

 <rdf:Description rdf:about="customization_rule0/action1" >
 <so:objectType>View</so:objectType>
 <so:parentSiteEntityURI>mainNavigationComponent/newOutput
 </so:parentSiteEntityURI>
 <so:siteEntityURI>mainNavigationComponent/newOutput/link
 </so:siteEntityURI>
 <so:actionType>new</so:actionType>
 <so:siteEntityType>LinkItem</so:siteEntityType>
 <so:modification>
 <rdf:Description rdf:about="customization_rule0/action1/modification0" >
 <so:slotName>isExternalResource </so:slotName>
 <so:newValue>false</so:newValue>
 </rdf:Description>
 </so:modification>
 <so:modification>
 <rdf:Description rdf:about="customization_rule0/action1/modification1" >
 <so:slotName>associatedResourceURI </so:slotName>
 <so:newValue> http://localhost:8080/paper_review/paper_browsingpage
 </so:newValue>
 </rdf:Description>
 </so:modification>
 <so:modification>
 <rdf:Description rdf:about="customization_rule0/action1/modification2" >
 <so:slotName>parameter</so:slotName>
 <so:newValue> newParameterURI </so:newValue>
 </rdf:Description>
 </so:modification>
 </rdf:Description>

Figure 7 (b) the specification of the customization action
that creating a new link item for the specified output
element.

Figure 7(a) The specification of the customization action
that creating a new output element in the navigation
component

 <rdf:Description rdf:about="customization_rule0/action0" >
 <so:objectType>View</so:objectType>
 <so:parentSiteEntityURI> mainNavigationComponent/ </so:parentSiteEntityURI>
 <so:siteEntityURI>mainNavigationComponent/newOutput</so:siteEntityURI>
 <so:actionType>new</so:actionType>
 <so:siteEntityType>Output</so:siteEntityType>
 <so:modification>
 <rdf:Description rdf:about="customization_rule0/action0/modification0" >
 <so:slotName>outputValue </so:slotName>
 <so:newValue>Suggested Papers </so:newValue>
 </rdf:Description>
 </so:modification>
 <so:modification>
 <rdf:Description rdf:about="customization_rule0/action0/modification1" >
 <so:slotName>linkitem </so:slotName>
 <so:newValue>mainNavigationComponent/newOutput/linkItem
 </so:newValue>
 </rdf:Description>
 </so:modification>
 </rdf:Description>

Figure 6 A screenshot of the Site Customizer. The top left
pane lists customization rules; the top right pane presents
the RDF statements about the selected customization rule;
the bottom left pane presents the customization condition;
and the right panel lists the customization actions in the
current customization rule.

web applications can be achieved by using the OntoWeaver
customization framework.
Now we discuss how to use the OntoWeaver customization
framework to enable the various types of customization
approaches identified in the literature:
• User model-driven adaptive systems [2]. The

OntoWeaver customization framework can be easily
used to provide appropriate support for such systems,
where user models are pre-defined, user profiles are
collected from various sources, and the systems aim to
provide adaptive content or presentation to individual
users. They typically focus on constructing user
profiles using various techniques and embed
annotations to web pages to realize various
adaptations. Using OntoWeaver, we can achieve the
goal of these systems by designing the target web
application, pre-defining a user model, and pre-
defining a series of adaptive rules. The rules work with
the site models according to user profiles to produce
adaptive contents and presentations to user individuals.

• Automatic personalization systems [15]. These systems
primarily use data mining algorithms to automatically
discover and extract patterns from web usage data and
predict user behaviour while users interact with the
web. As long as the user model (not user profile) can
be defined, the OntoWeaver customization approach
can provide appropriate support for this kind of
personalization, because OntoWeaver is only
concerned with the definitions of customization rules.
It does not matter whether the user profile are defined
during design time or just captured during run-time,
because customization happens at run time.

• The manual customization approaches [13].
OntoWeaver provides run-time support for user-driven
customizations. In this case, users only need specify
customization actions through a direct manipulation of
user interface. These actions are then captured by
OntoWeaver and compiled into appropriate
customization rules.

