
Stack Allocation and Synchronization
Optimizations for Java Using
Escape Analysis

JONG-DEOK CHOI, MANISH GUPTA, MAURICIO J. SERRANO,
and VUGRANAM C. SREEDHAR
IBM
SAMUEL P. MIDKIFF
Purdue University

This article presents an escape analysis framework for Java to determine (1) if an object is not
reachable after its method of creation returns, allowing the object to be allocated on the stack, and
(2) if an object is reachable only from a single thread during its lifetime, allowing unnecessary syn-
chronization operations on that object to be removed. We introduce a new program abstraction for
escape analysis, the connection graph, that is used to establish reachability relationships between
objects and object references. We show that the connection graph can be succinctly summarized for
each method such that the same summary information may be used in different calling contexts
without introducing imprecision into the analysis. We present an interprocedural algorithm that
uses the above property to efficiently compute the connection graph and identify the nonescaping
objects for methods and threads. The experimental results, from a prototype implementation of our
framework in the IBM High Performance Compiler for Java, are very promising. The percentage
of objects that may be allocated on the stack exceeds 70% of all dynamically created objects in the
user code in three out of the ten benchmarks (with a median of 19%); 11% to 92% of all mutex lock
operations are eliminated in those 10 programs (with a median of 51%), and the overall execution
time reduction ranges from 2% to 23% (with a median of 7%) on a 333-MHz PowerPC workstation
with 512 MB memory.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers;
Optimization; E.1 [Data]: Data Structures—Graphs; Trees

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Connection graphs, escape analysis, points-to graph

A preliminary version of this paper appeared in the Proceedings of ACM OOPSLA ’99.
Authors’ addresses: J.-D. Choi, M. Gupta, and V. C. Sreedhar, IBM T. J. Watson Research
Center, P.O. Box 218, Yorktown Heights, NY 10598; email: {jdchoi,sreedhar}@watson.ibm.com,
mgupta@us.ibm.com; M. J. Serrano, Intel, 2200 Mission College Blvd., SC12-303, Santa Clara,
CA 95054; email: mauricio.j.serrano@intel.com; S. P. Midkiff, School of Electrical and Computing
Engineering, Purdue University, 465 Northwestern Ave., West Lafayette, IN 47907-2035; email:
smidkiff@purdue.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permission and/or a fee.
C© 2003 ACM 0164-09251/03/1100-0876 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003, Pages 876–910.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F945885.945892&domain=pdf&date_stamp=2003-11-01

Stack Allocation and Synchronization Optimizations for Java • 877

1. INTRODUCTION

The Java Programming Language [Gosling et al. 1996] provides a number of
features that enhance programmer productivity but create challenges for the
virtual machine implementation from a performance point of view. In partic-
ular, Java provides built-in support for automatic memory management and
for concurrency. Each object is conceptually allocated on the heap and can
be deallocated only by garbage collection. Also, each object has a lock asso-
ciated with it and the lock is used to ensure mutual exclusion when a syn-
chronized method or statement is invoked on the object. In this paper, we
present a technique for identifying objects that are local to a method invo-
cation and/or local to a thread. The term escape analysis has been used in the
literature [Park and Goldberg 1992] for an analysis that determines the set of
the objects that escape a method invocation. If an object escapes a method in-
vocation (thread), we say it is not local to that method invocation (thread).
This analysis allows us to perform two important optimizations for Java
programs:

(1) If an object is local to a method invocation, it can be allocated on the method’s
stack frame. Stack allocation reduces garbage collection overhead, since the
storage on the stack is automatically reclaimed when the method returns
(although unconstrained stack allocation can lead to additional memory
pressure, since the contents of the stack frame are not garbage-collected).
Also, by allocating objects on the local stack, we reduce the occasional syn-
chronization that the heap allocator has to perform with other threads com-
peting for memory chunks. Besides stack allocation, the knowledge about
an object being local to a method can enable further optimizations. For ex-
ample, more aggressive code reordering can be performed in spite of the
precise exception semantics of Java [Gosling et al. 1996] by allowing writes
of method-local variables to be moved across potentially excepting instruc-
tions in a method without any exception handler [Chambers et al. 1999]. As
well, with further analysis, an object access can be strength-reduced, and
the creation of the object may be eliminated.

(2) If an object is local to a thread, then no other thread can access the ob-
ject. This has several benefits, especially in a multithreaded multiproces-
sor environment. First, we can eliminate the low-level synchronization op-
erations that ensure mutual exclusion on this object. Note that the Java
memory model still requires that we refresh (flush) the Java local memory
at monitorenter (monitorexit) statements in bytecode that are inserted for
synchronized statements and method calls. Second, objects that are local
to a thread can be allocated to improve data locality. Third, with further
analysis that we briefly describe, some operations to flush the local memory
can be safely eliminated. Finally, more aggressive code reordering optimiza-
tions that move writes across potentially excepting instructions (similar to
those described above, but for the case when there is no user-defined excep-
tion handler for the given thread) can be enabled by identifying thread-local
objects [Gupta et al. 2000].

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

878 • J.-D. Choi et al.

We introduce a framework for escape analysis based on a simple program
abstraction called the connection graph. The connection graph captures the
“connectivity” relationships among heap-allocated objects and object references.
For escape analysis, we perform reachability analysis on the connection graph
to determine if an object is local to a method or local to a thread. Different
variants of our analysis can be used in either a static Java compiler, a dynamic
Java compiler, a Java application extractor, or a bytecode optimizer. To evaluate
the effectiveness of our approach we have implemented various flavors of escape
analysis in the context of a static Java compiler [IBM Corporation 1997; Oliver
et al. 2000], and have analyzed 10 medium to large benchmarks.

The main contributions of this paper are as follows:

—We present a new, simple interprocedural framework, with flow-sensitive and
flow-insensitive versions, for escape analysis in the context of Java.

—We demonstrate an important application of escape analysis for Java pro-
grams: eliminating unnecessary lock operations on thread-local objects. It
leads to significant performance benefits even when using a highly opti-
mized implementation of locks, namely, thin-locks [Bacon et al. 1998]. We
also briefly describe an additional analysis that allows redundant memory
flush operations associated with Java locks to be eliminated.

—We describe how to handle exceptions in the context of escape analysis for
Java, without being unduly conservative. These ideas can be applied to other
data flow analyses in the presence of exceptions as well.

—We introduce a simple program abstraction called the connection graph that
is well suited for the purpose of escape analysis. It is different from the points-
to graph for alias analysis whose major purpose is memory disambiguation.
In the connection graph abstraction, we use the notion of phantom nodes,
which allow us to summarize the effects of a callee procedure independent of
the calling context.1 This succinct summarization helps improve the overall
speed of the algorithm.

—We present experimental results from an implementation of escape analysis
in a Java compiler. We show that in user code (not including the class li-
braries), the compiler is able to detect more than 19% of dynamically created
objects as stack-allocatable in five of the ten benchmarks that we examined
(finding that more than 70% of objects are stack-allocatable in three pro-
grams). We are able to eliminate 11% to 92% of mutex lock operations in
those ten programs. The overall performance improvements range from 2%
to 23% on a 333-MHz IBM PowerPC workstation with 512-MB memory.

The rest of this paper is organized as follows. Section 2 presents our con-
nection graph abstraction and formalizes the notion of the escape of an object.
Sections 3 and 4, respectively, describe the intraprocedural and interprocedural

1Phantom nodes are similar to anonymous variables, hidden variables, ghost nodes, referred to in
the pointer analysis literature [Landi and Ryder 1992; Choi et al. 1993; Emami et al. 1994; Wilson
and Lam 1995; Rugina and Rinard 1999].

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 879

analyses that build the connection graph and identify the objects that do not
escape their method or thread of creation. Section 5 elaborates on our handling
of special Java features such as exceptions and object finalizers, and describes
an extension (not incorporated in our current implementation) to detect cases
in which the flush operations associated with Java locks can be eliminated.
Section 6 describes the transformation and the run-time support for the stack
allocation and lock elimination optimizations, and Section 7 presents experi-
mental results. Section 8 discusses related work, and Section 9 presents con-
clusions. Appendix 9 derives the complexity of our algorithm. An extended
version of this paper [Choi et al. 2002] presents a proof of correctness of our
algorithm.

2. CONNECTION GRAPH REPRESENTATION FOR ESCAPE ANALYSIS

In Java, run-time instances of classes, called run-time objects, are created
via new statements and are referenced by object references. A run-time ob-
ject is composed of a collection of named fields. A field can be either an ob-
ject reference or a nonreference (nonpointer) value. During escape analysis,
we abstract the run-time objects and represent them as compile-time objects.
In this article, we use the term concrete objects for run-time objects and the
term abstract objects for compile-time objects. Unless explicitly stated other-
wise, we will use the term object(s) to mean abstract object(s) throughout this
paper.

2.1 Connection Graph

A connection graph (CG) is a directed graph CG = (No ∪ Nr , Ep ∪ Ed ∪ E f),
where

— No represents the set of objects.
— Nr = Nl ∪ Na ∪ N f ∪ Ng is the set of reference nodes, and

— Nl represents the set of local reference variables (those locals and formals
that are object references) in the program;

— Na represents the set of actuals, including return values, which are object
references;

— N f represents the set of non-static fields that are object references (these
are called field reference nodes); and

— Ng represents the set of static fields, that is, global variables that are
object references.

— Ep is the set of points-to edges. A points-to edge exists from a reference node
r to an object node o if the object reference corresponding to r may point to
the object corresponding to o. If p→ q ∈ Ep, then p ∈ Nr and q ∈ No.

— Ed is the set of deferred edges. A deferred edge from a node p to a node
q signifies that p points to what is pointed to by q. If p → q ∈ Ed , then
p, q ∈ Nr .

— E f is the set of field edges. A field edge from o to f signifies that f represents
a field of object o. If p→ q ∈ E f , then p ∈ No and q ∈ N f .

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

880 • J.-D. Choi et al.

Fig. 1. A simple connection graph. Boxes indicate object nodes and circles indicate reference nodes
(including field reference nodes). Solid edges to boxes indicate points-to edges, dashed edges indicate
deferred edges, and solid edges from boxes to circles indicate field edges.

In our framework, we use a 1-limited naming scheme for creating objects [Chase
et al. 1990]. We handle arrays in Java like regular objects, that is, we do not
distinguish between different elements of an array.

Figure 1 illustrates an example of a connection graph. In figures, we repre-
sent each object as a tree with the root representing the object and the chil-
dren of the root representing the reference fields within the object.2 Also, in
our figures, a solid-line edge represents a points-to edge or a field edge, and a
dashed-line edge represents a deferred edge. In the text, we use the notation
p

P→ q to represent a points-to edge from node p to node q, p
D→ q to represent

a deferred edge from p to q, and p
F→ q to represent a field edge from p to q.

Let PointsTo(p) denote the set of object nodes immediately pointed to by
p. Given a CG and a reference node p ∈ Nr , we can compute PointsTo(p) as
follows: Traverse each outgoing path (consisting of zero or more deferred edges,
followed by a points-to edge) from p until we reach an object node. The set of
all such object nodes reachable from p will constitute PointsTo(p).

We use deferred edges to model assignments that copy references from one
variable to another. These edges defer computations during connection graph
construction, and help in reducing the number of graph updates needed dur-
ing escape analysis. Deferred edges were first introduced for flow-insensitive
pointer analysis in [Burke et al. 1995]. One can always eliminate deferred edges
by redirecting incoming deferred edges to the successor nodes. We define a by-
pass function ByPass(p) that when applied to a reference node p redirects the
incoming deferred edges of p to the successor nodes of p. The type of redirected
edge is the same as the type of edge from p to the corresponding successor node.
It also removes any outgoing edges from p. Figure 2 illustrates the ByPass(p)
function. More formally, let R = {r|r D→ p}, S = {s|p P→ s}, and T = {t|p D→ t}.
ByPass(p) removes the edges in the set {r D→ p}∪{p P→ s}∪{p D→ t} from the CG
and adds edges in the set {r P→ s|r ∈ R and s ∈ S} ∪ {r D→ t|r ∈ R and t ∈ T }
to the CG.

Deferred edges can improve the efficiency of the analysis by delaying, and
thereby reducing the number of, graph updates. However, delaying these up-
dates until the graphs are merged at control-flow join nodes can result in a CG
path that consists of edges from mutually exclusive control-flow paths. This

2Since Java does not allow nested objects, the tree representation of an object consists of only two
levels—the root and its children.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 881

Fig. 2. Illustrating ByPass(p) function.

can result in a loss of information. The decision on when to apply the ByPass
function should be made based on this tradeoff between the efficiency and the
precision of the analysis. In our implementation, we choose effciency over pre-
cision, by not performing updates at control-flow join nodes.

2.2 Escape Property of Objects

We now formalize the notion of the escape of an object from a method or a thread.

Definition 2.1. Let O be a concrete object and M be a method invocation. O
is said to escape M , denoted as Escapes(O, M), if the lifetime of O may exceed
the lifetime of M .

Definition 2.2. Let O be a concrete object and T be a thread (instance). O
is said to escape T , again denoted as Escapes(O, T), if O is visible to another
thread T ′ 6= T .

Alternatively, we say that a concrete object O is stack-allocatable in M
if ¬Escapes(O, M), and that a concrete object O is local to a thread T if
¬Escapes(O, T).

Let M be a method invocation in a thread T . The lifetime of M is, in that
case, bounded by the lifetime of T . If another thread object, T ′, is created in M ,
we conservatively set Escapes(O ′, M) to be true for all objects O ′ (including T ′)
that are reachable from T ′, since the thread corresponding to T ′ may continue
executing even after M returns. Thus, we ensure that a concrete object, whose
lifetime is inferred by our analysis to be bounded by the lifetime of a method,
can only be accessed by a single thread.

For static escape analysis, we model the concrete object graph using a CG.
For each CG object node, we can identify an allocation site in the program
where the concrete object instances are created for that CG node. Each node
in the CG has an escape state associated with it. For marking escape states,
we define an escape lattice consisting of three elements: NoEscape, ArgEscape,
and GlobalEscape. The ordering among the lattice elements is: GlobalEscape <
ArgEscape < NoEscape. NoEscape means that the object does not escape the
method in which it was created. ArgEscape, with respect to a method, means
that the object escapes that method via the method arguments or return value,
but does not escape the thread in which it is created. Finally, GlobalEscape
means that the object is regarded as escaping globally (i.e., all methods and
its thread of creation). Let EscapeSet = { NoEscape, ArgEscape, GlobalEscape},

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

882 • J.-D. Choi et al.

and let es ∈ EscapeSet. We define the escape state merge as follows:

es ∧ es = es,
es ∧NoEscape = es,

es ∧GlobalEscape = GlobalEscape.

We conservatively assume that each static field and thread object3 outlives
every method in the program. Hence, we initialize the escape state of nodes rep-
resenting static fields (i.e., nodes in Ng) and thread objects to GlobalEscape.
Note that even though a thread object (which can be accessed in both the cre-
ating and the created thread) and all objects reachable from it are marked
GlobalEscape, this does not mean that all objects created during the execution
of a thread will be marked GlobalEscape. The escape state of placeholder nodes
representing actuals of a method (i.e., nodes in Na) is initialized to ArgEscape.
All other nodes are marked NoEscape initially.

To compute the escape state of an abstract object, we perform reachability
analysis on the CG. Consider an object node o ∈ PointsTo(p) and a field node q
of o (i.e., o

F→ q). We ensure, using our analysis, that

EscapeState(o) ≤ EscapeState(p),
EscapeState(q) = EscapeState(o).

At the completion of escape analysis, all concrete objects that are allocated at
an allocation site whose escape state is marked NoEscape are stack-allocatable
in the method in which they are created. Furthermore, all concrete objects
that are allocated at an allocation site whose escape state is marked NoEscape
or ArgEscape, are local to the thread in which they are created, and so we
can eliminate the mutex synchronization in accessing these concrete objects
without violating Java semantics.

3. INTRAPROCEDURAL ANALYSIS

Given the control flow graph (CFG) representation of a Java method, we use a
simple iterative scheme for constructing the intraprocedural connection graph.
We describe two variants of our analysis: a flow-sensitive version, and a flow-
insensitive version. To simplify the presentation, we assume that all multiple-
level reference expressions of the form a.b.c.d ... are split into a sequence of
simple two-level reference expressions that are of the form a.b. Any bytecode
generator automatically does this simplification for us. For example, a Java
statement of the form a.b.c.d = new T()will be transformed into a sequence of
simpler statements: t = new T(); t1 = a.b; t2 = t1.c; t2.d = t; where
t, t1, and t2 are new temporary reference variables of the appropriate type.

Given a node s in the CFG, the connection graph at entry to s (denoted as
Cs

i) and the connection graph at exit from s (denoted as Cs
o) are related by the

3We regard any run-time instance of a class that implements the Runnable interface as a thread
object.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 883

standard data flow equations:

Cs
o = f s(Cs

i

)
, (1)

Cs
i = ∧r∈Pred(s)Cr

o , (2)

where f s denotes the data flow transfer function of node s, and the meet oper-
ation (∧) is a merge of connection graphs.

Given the bytecode simplification of Java programs, we identify four basic
statements that have a nontrivial transfer function f s: (1) p = new τ (), (2)
p = q, (3) p. f = q, (4) p = q. f . We present the transfer functions for each
of these statements. Figure 3 illustrates the transfer functions for each of the
basic statements for flow-sensitive analysis.

(1) p = new τ (). We first create a new object node O, if one does not already
exist for this site. For flow-sensitive analysis, we first apply ByPass(p), and
then add a new points-to edge from p to O. For flow-insensitive analysis, we
do not apply ByPass(p), but simply add the points-to edge from p to O. The
difference is that we perform strong updates with flow-sensitive analysis,
but perform weak updates with flow-insensitive analysis.

(2) p = q. As in the previous case, for flow-sensitive analysis, we first apply
ByPass(p), and then add the edge p

D→ q: we perform strong updates. Again,
for flow-insensitive analysis we ignore ByPass(p) but add the edge p

D→ q:
we perform weak updates.

(3) p. f = q. Let U = PointsTo(p). If U = ∅, then either (1) p is null (in which
case, a null pointer exception will be thrown), or (2) the object that p points
to was created outside of this method (this could happen if p is a formal
parameter or is reachable from a formal parameter). We conservatively
assume the second possibility (if U = ∅), create a phantom object node Oph,
and insert a points-to edge from p to Oph. If p is null, the edge from p to
Oph is spurious but does not affect the correctness of our analysis. We also
use a 1-limited scheme for creating phantom nodes.

Now let V = {v|u F→ v and u ∈ U and fid(v) = f }, where fid(v) is
the field id of the field node v. For each u ∈ U , if the corresponding field
reference node v does not exist, we create a field reference node (lazily) and
add it to V . Finally we add edges in {v D→ q|v ∈ V } to the connection graph.

An assignment to a static field of a class is a special case of this transfer
function: all the objects pointed to by q of the right-hand side will become
GlobalEscape.

(4) p = q. f . Let U = PointsTo(q), V = {v|u F→ v and u ∈ U and fid(v) = f }.
As in the previous case, if U is empty, we create a phantom node and add
it to U . Also, we create a field reference node v, if necessary, for each node
u ∈ U , and add it to V .

For flow-sensitive analysis, we first apply ByPass(p), and then add the
edges in {p D→ v|v ∈ V } to the connection graph. For flow-insensitive anal-
ysis, we add the edges in {p D→ v|v ∈ V } to the connection graph.

This transfer function also applies when f is a static field of class q.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

884 • J.-D. Choi et al.

Fig. 3. Flow-sensitive transfer functions for basic statements.

We define the merge between two connection graphs C1 = (N1, E1) and C2 =
(N2, E2) to be the union of the two graphs. If N1 and N2 have common nodes, that
is, nodes with the same unique node id, the escape state of the corresponding
node in the merged graph is a meet of the common nodes’ escape states. More

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 885

Fig. 4. An example illustrating connection graph computation. The connection graphs at S1 and
S2 are not shown.

formally,

C3 = C1 ∧ C2 = (N1 ∪ N2, E1 ∪ E2).

Let n3 be a node in C3. The escape state of n3 ∈ C3 is

n3.es =

n1.es ∧ n2.es if ∃n1 ∈ N1|n1.id = n3.id , ∃n2 ∈ N2|n2.id = n3.id ,
n1.es if ∃n1 ∈ N1|n1.id = n3.id , 6 ∃n2 ∈ N2|n2.id = n3.id ,
n2.es if 6 ∃n1 ∈ N1|n1.id = n3.id , ∃n2 ∈ N2|n2.id = n3.id .