RELATED WORK
Recently, a great variety of technologies and systems have
been developed to achieve the goal of customization and
personalization for web applications [2] [11] [14]. These
approaches primarily use a user model to record user
preferences and interests, and exploit various techniques to
collect data for the user model, including implicitly
observing user interaction, automatically discovering and
extracting patterns from web usage data, and explicitly
requesting direct input from the user. However, while these
systems can precisely predict user’s behaviour, there is not
much they can do if the web application models are hidden
from the personalization framework.
The My Yahoo approach [13] is a typical example of a user
specified customization methodology, which allows users
to select preferred modules from hundreds of available
ones. It can provide a limited extent of customization

support because the site descriptions are available through
the format of different module descriptions. However, it
does not offer a rule model to allow end users to define
rules to reason about its content to provide intelligent
presentation support.
WUML [9][10] proposes a generic customization model
allowing the adaptation of web applications towards the
context implied by ubiquity. It provides a context model
that facilitates the specification of detailed information
about the environment of a web application and the web
application itself, and a customization rule model to enable
the specification of the actual customizations. The WUML
approach offers complex models to allow developers to
express detailed information about the customization
environment. However, it does not support modelling of
web applications. As a consequence, it requires the web
applications to be sliced into a stable part, comprising
context-independent structure, and a variable context-
dependent part, which is the subject of the adaptations.
Furthermore, to enable customization, it requires web
applications to provide adaptation hooks. Thus, it greatly
limits the possibility for customization by forcing site
developers to anticipate what may be customized.
WebML [3] [4] is another interesting approach which
considers personalization issues within the design phase of
web applications. It exploits user profiles, delivery
specifications and a series of business rules to enable the
so-called one-to-one web delivery. The delivery
specifications, which express the user-specific data
extractions needed to generate personalized pages, are
added to the web application model as annotations. The
business rules are specified to compute and store user-
specific information. However, the WebML customization
approach does not offer an explicit rule model that would
allow rules to be specified at a high level.
OOHDM [16] [17] allows customization to be specified:
(1) in the conceptual model by explicitly representing users,
roles and groups and by defining algorithms that implement
different rules for different users; (2) in the navigational
model by defining completely different applications for
each profile; and (3) in the interface model by defining
different layouts according to user preference or selected
devices. However, the resulting customization is static and
pre-defined. The Hera approach [5] considers adaptation as
an import modelling issue during the process of designing
web information system. OntoWebber [8] supports the so-
called coarse-grained personalization by assigning different
site views for user groups, and the fine-grained
personalization by modelling user individuals. None of
these approaches provides an explicit customization
specification model that would allow the specification of
customization requirements to be carried out at a high level.

CONCLUSION AND FUTURE WORK
This paper extends IIPS [12] to OntoWeaver by proposing
and introducing a customization framework into the
ontology-based web modelling approach to the design and

maintenance of web applications. The OntoWeaver
approach to customization is based on its conceptual
modelling approach, which provides means to describe site
structures, presentations and layouts, and their underlying
meta-data structures declaratively in an exchangeable
format. It provides a customization rule model to enable the
specification of customization conditions and actions at a
high level of abstraction. It offers a basic user model to
allow user models to be specified in a domain specific way.
It makes use of the specified user model and declarative
site models to enable the precise specification of all aspects
of customization rules at a conceptual level.
The OntoWeaver customization approach offers the
capability to provide meta-level customization support for
the target web applications, as it supports web applications
exploiting various techniques to collect user specified
information, as long as user profiles are recorded as
instances of the specified user ontology. As a result,
OntoWeaver can make use of the user profiles to get
contextual information of the end user, and exploit the Jess
inference engine to reason about site specifications
according to the obtained contextual information to present
individualized web pages.
To support the design and development of customized web
applications, OntoWeaver provides a suite of visual tools
enabling the tasks to be carried out at a conceptual level. At
the moment, a prototyped OntoWeaver infrastructure has
been implemented based on RDFS [18] and RDF [19].
In the future we plan to use the new emerging semantic
web standards like DAML+OIL [6] and OWL [20] as the
underlying language to represent ontologies and
specifications.