(3)

We handle loops by iterating over the data flow solution until it converges. We
impose an upper limit (our current implementation uses an upper bound of 10)
on the number of iterations. If convergence is not reached, a bottom solution, in
which every object node is marked GlobalEscape, is assumed for that method.
In practice, we did not encounter this situation.

Figure 4 illustrates an example showing the connection graphs at various
program points computed using the analysis described in this section.4 The
connection graphs labeled “S3:” and “S4:” are the graphs right after the corre-
sponding statements.

For simplicity, we have referred to different connection graphs at different
program points. However, in our implementation, we maintain a single con-
nection graph for each method, which is updated incrementally. In the flow-
insensitive version of our analysis, all connection graph updates can be made
in place. In the flow-sensitive version, we only kill local variables, and add a

4In order to keep the figure simple, we have not transformed a statement like a.f = new T1() to
its equivalent form: t = new T1(); a.f = t;.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

886 • J.-D. Choi et al.

node at an update of a local variable. We add this node in a 1-limited manner.
At the entry and exit of each basic block, we keep track of the mapping from
local variables to nodes representing those variables at that point. At a control
flow join point, while merging two local nodes n1 and n2 for a local variable, we
create a new node n3 if neither n1 nor n2 has connections that subsume the con-
nections of the other node. Again, we use a 1-limited scheme in creating such a
node, so as to avoid creating multiple nodes while iterating over the data flow
solution for a loop.

4. INTERPROCEDURAL ANALYSIS

The core part of our analysis proceeds in a bottom-up manner, in which the sum-
mary information (in the form of a CG) obtained for a callee is used to update
the CG of the caller. A key contribution of our analysis is the manner in which
we summarize the effect of a method, so that a single succinct summary can
be accurately used for different calling contexts while determining the stack-
allocatability of objects. Note that for pointer analysis, which is closely related
to our analysis but solves a more general problem, a procedure in general can-
not be accurately summarized independent of the aliasing relationships that
hold at its caller [Landi and Ryder 1992; Choi et al. 1993; Emami et al. 1994;
Wilson and Lam 1995; Ghiya and Hendren 1998; Chatterjee et al. 1999]. (An
exception is a type-based alias analysis, which in insensitive to execution flow
in a program.) In the absence of cycles in the program call graph (PCG), a single
traversal of nodes in reverse topological order over the PCG is sufficient for this
phase. In order to handle cycles (due to recursion), we iterate over the nodes
in strongly connected components of the PCG in a bottom-up manner until the
data flow solution converges. As with intraprocedural analysis, we impose a
constant upper bound on the number of iterations, and assume a bottom so-
lution if convergence is not reached within those iterations—that is, all nodes
in the set Na (for actual arguments and return value) for methods involved
in a nonconverging strongly connected component are marked GlobalEscape.
This phase is sufficient to identify stack-allocatable objects, which are also
thread-local.

In the presence of a method whose body cannot be analyzed, we mark objects
reachable from any of the actual arguments passed to such methods as Glob-
alEscape. Examples of these methods are native methods not implemented in
Java or methods of dynamically loaded classes whose body cannot be deter-
mined during analysis. This is necessary because these methods can pass an
object reachable from its parameter to a native method, which in turn can make
the object reachable by another native method of a different thread. Since Java
allows a native method to invoke synchronization operations on a Java object
that it can access through Java Native Interface (JNI), any object reachable
from an actual argument passed to an unknown Java (or non-Java) method
should be considered as escaping the current thread.

In order to identify additional thread-local objects, that is, those which are
not stack-allocatable, we need to propagate some information from the caller
to its callees. This step, which constitutes an extension to our core analysis,

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 887

Fig. 5. An example program for illustrating interprocedural analysis and its call graph.

is performed in a separate top-down pass over the PCG, which is described in
Section 4.5.

We will use the Java example shown in Figure 5 to illustrate our interpro-
cedural framework. In this example, method L() constructs a linked list and

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

888 • J.-D. Choi et al.

method T () constructs a tree-like structure. Figure 5(b) shows the caller-callee
relation for the example program, shown in Figure 5(a). In Figure 5(b), we
identify the four points of interest to interprocedural analysis, which are dis-
cussed in the following subsections. Figure 6 shows the connection graphs built
at various points of the program in Figure 5(a). These connection graphs are a
conservative representation of the data structure built by the program during
execution.

The remainder of this section is organized as follows. Sections 4.1 through 4.4
describe the core interprocedural analysis at four points of interest: (1) method
entry, (2) method exit, (3) immediately before a method invocation, and (4) im-
mediately after a method invocation. Section 4.5 describes an extension to iden-
tify more thread-local objects. Section 4.6 presents a comparison between CG
and points-to graph.

4.1 The Connection Graph at Method Entry

We process each formal parameter (of reference type) in a method one at a
time. Note that the implicit this reference parameter for an instance method
appears as the first parameter. For each formal parameter fi, there exists an
actual argument ai in the caller of the method that produced the value for fi.
Nodes corresponding to actuals belong to Na. At the method entry point, we can
envision an assignment of the form fi = ai that copies the value of ai to fi. Since
Java specifies call-by-value semantics, fi is treated like a local variable within
the method body, and so it can be killed by other assignments to fi. We create
a phantom reference node for ai and insert a deferred edge from fi to ai. The
phantom reference node serves as an anchor for the summary information that
will be generated when we finish analyzing the current method.5 We initialize
EscapeState[fi] = NoEscape and EscapeState[ai] = ArgEscape. Figure 6(a)
illustrates the reference nodes f1 and f2, the phantom reference nodes a1 and
a2, and the corresponding deferred edges at the entry of method T().

4.2 The Connection Graph at Method Exit

We model a return statement that returns a reference to an object as an assign-
ment to a special phantom variable called return (similar to formal parameters).
The round node r in Figure 6(d) represents the phantom return node. Multiple
return statements are handled by “merging” their respective return values.

We model each throw statement conservatively by marking the object being
thrown as GlobalEscape. After completing intraprocedural escape analysis for
a method, we first use the ByPass function (defined in Section 2) to eliminate all
the deferred edges in the CG, except for those pointing to a terminal node, which
is a variable or field node without any oytgoing (points-to) edges. (Since terminal
nodes do not have outgoing edges, the ByPass function cannot be applied to
them.) In order to remove the deferred edges to terminal nodes, we create a
phantom node for each terminal node, and insert a points-to edge from the

5We use ai as the anchor point rather than fi , since, in Java, fi is treated as a local variable, and
so the deferred edge from fi to ai can be deleted.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 889

Fig. 6. Connection graphs at various points in the call graph. Nodes that escape globally are
shadowed. (a) shows CG at method entry in the callee. (b), (c), and (d) show the different subgraphs
(respectively, LocalGraph, ArgEscape NonLocalGraph, and GlobalEscape NonLocalGraph) of CG
at method exit in the callee. (e) shows CG before the method call in the caller. (f) shows CG after
the method call in the caller.

terminal node to the phantom node. We then apply the ByPass function to each
of the terminal nodes, which removes the deferred edges to the terminal nodes.
However, we keep the points-to edges from the terminal nodes to the phantom
nodes.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

890 • J.-D. Choi et al.

As an example, Figure 6(b), (c), and (d) show the connection graph at the
exit of method T(). The (rectangular) phantom object node R in Figure 6(d)
represents the phantom object pointed-to by f2 when f2 is returned by method
T. After the first application of the ByPass function, terminal node a2 had three
incoming deferred edges, one from each of f2 (in Figure 6(a)), g (created at
S7), and r (created at S8). After creating the phantom node R and inserting a
points-to edge from a2 to R, deferred edges to a2 were removed by applying the
ByPass function to a2. (In the example code, the return value from method T is
ignored by method L, the caller of T.)

We then do reachability analysis on the CG holding at the return statement
of the method to update the escape state of objects. The reachability analysis
partitions the graph into three subgraphs:

(1) The subgraph induced by the set of nodes that are reachable from a Glob-
alEscape node. The initial nodes marked GlobalEscape are static fields of
a class and Runnable objects. This subgraph is collapsed into a single bot-
tom node that efficiently represents all the nodes whose escape state is
GlobalEscape.

(2) The subgraph induced by the set of nodes that are reachable from an
ArgEscape node, but not reachable from any GlobalEscape node. The ini-
tial ArgEscape nodes are the phantom reference nodes that represent the
actual arguments created at the entry of a method, such as a1 and a2 in
Figure 6(a), and the phantom node for the return variable.

(3) The subgraph induced by the set of nodes that are not reachable from any
GlobalEscape or ArgEscape node (which remain marked NoEscape).

We call the union of the first and the second subgraphs the nonlocal subgraph
of the method, and the third subgraph the local subgraph. It is easy to show that
there can only be edges from the local subgraph to the nonlocal subgraph, but
not vice versa. All objects in the local subgraph that are created in the current
method are marked stack-allocatable. The nonlocal subgraph represents the
summary connection graph of the method. This summary information is used
at each call site invoking the method, as described in the next section.

Getting back to the running example, Figure 6(b), (c), and (d) show the con-
nection graph at the exit of method T(). In this connection graph, the object
node S4 is a phantom node that was created at statement S4 during intrapro-
cedural analysis of T(). The object nodes S3 and S5 were created locally in T().
In the figure, we can see that the structure in Figure 6(b) is local to method
T(), and so will not escape T(). We also see that the assignment to the global
reference variable “g = f2” makes the target phantom object of the phantom
reference node a2 become GlobalEscape, as shown in Figure 6(d). Figure 6(d)
already shows the effect of applying the ByPass function. Before the application,
the graph corresponding to Figure 6(d) has four reference nodes and deferred
edges between them: reference nodes g , r, f 2, and a2, with deferred edges from
g to f 2 due to S7, from r to f 2 due to S8, and from f 2 to a2 inherited from
Figure 6(a). The summary graph for method T() will consist of the nonlocal
subgraphs shown in Figure 6(c) and (d).

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 891

4.3 The Connection Graph Immediately Before a Method Invocation

At a method invocation site, passing of each parameter is handled as an assign-
ment to an actual argument âi at the caller. Let u1 be a reference to an object
U1. Consider a call u1.foo(u2, . . . , un), where u2, . . . , un are actual arguments to
foo(). We model the call as follows: â1 = u1; â2 = u2; . . . ; foo(â1, â2, . . . , ân). Each
âi at the call site will be matched with the phantom reference node ai of the
callee method. In Figure 6(e), two nodes, â1 and â2, are created with deferred
edges pointing to the first and the second actual arguments to the call, u and v,
respectively.

4.4 The Connection Graph Immediately After a Method Invocation

At this point, we essentially map the callee’s connection graph summary infor-
mation back to the caller’s connection graph (CG). Two types of nodes play an
important role in updating the caller’s CG with the callee’s CG immediately af-
ter a method invocation: âi ’s (representing actual arguments and return value)
of the caller’s CG, and ai ’s of the callee’s CG. Updating the caller’s CG is done
in two steps: (1) updating the node set of the caller’s CG using âi ’s and ai ’s;
and (2) updating the edge set of the caller’s CG using âi ’s and ai ’s. We refer to
these steps collectively as the UpdateCaller() routine. If the callee is a virtual
method, we update the CG at the caller with the summary information from
each possible target at that site, effectively merging the graphs of all target
methods into the caller’s CG.

4.4.1 Updating Caller Nodes. Figure 7 describes how we map the nodes
in the callee’s CG with the nodes in the caller’s CG. This mapping of nodes
from the callee CG to the caller CG is based on identifying the MapsTo relation
among object nodes in the two CGs. As a base case, we ensure that ai maps to
âi. Given the base case, we also ensure that a node in PointsTo(ai) maps to any
node in PointsTo(âi). We formally define the relation MapsTo (7−→) recursively
among objects belonging to a callee CG and a caller CG as follows:

Definition 4.1

(1) ai 7−→ âi.
(2) Op ∈ PointsTo(p) 7−→ Ôq ∈ PointsTo(q), if

(a) (p = ai) ∧ (q = âi), or
(b) (p = O. f) ∧ (q = Ô.g) ∧ (O 7−→ Ô) ∧ (fid(f) = fid(g)).

In Figure 7, MapsToObj(n) denotes the set of objects that n can be mapped
to using the MapsTo relation discussed above. In the figure, we use f and
f̂ to denote a callee node (field) and a caller node (field), respectively. The
algorithm starts with ai and âi as the original nodes that map to/from each
other, and then recursively finds other objects in the caller CG that are MapsTo
nodes of each corresponding callee object. The escape state of the nodes in
MapsToObj(n) is marked GlobalEscape if the escape state of n is GlobalEscape
(UpdateEscapeState() at Statement 12). Otherwise, the escape state of the
caller nodes is not affected.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

892 • J.-D. Choi et al.

UpdateCallerNodes()

{
1: foreach ai , âi actual argument pair do
2: UpdateNodes (ai , {âi});
3: endfor
}

UpdateNodes(f : node; // actual or field
mappedFields: set of nodes) // actual or field

// mappedFields is the set of MapsTo field nodes of f
{
4: foreach object node no ∈ PointsTo(f) do
5: foreach f̂ ∈ mappedFields do
6: if PointsTo(f̂) = ∅ then
7: CreateTargetNode(f̂); // create/insert a new node as the target of f̂
8: endif
9: foreach n̂o ∈ PointsTo(f̂) do
10: if n̂o 6∈MapsToObj(no) then
11: MapsToObj(no) =MapsToObj(no) ∪ {n̂o};
12: UpdateEscapeState(no, n̂o);

13: foreach g such that no
F→ g do

14: tmpMappedFields = { ĝ | n̂o
F→ ĝ and fid(g) = fid(ĝ)};

15: UpdateNodes(g , tmpMappedFields);
16: endfor
17: endif
18: endfor
19: endfor
20: endfor
}

Fig. 7. Algorithm to update the caller’s connection graph nodes.

The main body of procedure UpdateNodes is applied to all the callee object
nodes pointed to by the callee field node f (Statement 4). Given a callee object
node no, Statement 9 computes the set of no’s MapsTo object nodes in the caller
graph. This is done by identifying the set of caller object nodes “pointed” to by
the caller field node f̂ , which is itself a MapsTo field node of callee node f (i.e.,
f̂ ∈ mappedFields). In Statement 7 caller object node n̂o and its field nodes are
created with an escape state of NoEscape if no MapsTo caller object node exists
(CreateTargetNode() at Statement 7). In the connection graph of a method,
however, we create at most one object node for any allocation site in the program.

Given a callee object node no and its MapsTo caller node n̂o, Statement 14
computes, for each field node of no (i.e., g), the set of MapsTo field nodes of
the caller (i.e., tmpMappedFields). It then recursively invokes UpdateNodes,
passing g and tmpMappedFields as the new parameters (Statement 15).

4.4.2 Updating Caller Edges. Recall that following the removal of deferred
edges there are two types of edges in the summary connection graph: field edges
and points-to edges. Field edges get created at Statement 7 in Figure 7 while
the nodes are updated.

To handle points-to edges, we do the following: Let p and q be object nodes of
the callee graph such that p

F→ f p
P→ q. Then, for each p̂ ∈MapsToObj(p) and

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 893

q̂ ∈ MapsToObj(q), both of the caller, we establish p̂
F→ f̂ p

P→ q̂ by inserting a
points-to edge f̂ p

P→ q̂ for each field node f̂ p of p̂ such that fid(f p) = fid(f̂ p).

4.4.3 Example. Consider the summary nonlocal subgraphs shown in
Figure 6(c) and (d). First, all nodes that are reachable from global variable
g are marked GlobalEscape. Then, all nodes reachable from the phantom ref-
erence node a1 but not reachable from g are marked as ArgEscape. Now when
we analyze method L() intraprocedurally we construct the connection shown in
Figure 6(f) that is right after the invocation site of T(). We first mark the phan-
tom reference node a1 of the callee (in Figure 6(c)) and the phantom node â1 of
the caller (in Figure 6(f)) as the initial nodes, that is, ai and {âi} at Statement 2
in Figure 7. Then we map the phantom node S4, pointed to by a1, to S0, pointed
to by â1. The cycle in the nonlocal subgraph of T() also results in mapping S1
as a MapsTo node of S4. The cycle also results in inserting edges from the next
fields of S0 and S1 to both S0 and S1. This is a result of the 1-limited approach
we take in creating a phantom node, that is, we create at most one phantom
node at a statement. Now since a2 is marked GlobalEscape, all the nodes of the
caller reachable from â2 will also be marked as GlobalEscape.

4.5 Updating Escape State of Nodes in Callees to Identify Thread-Local Data

After the bottom-up phase of interprocedural analysis described above, all ob-
ject nodes marked NoEscape can be regarded as stack-allocatable as well as
thread-local. We now describe the analysis step to identify those object nodes,
marked ArgEscape at this stage, which should be marked GlobalEscape based
on reachability information from any caller. If this step is omitted, all object
nodes marked ArgEscape will have to be conservatively regarded as escaping
their thread of creation. We perform this propagation of GlobalEscape state
in a separate top-down traversal over the PCG. Cycles in the PCG are han-
dled by iterating until the solution converges (we observed rapid convergence
in practice). For each object marked GlobalEscape in a method, we identify
the corresponding nodes in each callee method and mark them GlobalEscape.
Thus, an object in a method is conservatively marked as escaping its thread of
creation if it escapes the thread of creation in any caller of that method. (This
conservativeness is necessary because we do not perform method specialization,
unlike the work presented in Ruf [2000].) Callee’s nodes which correspond to
caller’s nodes are identified using the inverse of the MapsTo relation described
in Section 4.4. We keep track of this inverse mapping when applying the analy-
sis described in Section 4.4. Note that this step does not affect the escape state
of any node marked NoEscape in the core part of our interprocedural analysis,
because if such a node had a corresponding node in the caller (i.e., if it were
reachable from the caller), it would not have been marked NoEscape in the first
place.

4.6 Connection Graph Versus Points-To Graph

The connection graph has some similarities to, but also a few important differ-
ences from the points-to graph representation that has been proposed in the

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

894 • J.-D. Choi et al.

literature for pointer analysis [Chase et al. 1990; Sagiv et al. 1998]. Unlike
a points-to graph, a connection graph does not approximate the shape of the
concrete storage, but approximates the relevant paths in the concrete storage.
For every path from a variable to an object in the concrete storage, there exists
a corresponding path in the connection graph from a reference node with the
same or lower escape state to that object.

A major difference between points-to graphs such as those used in Chase
et al. [1990], Choi et al. [1993], and Sagiv et al. [1998] and our connection
graph is that the former, in general, have the following uniqueness property
that our connection graph does not:

PROPERTY (UNIQUENESS PROPERTY). Let Gc be the concrete (dynamic) storage
graph during execution of a program and Ga be an abstract (static) graph rep-
resenting Gc. Then, a concrete object Oc in Gc has a unique abstract object Oa
in Ga that Oc maps to.

The connection graph lacks the uniqueness property since a concrete object
can be mapped to multiple abstract objects. Even so, the connection graph can
still be used for computing certain static properties of the program such as
whether or not objects escape. More detailed comparisons of the connection
graph and the points-to graph can be found in Choi et al. [2002].

5. HANDLING JAVA-SPECIFIC FEATURES

In this section, we show how we handle Java-specific features related to excep-
tions, object finalization, and synchronization side-effects.

5.1 Exceptions

We now show how our framework handles exceptions. Exceptions are precise in
Java, hence any code motion across the exception point should be invisible to
the user program. An exception thrown by a statement is caught by the closest
dynamically enclosing catch block that handles the exception [Gosling et al.
1996].

One way to do data flow analysis in the presence of exceptions is to add a
control flow graph edge from each statement that can throw an exception to each
catch block that can potentially catch the exception, or to the exit of the method
if there is no catch block for the exception. The added edges ensure that data
flow information holding at an exception-throwing statement will not be killed
by statements after the exception throwing statement, since the information
incorporating the “kill” would be incorrect if the exception was thrown.