AKNOWLEDGEMENTS
We would like to thank Victoria Uren, Maria Vargas-vera,
and Dnyanesh Rajpathak for their valuable comments on
the earlier drafts of this paper.

REFERENCES
[1] T. Berners-Lee, R. Fielding, L. Masinter. Uniform

Resource Identifiers (URI): Generic Syntax.
 http://www.ietf.org/rfc/rfc2396.txt.

[2] P. Brusilovsky, Methods and techniques of adaptive
hypermedia. User Modelling and User Adapted
Interaction, 1996, v6, n2-3, pp 87-129.

[3] S. Ceri, P. Fraterali, S. Paraboschi, Data-Driven One-
To-One Web Site Generation for Data-Intensive
Applications. Proceedings of the 25th VLDB
Conference, Edinburgh, Scotland, 1999, pp. 615-626.

[4] S. Ceri, P. Fratenali, A. Bongio, Web Modelling
Language (WebML): a modelling language for
designing Web sites. WWW9 Conference, May 2000.

[5] F. Frasincar, G. J. Houben, Hypermedia Presentation
Adaptation on the Semantic Web. Second International
Conference, AH2002, Malaga, Spain, pp. 133-142.

[6] Horrocks et al., DAML+OIL,
http://www.daml.org/2001/03/daml+oil-index, 2001.

[7] E. Friedman-Hill, Jess,
http://herzberg.ca.sandia.gov/jess/.

[8] Y. Jin, S. Decker, G. Wiederhold, OntoWebber:
Model-Driven Ontology-Based Web Site Management.
The 1st International Semantic Web Working
Symposium (SWWS'01), Stanford University,
Stanford, CA, July 29-Aug 1, 2001.

[9] G. Kappel, B. Pröll, W. Retschitzegger, W. Schwinger,
Modeling Ubiquitous Web Applications - The WUML
Approach, International Workshop on Data Semantics
in Web Information Systems (DASWIS-2001),
Yokohama, Japan, November 27-30, 2001.

[10] G. Kappel, W. Retschitzegger, E. Kimmerstorfer, B.
Proll, W. Schwinger, and TH. Hofer, Towards a
Generic Customization Model for Ubiquitous Web
Applications. Proceedings of the 2nd International
Workshop on Web Oriented Software Technology,
2002, pp. 79-104.

[11] A. Kobsa, J. Koenemann and W. Pohl, Personalized
Hypermedia Presentation Techniques for Improving
Online Customer Relationships. The Knowledge
Engineering Review 16(2), 2001, pp.111-155.

[12] Y. Lei, E. Motta and J. Domingue, An Ontology-
Driven Approach to Web Site Generation and
Maintenance. In proceedings of 13th International
Conference on Knowledge Engineering and
Management, Sigüenza, 2002, pp. 219-234.

[13] U. Manber, A. Patel, and J. Robison, Experience with
Personalization on Yahoo!. in Communications of the
ACM, August 2000, Pages: 35-39.

[14] J. Mostafa, Guest Editor's Introduction: Information
Customization. IEEE Intelligent Systems, 17(6), 2002,
pp.8-11.

[15] M. Perkowitz, O. Etzioni, Towards adaptive Web sites:
Conceptual framework and case study. Artificial
Intelligence 118 (2000), pp. 245-275.

[16] G. Rossi, D. Schwabe, R. Guimarães, Designing
personalized web applications. WWW 2001: 275-284.

[17] D. Schwabe, R. M. Guimaraes, G. Rossi, Cohesive
design of personalized Web applications,. IEEE
Internet Computing, Volume: 6 Issue: 2, March-April
2002, pp. 34 -43.

[18] Resource Description Framework (RDF) Schema
Specification 1.0, W3C Candidate Recommendation.
http://www.w3.org/TR/rdf-schema/.

[19] Resource Description Framework (RDF) Model and
Syntax, W3C Proposed Recommendation.
http://www.w3.org/TR/PR-rdf-syntax/.

[20] OWL Web Ontology Language, W3C Working Draft,
March 2003, http://www.w3.org/TR/2003/WD-owl-
features-20030331/.