We, however, use a simpler strategy for doing data flow analysis in the pres-
ence of exceptions. Recall (from Rules 1, 2, and 4 in Figure 3) that we “kill” only
local reference variables of a method in a flow-sensitive analysis. Therefore,
we only need to worry about those variables. Of the local variables updated
within a try block, we kill only those that are declared within the block. Local
reference variables declared outside the try block should not be killed at an
assignment inside that block, as they can be live at the termination of the block
if an exception is thrown. We will use the following example to elaborate on this

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 895

point. In the example, x is local to the method, but nonlocal to the try-catch
statement.

m0(T1 f1, T2 f2) {
T1 x;

S1: try {
S2: x = new T1(); // creates object O1
S3: x.b = f2;

// sets up a path from x to f2.
S4: ... // an exception is thrown here.
S5: x = new T1(); // creates object O2

} catch (Exception e) {
S6: System.out.println("Don’t worry");

}
S7: f1.a = x;
}

Assume that an exception is thrown at S4. After the catch block, when S7
is executed, f2 will become reachable from f1. If we were to kill the points-to
edge from x to object node O1 at S5, then we would lose the path information
from f1 to f2, and hence would have an incorrect connection graph. Recall that
our strategy is not to kill information for variables in a try block that are not
local to the block. Hence, in this example, we will not delete the previous edge
from x to O1 (whose field node b has an edge to f2) while analyzing S5. Hence,
at S7, after putting an edge from f1 to x, we would have a correct connection
graph path from f1 to f2.

A method (transitively) invoked within a try-catch block can be handled in
the same manner as a regular statement block in its place: we can kill any locals
declared in that method. An important implication of this approach is that we
can ignore potential run-time exceptions within methods that do not have any
try-catch blocks in them. Many methods in Java correspond to this case.

5.2 Finalization

Before the storage for an object is reclaimed by the garbage collector, the Java
Virtual Machine invokes a special method, the finalizer, of that object [Gosling
et al. 1996]. The class Object, which is a superclass of every other class, provides
a default definition of the finalize method which takes no action. If a class
overrides the finalize method such that its this parameter is referenced, it
means that an object of that class is reachable (due to the invocation of the
finalizer) even after there are no more references to it from any live thread. We
deal with this problem by marking each object of a class overriding the finalizer
as GlobalEscape.

5.3 Synchronization Side-Effects

Java synchronization not only provides a mechanism to enforce mutual exclu-
sion, but it also has side-effects related to the state of shared variables accessed

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

896 • J.-D. Choi et al.

within the mutex block. In particular, the semantics of the acquire phase of the
synchronization operation (monitorenter) are to (1) obtain a lock, and (2) en-
sure that locally cached values of global shared variables are updated with the
global shared value. The second requirement can be enforced by the hardware
cache coherence mechanism and an inexpensive instruction synchronization
instruction (isync in the PowerPC architecture). The semantics of the release
phase of the synchronization operation (monitorexit) are to (1) make sure that
all writes to memory of global shared values are completed, and (2) release the
lock. Enforcement of the first requirement involves executing a storage synchro-
nization instruction, for example, the Sparc fence or PowerPC sync instruction.
Sync operations can be expensive, particularly on multiprocessor systems, since
each memory subsystem must acknowledge the completion of all writes initi-
ated by the processor executing the sync. Even if the lock operation is shown to
be unnecessary by escape analysis, it may still be necessary to execute the sync
instruction to ensure the completion of writes to global memory operations. We
now outline an unimplemented algorithm for determining when the sync, as
well as the lock release, can be removed.

Before considering how to determine when a sync operation can be removed,
we state the conditions when a sync operation must be executed. Let w (r) be a
write (read) of value v in thread Tw (Tr) of a thread-escaping object O. Also let s
be a sync operation implied by the release phase of some synchronization in Tw.
Then s must be executed if (1) there is a path from any w to s (including paths
resulting from exceptions) without an intervening sync operation, and (2) there
exists a corresponding r operation for the w operation. These r operations can
be found by examining the conflict edges adjacent to w in the CSSA graph of
Lee et al. [1999]. Intraprocedurally, the data flow analysis is straightforward,
and follows from the requirements above. Using a simple bitvector analysis, it
can be determined which sync instructions s can be reached by a global write,
with no intervening sync instructions. The sync instructions s must be kept—
all others can be removed. Details of the analysis can be found in Choi et al.
[2002].

6. TRANSFORMATION AND RUN-TIME SUPPORT

We have implemented two optimizations based on escape analysis in the IBM
High Performance (static) Compiler for Java (HPCJ) for the PowerPC/AIX ar-
chitecture platform [IBM Corporation 1997; Oliver et al. 2000]: (1) allocation
of objects on the stack, and (2) elimination of unnecessary synchronization op-
erations. In this section, we describe the transformation applied to the user
code, based on escape analysis, and the run-time support to implement these
optimizations.

6.1 Transformation

At the end of the analysis described in Section 4, we mark each new site in the
program as follows: (1) if the EscapeState of the corresponding object node is
NoEscape, the new site is marked stack-allocatable, and (2) if the EscapeState of
the corresponding object node is NoEscape or ArgEscape, the new site is marked

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 897

as allocating thread-local data. Since we use a 1-limited scheme for naming ob-
jects, a new statement (a compile-time object name) is marked stack-allocatable
or thread-local only if all objects allocated during run time at this new site are
stack-allocatable or thread-local, respectively.

6.2 Run-Time Support

We allocate objects on the stack by calling the native alloca routine in HPCJ’s
AIX backend. Each invocation of alloca grows the current stack frame at run
time. In cases where (1) the object requires a fixed size, and (2) either just a
single instance of a new statement executes in a given method invocation, or
the previous instance of the object allocated at a new statement is no longer live
when the new statement is executed next, it is possible to allocate a fixed piece of
storage on the stack frame for that new statement. Our current implementation
does not perform this analysis to reuse stack space. A potential downside of our
approach is that the stack frame may grow in an unconstrained manner, since
its contents are not garbage-collected.

A secondary benefit of stack allocation is the elimination of occasional syn-
chronization for allocation of objects from the thread-common heap. Most heap
allocations by the HPCJ runtime system (like many other Java Virtual Ma-
chines) are satisfied by allocations from a thread-local heap, and do not require
any synchronization. For allocating a large object, or when the local heap space
is exhausted, the given thread needs to allocate from thread-common heap
space, which requires a relatively heavy-weight synchronization. Allocating
objects on the stack reduces the requirement for allocations from the thread-
common heap space.

Elimination of synchronization operations requires run-time support at two
places: allocation sites of objects, that is, new sites; and use sites of objects as
synchronization targets, that is, synchronized methods or statements. Syn-
chronized methods and statements are supported using monitorenter and
monitorexit atomic operations, whose implementation in HPCJ has two parts:
(1) atomic compare and swap operation for ensuring mutual exclusion, and
(2) PowerPC sync primitive for flushing the local cache.

We mark objects at the allocation sites using a single bit in the object repre-
sentation that indicates whether or not the object is thread-local. At object use
sites, we modify the routine implementing monitorenter on an object to bypass
the expensive atomic operation (compare and swap) if its thread-local bit is set,
and instead use a nonatomic operation. It is important to note that our scheme
has benefits even for the thin-lock synchronization implementation [Bacon et al.
1998], which still needs an atomic operation (compare and swap); we completely
eliminate the need for atomic lock operations for thread-local objects. Note that
we still refresh and flush the local memory at synchronization points to ensure
that locally cached copies of global variables are read from, and written to,
global variables as required by the Java semantics [Gosling et al. 1996]. Since
the only change we make regarding synchronization is to eliminate the instruc-
tions that ensure mutual exclusion, the semantics of all other thread-related
operations such as wait and notify remain unchanged as well.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

898 • J.-D. Choi et al.

Table I. Benchmarks Used in Our Experiments

Number of Size of
Program Description classes classes
vtrans High Performance Java Translator (IBM) 142 503K
jgl Java Generic Library 1.0 (ObjectSpace) 135 217K
jacorb Java Object Request Broker 0.5 (U. Freie) 436 308K
jolt Java to C translator (KB Sriram) 46 90K
jobe Java Obfuscator 1.0 (E. Jokipii) 46 60K
javacup Java Constructor of Parsers (S. Hudson) 59 101K
hashjava Java Obfuscator (KB Sriram) 98 183K
toba Java to C translator (U. Arizona) 19 86K
wingdis Java decompiler, demo version (WingSoft) 48 178K
pbob portable Business Object Benchmark (IBM) 65 333K

Table II. Benchmark Characteristics

Number of objects Size of objects Total number of
allocated in bytes allocated locks

user + user + user +
Program user library user library user library
trans 263K 727K 7656K 31333K 868K 885K
jgl 3808K 4157K 124409K 139027K 10391K 10434K
jacorb 103K 48036K 2815K 3423323K 546K 672K
jolt 94K 593K 3006K 17511K 1030K 1348K
jobe 204K 339K 7957K 13331K 77K 106K
javacup 67K 330K 1672K 8454K 191K 287K
hashjava 173K 248K 4671K 8270K 158K 165K
toba 154K 2201K 5878K 59356K 1060K 1246K
wingdis 840K 2561K 25902K 92238K 2105K 2299K
pbob 19787K 48206K 639980K 2749520K 35691K 171189K

7. EXPERIMENTAL RESULTS

This section evaluates escape analysis on several Java benchmark programs.
We experimented with four variants of the algorithm for the two applications:
(1) flow-sensitive (FS) analysis, (2) flow-sensitive analysis with bounded field
nodes (BFS), (3) flow-insensitive analysis (FI), and flow-insensitive analysis
with bounded field nodes (BFI). The difference between FS and FI is that FI
ignores the control-flow graph and never kills data flow information. Bounded
field nodes essentially limit the number of field nodes that we wish to model for
each object. We use a simple mod operation to keep the number of field nodes
bounded. For instance, the kth reference field of an object can be mapped to the
(k mod m)th field node. In our implementation, we used m = 3. Bounding the
number of fields reduces the space and time requirement for our analysis, but
can make the result less precise.

Our testbed consisted of a 333-MHz uniprocessor PowerPC running AIX
4.1.5, with 1-MB L2 Cache and 512 MB memory. We selected the set of 10
medium-sized to large-sized benchmarks described in Table I for our experi-
ments. Columns 3 and 4 give the number of classes and the size of the classes
in bytes for the set of programs. Table II gives the relevant characteristics for
the benchmark programs. Columns 2 and 3 present the total number of objects

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 899

Fig. 8. Percentage of user code objects allocated on the stack.

dynamically allocated in the user code and overall (including both the user code
and the library code). Columns 4 and 5 show the cumulative space in bytes oc-
cupied by the objects during program execution. Finally, Columns 6 and 7 show
the total number of lock operations dynamically encountered during execution.

In the rest of this section, we present the results for the above variants of
our analysis. All of the remaining measurements that we present refer to ob-
jects created in the user code alone. Modifying any operations related to object
creation in the library code would require recompilation of the library code (not
done in our current implementation). Thus, our implementation analyzes li-
brary code while performing interprocedural analysis, but does not transform
library code. Section 7.1 discusses results for stack allocation of objects. Sec-
tion 7.2 discusses results for synchronization elimination. Section 7.3 discusses
the actual execution time improvements due to these two optimizations.

7.1 Stack Allocation

Figure 8 shows the percentage of user objects that we allocate on the stack, and
Figure 9 gives the percentage in terms of space (bytes) that is stack-allocatable.

A substantial number of objects are stack-allocatable for jacorb, jolt,
wingdis, and toba (if one does not bound the number of fields nodes). These
benchmarks tend to create many objects of the StringBuffer class, which are
especially amenable to our analysis for stack allocatability. We did not see much
difference between FS and FI (i.e., flow-sensitive and flow-insensitive, without
bounding the number of fields distinguished). And, in most cases, bounding the
number of fields did not make much difference in the percentage values (for
example, see trans, jgl, jolt, jobe, javacup, hashjava, and wingdis). Interest-
ingly, toba and jolt, both of which are Java-to-C translators, have similar char-
acteristics in terms of stack allocatability of objects. Both of these benchmarks

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

900 • J.-D. Choi et al.

Fig. 9. Percentage of user code object space allocated on the stack.

have a substantial number of objects that are stack-allocatable. But in the case
of toba, limiting the number of fields drastically reduces the number of objects
that are stack-allocatable. This is due to multiple fields with different escape
states being mapped to the same node, leading to conservative analysis results.
We tried different functions for mapping the fields to the given bounded num-
ber of nodes, and found that it did not make much difference to the quality of
results.

7.2 Lock Elimination

For lock elimination, we collected two sets of data for different variants of the
analysis. We measured the number of dynamic objects that are identified by our
analysis as thread-local, and how many lock operations are executed over these
objects. Figure 10 shows the percentage of user objects that are determined to
be local to a thread, and Figure 11 shows the percentage of lock operations that
are removed during execution based on the identification of thread-local objects.
It can be seen that our most precise analysis version finds many opportunities
to eliminate synchronization, removing more than 50% of the synchronization
operations in half of the programs. One can deduce certain interesting char-
acteristics by comparing the two graphs. For pbob, the percentage of thread-
local objects (≈50%) is higher than the percentage of locks removed (≈15%),
suggesting that relatively few thread-local objects are actually involved in syn-
chronization.

For wingdis, we found a large percentage of objects are thread-local (≈75%),
and were able to remove ≈91% of synchronization operations. Notice that
jobe has very few objects, less than 1%, identified as thread-local. However,
there are a relatively large number of synchronization operations performed
on them, leading to an opportunity for eliminating a higher percentage of

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 901

Fig. 10. Percentage of thread-local objects in user code.

Fig. 11. Percentage of locks removed on objects in user code.

synchronization operations. The versions of our analysis using an unbounded
number of field nodes are able to remove a much higher percentage of synchro-
nization operations than the bounded versions (even though the percentage of
objects identified as thread-local, ranging from 0.3% to 0.8%, is too small to be
noticeable). We conjecture that this difference comes from the fact that in the
bounded cases some GlobalEscape fields and NoEscape fields are mapped onto
the same node, resulting in loss of precision. Another interesting characteristic
we observed is that for most cases, all four variants of the analysis performed

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

902 • J.-D. Choi et al.

Table III. Improvements in Execution Time

Potential
Execution Percentage of sync

Program time (s) reduction elimination
trans 5.2 7% 2%
jgl 18.8 23% 5%
jacorb 2.5 6% 5%
jolt 6.8 4% 4%
jobe 9.4 2% 1%
javacup 1.4 6% 0%
hashjava 6.4 5% 2%
toba 4.0 16% 4%
wingdis 18.0 15% 2%
pbob N/A 6% N/A

equally well (except for jacorb, hashjava, toba, and pbob). For toba, bounding
the number of fields again significantly reduced the percentage values of both
the number of thread-local objects and the number of synchronization opera-
tions that could be eliminated.

7.3 Execution Time Improvements

Table III summarizes our results for execution time improvements. The second
column shows the execution time (in seconds) prior to applying optimizations
due to escape analysis. The third column shows the percentage reduction in
execution time due to stack allocation of objects and synchronization elimina-
tion with our flow-sensitive analysis version. The time for pbob is not shown,
because it runs for a predetermined length of time: its improvement is given
as an increase in the number of transactions in that time period. The pbob
benchmark was run on a four-way PowerPC SMP machine. All of these bench-
marks, except for jgl and pbob, allocate less than 100 MB of heap space cumu-
latively, and had very little garbage collection activity. Hence, the performance
gains come mainly from synchronization elimination rather than from stack
allocation.

Table III shows an appreciable performance improvement (greater than 15%
reduction in execution time) in three programs (wingdis, jgl, and toba), and rel-
atively modest improvements in other programs. The jgl benchmark had a sig-
nificant percentage of thread-local objects, and a correspondingly high percent-
age of locks removed, which contributed to its good performance. The wingdis
and toba benchmarks shared these characteristics. The synchronization op-
erations represent a smaller fraction of execution time for wingdis than for
jgl—both programs have comparable execution times, and as Table II shows,
the number of lock operations in wingdis is an order of magnitude smaller
than the number of lock operations in jgl. This explains the smaller percent-
age performance improvement for wingdis compared to jgl in spite of the larger
fraction of synchronization operations eliminated.

Table III also shows the improvement that results from removing all sync
instructions from the code. This gives an upper bound on the performance im-
provements that can be expected from implementing the sync removal analysis

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 903

of Section 5.3. This data suggests that the actual realizable gains may be
marginal. We note that the benefit is potentially greater for programs with
threads executing on multiple processors since the overhead incurred by the
sync instruction is greater.

8. RELATED WORK

Lifetime analysis of dynamically allocated objects has been traditionally used
for compile-time storage management [Ruggieri and Murtagh 1988; Park and
Goldberg 1992; Birkedal et al. 1996]. Park and Goldberg [1992] introduced
the term escape analysis for statically determining which parts of a list that
are passed to a function do not escape the function call, and hence can be
stack-allocated. Others have improved and extended Park and Goldberg’s work
[Deutsch 1997; Blanchet 1998]. Tofte and Talpin [1994] proposed a region al-
location model, where regions are managed during compilation. A type system
is used to translate a functional program to another functional program anno-
tated with regions where values could be stored. Hannan [1995] uses a type
system to translate a strongly typed functional program to an annotated func-
tional program, where the annotation is used for stack allocation rather than for
region allocation. In our case, we only stack allocate objects that do not escape
a method and are created in the method. In some cases, it is possible to preallo-
cate objects that escape a method [Gay and Aiken 1998; Gay and Steensgaard
2000], a technique that is akin to region allocation.

Prior work on synchronization optimization has addressed the problem of
reducing the amount of synchronization [Li and Abu-Sufah 1987; Midkiff
and Padua 1987; Diniz and Rinard 1997]. These approaches assume that
the mutual exclusion or statement ordering implied by the original synchro-
nization is needed, and so only attempt to reduce the number of such op-
erations without violating the original implied constraints. In contrast, our
approach finds unnecessary mutual exclusion lock operations and eliminates
them.

The current article is an extended version of Choi et al. [1999], and includes
a more detailed discussion of various optimizations and analysis. There have
been a number of parallel efforts on escape analysis for Java [Choi et al. 1999;
Bodga and Hölzle 1999; Aldrich et al. 1999; Whaley and Rinard 1999; Blanchet
1999; Reid et al. 1999; Gay and Steensgaard 2000; Ruf 2000]. These efforts have
provided different (partial) solutions to the (undecidable) problem of eliminat-
ing unnecessary lock operations. In particular, these efforts represent different
tradeoffs between precision and complexity of analysis, which affects the bal-
ance between the quality of results on the one hand and compilation time and
scalability of the analysis to large programs on the other. Some of these ap-
proaches violate the semantics of the Java memory model when attempting to
eliminate unnecessary lock operations. We will now provide a detailed compar-
ison of these approaches, so that the reader can make a better judgment about
which technique to use in a given situation.

Bodga and Hölzle [1999] used set constraints for computing thread-local ob-
jects. Their system is a bytecode translator, and uses replication of execution

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

904 • J.-D. Choi et al.

paths as the means for eliminating unnecessary synchronization. After repli-
cation, they converted synchronized methods that access only thread-local
objects into nonsynchronized methods. This conversion, in general, breaks Java
semantics—since at the beginning and the end of a synchronized method or a
statement, the local memory has to be synchronized with the main memory
(see Section 5.3). They also summarized the effect of native methods, although
manually. Using the summary information, they improved the precision of their
analysis. Our approach can be easily extended to include native method analy-
sis. We now discuss some more fundamental advantages of Bodga and Hölzle’s
[1997] approach relative to ours, as well as disadvantages. First, their approach
uses a byte code translator and simply converts synchronized methods to un-
synchronized methods. For single-threaded applications, this is an effective ap-
proach and does not violate Java semantics (note that even in single threaded
applications, Java library methods could be synchronized). Second, their ap-
proach is less conservative in treating new objects. We create a single object
node for a new statement regardless of the calling context. So if an object es-
capes its thread of creation in one context, it will be marked as escaping the
thread of creation in all contexts. Bodga and Hölzle [1999] replicated and spe-
cialized objects depending on the calling context. Replications increases code
size, but leads to improvements in some applications.

However, Bodga and Hölzle’s [1999] basic constraint based approach is less
precise than our approach. For the common benchmark application, javacup,
Bodga and Hölzle were able to convert about 33% of the synchronized methods,
while we were able to eliminate about 56% of the lock operations.

Whaley and Rinard’s [1999] approach has many similarities to our approach,
and represents an improvement over ours along two fronts: their program ab-
straction can be used to do both memory disambiguation and perform escape
analysis. Similar to our connection graph, Whaley and Rinard’s points-to es-
cape graph can be summarized independent of the calling context (they used
the term compositional for describing this property). A second improvement is
that they performed strong updates on field variables. To allow strong updates,
they computed must-alias information, which they could do since their program
abstraction captures memory disambiguation. Furthermore, their implementa-
tion handles both user and library code, whereas ours modifies object allocation
only in user code. There are two benchmarks that are common between the two
papers: javacup and pbob. For pbob, Whaley and Rinard [1999] were able to
allocate about 27% of the objects on stack whereas we allocate about 20% of
objects on stack. They were able to eliminate about 24% of the lock operations,
while we eliminate about 17% of locks. Similarly, they obtained better results
on the javacup benchmark. In a more recent paper, Vivien and Rinard [2001]
used a demand-driven approach to speed up the analysis.

Aldrich et al. [1999] described a set of analyses for eliminating unneces-
sary synchronization on multiple re-entries of a monitor by the same thread,
nested monitors, and thread-local objects. They also removed synchronization
operations, which can break Java semantics. They claimed that their approach,
however, should be safe for most well-written multithreaded programs in Java,
which assume a “looser synchronization” model than what Java provides.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 905

Blanchet [1999] used type heights, which are integer values, to encode how
an object of one type can have references to other objects, or is a subtype of
another object. The escaping part of an object was represented by the height
of its type. He proposed a two-phase flow-insensitive analysis, consisting of
a backward and a forward phase, for computing escape information. He used
escape analysis, like our work, for both stack allocation and synchronization
elimination. For synchronization elimination, before acquiring a lock on an
object o, his algorithm tested at runtime whether o was on the stack—if it was,
the synchronization was skipped. Our algorithm uses a separate thread-local bit
within each object, and can skip the synchronization even for objects that are
not stack-allocatable but are thread-local. Blanchet’s algorithm is inherently
less precise, but faster than our algorithm.

Ruf’s [2000] analysis computed threads that access globally escaping objects.
If only one thread accesses such globally escaping objects, synchronization op-
erations can be eliminated on them. Thus, Ruf ’s analysis was less conservative
than ours when treating globals. Ruf also specialized procedures, when neces-
sary, to perform more aggressive synchronization elimination. Ruf ’s approach
seems to be the most effective in terms of eliminating unnecessary locks. He was
able to eliminate almost all of the lock operations in many applications, includ-
ing javacup, because of the way he modeled the objects. Rather than reasoning
in terms of escaping a thread, Ruf modeled whether an object can potentially
be synchronized by more than one thread during the object’s lifetime. If so, the
lock operations on that object cannot be eliminated.

To reduce the size of finite-state models of concurrent Java programs,
Corbett [1998] uses a technique called virtual coarsening. In virtual coarsening,
invisible actions (e.g., updates to variables that are local or protected by a lock)
are collapsed into adjacent visible actions. Corbett used a simple intraproce-
dural pointer analysis, after method inlining, to identify the heap objects that
were local to a thread, and also to identify the variables that were guarded by
various locks.

Pugh [1999] described some problems with the semantics of the Java memory
model, and is leading an effort to revise the memory model [JavaMemoryModel
2002; Manson and Pugh 2001]. All memory flush operations associated with
thread-local objects may be eliminated without further analysis (as described
in Section 5.3) under one of the proposals being considered for the revised Java
memory model [JavaMemoryModel 2002].

Our connection graph abstraction is related to the alias graph and points-
to graph proposed in the literature [Larus and Hilfinger 1988; Chase et al.
1990; Choi et al. 1993; Emami et al. 1994; Sagiv et al. 1998; Ghiya and Hendren
1998; Chatterjee et al. 1999]. Conventional representations for pointer analysis,
including the alias graph and points-to graph, have been used for understanding
memory disambiguation and cannot be easily summarized on a per procedure
basis [Landi and Ryder 1992; Choi et al. 1993; Emami et al. 1994]. Researchers
have, therefore, presented techniques to reduce the number of distinct calling
contexts for which the procedure needs to be summarized for pointer analysis.
These techniques include memoization to reuse the data flow solution for a given
calling context [Wilson and Lam 1995; Ghiya and Hendren 1996], and inferring

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

906 • J.-D. Choi et al.

the relevant conditions on the unknown incoming context while summarizing
a procedure [Chatterjee et al. 1999]. Compared to Wilson and Lam’s approach
of memoization, we do lose some precision in the case where the resolution
to a function pointer can be made more precise by reanalyzing the procedure.
Recently Cheng and Hwu [2000] and Liang and Harrold [1999] improved the
space requirement of alias analysis essentially by summarizing and mapping
information across method boundaries.

The connection graph is a simpler abstraction than the alias or points-
to graph. For identifying stack-allocatable objects, we can summarize the
connection graph on a per procedure basis regardless of the incoming call-
ing context. Hence, in this context, connection graph analysis is amenable to
elimination-based data flow analysis [Marlowe 1989], that is, one can construct
a closure operation that essentially summarizes the effects of a method. Also,
if two access paths in a points-to graph are disjoint, then the corresponding
objects in the two paths do not interfere. On the other hand, if two paths are
disjoint in the connection graph, nothing can be said about the interference of
the objects in the access path. So our mapping of the callee connection graph into
the caller connection graph is simpler. Fähndrich et al. [2000] also observed the
above property and used directional information to speed-up queries on data
flow information.

Ghiya and Hendren [1996] introduced a related abstraction, the connection
matrix, to determine whether an access path exists between the objects pointed
to by two heap-directed pointers. They used this information for shape analysis
of heap-allocated objects [Ghiya and Hendren 1996], and for memory disam-
biguation [Ghiya and Hendren 1998]. They did not use deferred edges in their
representation, and had to compute the connection matrix for a procedure re-
peatedly, for different calling contexts, as their work targeted a more general
problem.

9. CONCLUSIONS

In this paper, we have presented a new interprocedural algorithm for escape
analysis. Apart from using escape analysis for the stack allocation of objects,
we have demonstrated an important new application of escape analysis—
eliminating unnecessary synchronization in Java programs. Our approach uses
a data flow analysis framework and maps escape analysis to a simple reach-
ability problem over a connection graph abstraction. With a preliminary im-
plementation of this algorithm, which analyzes but does not transform class
library code, our static Java compiler is able to detect a significant percent-
age of dynamically created objects in user code as stack-allocatable, as high
as 70% in some cases. It is able to eliminate 11% to 92% of dynamic mutex
lock operations in our benchmarks, eliminating more than 50% of the mutex
lock operations in half of the benchmarks. We observe overall performance im-
provements ranging from 2% to 23% on our benchmarks, and find that most of
these improvements come from savings on lock operations on the thread-local
objects, as these programs do not seem to incur a significant garbage collection
overhead due to relatively low memory usage.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 907

APPENDIX: TIME COMPLEXITY

In this appendix, we analyze the complexity of escape analysis. We will first dis-
cuss the complexity for intraprocedural case. We will assume that all deferred
edges have been eliminated using the ByPass(p) function. For intraprocedural
analysis, we use the data flow Equations (1) and (2) for computing the connec-
tion graph. We can represent the connection graph as a set of pairs (x, y) such
x → y is an edge in the connection graph. The fixed point can be obtained by
iterating over the data flow equations.

Let us assume that there are K nodes in the control flow graph. We can
rewrite Equations (1) and (2) (Section 3) as follows:

Cs1 = ∪p∈Pred(s1) f s1 (Cp),
Cs2 = ∪p∈Pred(s2) f s2 (Cp),

...
CsK = ∪p∈Pred(sK) f sK (Cp).

Given that the transfer function is monotonic for escape analysis, we can com-
pute the least fixed point to above equations using Kildall’s iterative algorithm.
Let Amax be the maximum size of the connection graph at any program point.
Recall that a field access expression of the form a. f 1. f 2 · · · f l is broken into
a series of one-level field access expressions of the a. f . During the construc-
tion of the connection graph, we essentially create one object node per field
access. Since we are using 1-limited scheme for handling recursive structure,
the maximum acyclic path length (an acylic connection is obtained by ignoring
the back-edges in the connection graph) in the connection graph will limited
by the maximum field length of the field expression. Let L be the maximum
acyclic path-length in the connection graph.

Using the iterative scheme, we can compute the connection graph at a pro-
gram point in O(L × Amax). The reason for this is that at each iteration, we
might introduce one object node in the connection graph by traversing the en-
tire CG to check whether there is a change in the CG. Now since there are K
nodes in the CFG, at each iteration we visit K nodes and update the connection
graph at each of the nodes in the CFG. So at each iteration, the time complexity
is O(K × L × Amax). At each iteration, we might add one edge in the connec-
tion graph, and since we add at most Amax edges, the number of iterations is
bounded by O(K × Amax). Therefore, the time complexity of intraprocedural
analysis is O(L × A2

max × K 2).
In the worst case, Amax can be O(N2). It quite reasonable to assume L to be

constant. Also, K could be O(N). Therefore the time complexity of intraprocedu-
ral analysis is O(N 6). This complexity analysis is based on naive implementa-
tion of sets and the fixed-point iteration. By using a worklist based strategy for
computing the fixed point, we can reduce the complexity to O(N5). Finally, using
finite difference technique, as proposed by Goyal [2000], which incrementally
updates the connection graph, we can further reduce the complexity to O(N 3).

For the interprocedural case, our analysis essentially proceeds along the
same lines, except that we use call graph and connection graph summary

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

908 • J.-D. Choi et al.

information at each call graph node. The transfer function at each node is cap-
tured by the mapping function described in Section 4. The mapping function
used to summarize the effects of a callee method has a complexity of O(N2).
This does not increase the overall complexity of the analysis. Hence, the time
complexity of interprocedural escape analysis is O(N 6), where N is the pro-
gram size. Using Goyal’s [2000] finite-differencing technique we can reduce the
complexity to O(N 3).

ACKNOWLEDGMENTS

We would like to thank David Bacon, Michael Burke, Mike Hind, Deepak Goyal,
Ganesan Ramalingam, Vivek Sarkar, Ven Seshadri, Marc Snir, and Harini
Srinivasan for useful technical discussions. We also thank the referees for their
insightful comments on early drafts of the paper.

REFERENCES

ALDRICH, J., CHAMBERS, C., SIRER, E. G., AND EGGERS, S. 1999. Static analysis for eliminating un-
nessary synchronization from Java programs. In Proceedings of the Sixth International Static
Analysis Symposium (Venice, Italy).

BACON, D. F., KONURU, R., MURTHY, C., AND SERRANO, M. 1998. Thin locks: Featherweight synchro-
nization for Java. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. Montreal, P.Q. (Canada).

BIRKEDAL, L., TOFTE, M., AND VEJLSTRUP, M. 1996. From region inference to von Neumann machines
via region representation inference. In Proceedings of the 23rd Annual ACM Symposium on
Principles of Programming Languages.

BLANCHET, B. 1998. Escape analysis: Correctness, proof, implementation and experimental re-
sults. In Proceedings of the 25th Annual ACM Symposium on Principles of Programming Lan-
guages (San Diego, CA). 25–37.

BLANCHET, B. 1999. Escape analysis for object oriented languages: Application to Java. In Pro-
ceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications (Denver, CO).

BODGA, J. AND HÖLZLE, U. 1999. Removing unnecessay synchronization in Java. In Proceedings
of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications (Denver, CO).

BURKE, M., CARINI, P., CHOI, J.-D., AND HIND, M. 1995. Flow-insensitive interprocedural alias
analysis in the presence of pointers. In Proceedings of the 7th Workshop on Languages and
Compilers for Parallel Computing, K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua
(Eds.). Lecture Notes in Computer Science, Vol, 892. Springer-Verlag, Berlin, Germany, 234–250.
Extended version published in September 1994 as Res. rep. RC 19546, IBM T. J. Watson Research
Center, Yorktown Heights, NY.

CHAMBERS, C., PECHTCHANSKI, I., SARKAR, V., SERRANO, M. J., AND SRINIVASAN, H. 1999. Dependence
analysis for Java. In Proceedings of the 12th International Workshop on Languages and Compilers
for Parallel Computing.

CHASE, D. R., WEGMAN, M., AND ZADECK, F. K. 1990. Analysis of pointers and structures. In Pro-
ceedings of the SIGPLAN ’90 Conference on Programming Language Design and Implementation.
SIGPLAN Not. 25, 6, 296–310.

CHATTERJEE, R., RYDER, B. G., AND LANDI, W. A. 1999. Relevant context inference. In Proceed-
ings of the 26th Annual ACM SIGACT-SIGPLAN Symposium on the Principles of Programming
Languages.

CHENG, B.-C. AND HWU, W.-M. 2000. Modular interprocedural pointer analysis using access paths:
Design, implementation, and evaluation. In Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementation.

CHOI, J.-D., BURKE, M., AND CARINI, P. 1993. Efficient flow-sensitive interprocedural computation
of pointer-induced aliases and side effects. In Proceedings of the 20th Annual ACM

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

Stack Allocation and Synchronization Optimizations for Java • 909

SIGACT-SIGPLAN Symposium on the Principles of Programming Languages. 232–
245.

CHOI, J.-D., GUPTA, M., SERRANO, M., SREEDHAR, V. C., AND MIDKIFF, S. 1999. Escape analysis for
Java. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications (Denver, CO).

CHOI, J.-D., GUPTA, M., SERRANO, M. J., SREEDHAR, V. C., AND MIDKIFF, S. 2002. Stack allocation
and synchronization optimizations for Java using escape analysis. Res. rep. RC22340. IBM T. J.
Watson Research Center, Yorktown Heights, NY.

CORBETT, J. C. 1998. Constructing compact models of concurrent Java programs. In Proceedings
of the 1998 International Symposium of Software Testing and Analysis. ACM Press, New York,
NY.

DEUTSCH, A. 1997. On the complexity of escape analysis. In Proceedings of the 24th Annual ACM
Symposium on Principles of Programming Languages (San Diego, CA). 358–371.

DINIZ, P. AND RINARD, M. 1997. Synchronization transformations for parallel computing. In Pro-
ceedings of the 9th Workshop on Languages and Compilers for Parallel Computers.

EMAMI, M., GHIYA, R., AND HENDREN, L. 1994. Context-sensitive interprocedural points-to analysis
in the presence of function pointers. In Proceedings of the ACM SIGPLAN ’94 Conference on
Programming Language Design and Implementation. 242–256.

FÄHNDRICH, M., REHOF, J., AND DAS, M. 2000. Scalable context-sensitive flow analysis using in-
stantiation constraints. In Proceedings of the ACM SIGPLAN’00 Conference of Programming
Language Design and Implementation. 253–263.

GAY, D. AND AIKEN, A. 1998. Memory management with explicit regions. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (Montreal,
P.Q., Canada).

GAY, D. AND STEENSGAARD, B. 2000. Fast escape analysis and stack allocation for object-based
programs. In Proceedings of the 2000 International Conference on Compiler Construction. 82–
93.

GHIYA, R. AND HENDREN, L. J. 1996. Connection analysis: A practical interprocedural heap analysis
for C. Int. J. Parallel Program. 24, 6, 547–578.

GHIYA, R. AND HENDREN, L. J. 1998. Putting pointer analysis to work. In Proceedings of the 25th
Annual ACM Symposium on Principles of Programming Languages (San Diego, CA). 121–133.

GOSLING, J., JOY, B., AND STEELE, G. 1996. The Java(TM) Language Specification. Addison-Wesley,
Reading, MA.

GOYAL, D. 2000. A language-theoretic approach to algorithms. Ph.D. dissertation, New York
University, New York, NY. Available online at http://cs.nyu.edu/phd students/deepak/
thesis.ps.

GUPTA, M., CHOI, J.-D., AND HIND, M. 2000. Optimizing Java programs in the presence of ex-
ceptions. In Proceedings of the European Conference on Object-Oriented Programming (Cannes,
France). Also available as IBM T. J. Watson Research Center Tech. rep. RC 21644.

HANNAN, J. 1995. A type-based analysis for stack allocation in functional languages. In Proceed-
ings of the 2nd International Static Analysis Symposium.

IBM Corporation 1997. IBM High Performance Compiler for Java. Available online for download
at http://www.alphaWorks.ibm.com/formula.

JavaMemoryModel 2002. Java memory model mailing list. Archived at http://www.cs.umd.
edu/~pugh/java/memoryModel/archive/.

LANDI, W. AND RYDER, B. 1992. A safe approximate algorithm for interprocedural pointer aliasing.
In Proceedings of the SIGPLAN ’92 Conference on Programming Language Design and Imple-
mentation. SIGPLAN Not. 27, 6, 235–248.

LARUS, J. R. AND HILFINGER, P. N. 1988. Detecting conflicts between structure accesses. In Pro-
ceedings of the SIGPLAN ’88 Conference on Programming Language Design and Implementation.
SIGPLAN Not. 23, 7, 21–34.

LEE, J., PADUA, D., AND MIDKIFF, S. 1999. Basic compiler algorithms for parallel programs. In
Proceedings of 1999 ACM SIGPLAN Symposium on the Principles and Practice of Parallel Pro-
gramming. ACM Press, New York, NY.

LI, Z. AND ABU-SUFAH, W. 1987. On reducing data synchronization in multiprocessed loops. IEEE
Trans. Comput. C-36, 1 (Jan.), 105–109.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

910 • J.-D. Choi et al.

LIANG, D. AND HARROLD, M. J. 1999. Efficient points-to analysis for whole-program analysis. In
Proceedings of the 7th European Software Engineering Conference and 7th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC/FSE’99). 199–215.

MANSON, J. AND PUGH, W. 2001. Core semantics of multithreaded Java. In Proceedings
of the ACM 2001 ISCOPE/Java Grande Conference. 29–38. A longer version is avail-
able as UMCP CS Tech. rep., available online 4215 at http://www.cs.umd.edu/ pugh/
java/memoryModel/semantics.pdf.

MARLOWE, T. J. 1989. Data flow analysis and incremental iteration. Ph.D. dissertation, Rutgers
University, New Brunswick, NJ.

MIDKIFF, S. P. AND PADUA, D. A. 1987. Compiler algorithms for synchronization. IEEE Trans.
Comput. C-36, 12 (Dec.), 1485–1495.

OLIVER, M., DECIULESCU, E., AND CLARK, C. 2000. Java positioning paper. Available online at
http://www-1.ibm.com/servers/eserver/zseries/software/java/position.html.

PARK, Y. AND GOLDBERG, B. 1992. Escape analysis on lists. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. 117–127.

PUGH, W. 1999. Fixing the Java memory model. In Proceedings of the ACM 1999 Java Grande
Conference. 89–98.

REID, A., MCCORQUODALE, J., BAKER, J., HSIEH, W., AND ZACHARY, J. 1999. The need for predictable
garbage collection. In Proceedings of the WCSSS’99 Workshop on Compiler Support for System
Software.

RUF, E. 2000. Effective synchronization removal for Java. In Proceedings of the ACM SIG-
PLAN’00 Conference of Programming Language Design and Implementation. 208–218.

RUGGIERI, C. AND MURTAGH, T. 1988. Lifetime analysis of dynamically allocated objects. In Proceed-
ings of the 15th Annual ACM Symposium on Principles of Programming Languages. 285–293.

RUGINA, R. AND RINARD, M. C. 1999. Pointer analysis for multithreaded programs. In Proceedings
of the SIGPLAN Conference on Programming Language Design and Implementation. 77–90.

SAGIV, M., REPS, T., AND WILHELM, R. 1998. Solving shape-analysis problems in languages with
destructive updating. ACM Trans. Program. Lang. Syst. 20, 1 (Jan.), 1–50.

TOFTE, M. AND TALPIN, J.-P. 1994. Implementing the call-by-value lambda-calculus using a stack of
regions. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. ACM Press, New York, NY, 188–201.

VIVIEN, F. AND RINARD, M. 2001. Incrementalized pointer and escape analysis. In Proceedings of
the ACM SIGPLAN’01 Conference of Programming Language Design and Implementation.

WHALEY, J. AND RINARD, M. 1999. Compositional pointer and escape analysis for Java programs.
In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (Denver, CO).

WILSON, R. P. AND LAM, M. S. 1995. Efficient context-sensitive pointer analysis for C programs. In
Proceedings of the SIGPLAN ’95 Conference on Programming Language Design and Implemen-
tation. SIGPLAN Not. 30, 6, 1–12.

Received August 2001; revised January 2003; accepted April 2003

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.

