
Experiences with the Enforcement of Access Rights
Extracted from ODRL-based Digital Contracts

Susanne Guth Gustaf Neumann Mark Strembeck
Department of Information Systems, New Media Lab

Vienna University of Economics and BA, Austria
{firstname.lastname}@wu-wien.ac.at

ABSTRACT
In this paper, we present our experiences concerning the
enforcement of access rights extracted from ODRL-based
digital contracts. We introduce the generalized Contract
Schema (CoSa) which is an approach to provide a generic
representation of contract information on top of rights ex-
pression languages. We give an overview of the design and
implementation of the xoRELInterpreter software compo-
nent. In particular, the xoRELInterpreter interprets digital
contracts that are based on rights expression languages (e.g.
ODRL or XrML) and builds a runtime CoSa object model.
We describe how the xoRBAC access control component and
the xoRELInterpreter component are used to enforce access
rights that we extract from ODRL-based digital contracts.
Thus, our approach describes how ODRL-based contracts
can be used as a means to disseminate certain types of ac-
cess control information in distributed systems.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability - Data map-
ping; D.4.6 [Operating Systems]: Security and Protection - Ac-
cess controls; E.2 [Data Storage Representation]: Object rep-
resentation; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software - Distributed systems; K.6.5 [Management
of Computing and Information Systems]: Security and Pro-
tection - Unauthorized access

General Terms
Security, Design, Experimentation

1. INTRODUCTION
A contract typically represents an agreement of two or

more parties. The contract specifies rights and obligations of
the involved stakeholders with respect to the subject matter
of the respective contract. Contracts in the paper-world can
be tailored to meet the needs of a specific business situation
or to fit the requirements of individual contract partners. In
principle, the same is true for digital contracts as they can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DRM’03, October 27, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-786-9/03/0010 ...$5.00.

be used in the area of digital rights management for exam-
ple. Most often digital contracts are defined using special
purpose rights expression languages (REL) as ODRL [16],
XrML [8], or MPEG 21 REL [9] for instance.

In this connection one can differentiate between the “man-
agement of digital rights” and the “digital management of
(arbitrary) rights”. We especially focus on contracts that
contain information on digital rights, i.e. rights which are
intended to be controlled and enforced in an information
system via a suitable access control service - in contrast to
rights which are enforced by legislation or other “social pro-
tocols”. In this paper, we consider digital contracts as a
means to define and to disseminate certain types of access
control information in distributed computing environments.
In particular, we describe our experiences with the extrac-
tion and enforcement of access control information from
ODRl-based digital contracts.

The remainder of this paper is structured as follows. In
Section 2 we give an overview of the abstract structure of
digital contracts. We especially describe how information
within a digital contract is encapsulated in different contract
objects. Section 3 then summarizes the contract processing
procedures performed by a contract engine. Subsequently,
Section 4 introduces the generalized contract schema CoSa
and the software components we used to implement our sys-
tem, before Section 5 shows how ODRL-based digital con-
tracts are mapped to a runtime CoSa object model. Next,
Section 6 describes the initialization of the xoRBAC access
control service via a mediator component and the subse-
quent enforcement of the corresponding access rights. Sec-
tion 7 gives an overview of related work, before we conclude
the paper in Section 8.

2. STRUCTURE OF DIGITAL CON-
TRACTS

In this paper, we follow the terminology of [13] which
suggests to model the content of digital contracts via inter-
related contract objects, like Subject, Resource, Permission,
Constraint, or Role (see Figure 1). Each contract object
my contain attributes for further description. For exam-
ple, subjects may have attributes such as name, address,
or telephone number. Permission consists of an operation
(e.g. play or print) and a resource (e.g. PDF-document or
an MP3-file). Permissions are granted to subjects and can
be narrowed by constraints. Constraints define invariants
or side-conditions for access control decisions. In general,
constraints may be applied to almost every part of an ac-

cess control model. However, in our opinion defining con-
straints on permissions is esp. relevant for contract compo-
sition. Moreover, aside from the contract objects mentioned
above, a digital contract itself carries own attributes such
as a unique contract id, digital signatures, or comments for
example.

*
*1..

* *

* *1..

1..

*

*1.. *1..

*1.. *

Subject

Resource

1

assigned to

*1..

Role

Constraint

grants

assigned to

constrains

*

constrains

*

Digital Contract

grants

Permission

 refers to

assigned to

is rightsholder
of resource

*1..

Figure 1: Required contract objects for the dissem-

ination and enforcement of access control policies

Besides access control there is of course a number of other
possible application areas for digital contracts, e.g. intellec-
tual property rights (IPR) protection, accounting and sales
statistics, or customer relationship management (CRM) (see
e.g. [13]). However, since this paper focuses on access con-
trol we address contracts and contract objects only as far as
they are needed for access control purposes. Subsequently,
we describe the contract objects, depicted in Figure 1 in
more detail (note that Figure 1 depicts optional contract
objects in light grey):

• Subject is a mandatory contract object that appears at
least once but typically twice in each contract. With
respect to digital contracts, two different types of a
subjects can be distinguished: A rightsholder is a sub-
ject who holds rights on the respective contract re-
source and may grant one or more rights to another
contract party - the beneficiary. A beneficiary is the
subject who receives rights from the rightsholder. In
a digital contract a subject must always be identi-
fied through an unique identifier. In general, different
types of values can be used to identify a contract party,
e.g.:

– A (globally but at least locally) unique identifier
that identifies a certain individual, e.g. an X.500
distinguished name [17] or a Kerberos [38] estab-
lished identity.

– An unique identifier that identifies a certain
subject-type (e.g. as defined in MARC 21 role code
list [22]). A subject-type represents a number of
individuals sharing one or more common charac-
teristics. For example, a subject-type “faculty
member” could represent each faculty member at
the Vienna University of Economics and BA.

Note that it is of course also possible to assign addi-
tional attributes to a subject such as name, or e-mail
address for example.

• Resource is a mandatory contract object which ap-
pears at least once in a digital contract. A resource
always has to be uniquely identified (globally, but at
least locally), e.g. through a digital object identifier
(DOI) [27].

• Permission is a mandatory contract object which ap-
pears at least once in digital contracts. A permis-
sion represents a 〈operation, resource〉 pair describ-
ing an operation that can be invoked on a specific
object/resource. A simple example is a permission
〈print, researchpaper〉.

• Role is an optional contract object. With respect to
role-based access control a role represents a set of per-
missions, i.e. permissions are assigned to roles and
roles are assigned to subjects (parties) (see e.g. [11]).
However, while roles are a convenient means to assign
and manage permissions, permissions defined in digi-
tal contracts may also be directly assigned to a certain
subject (without an intermediary role).

• Constraint is an optional contract object. A constraint
can be defined as an invariant that must hold all the
time (e.g. static separation of duties constraints), or
as a side-condition which is evaluated dynamically and
depends on certain runtime information, like time con-
straints for example.

• The Digital Contract object is the object which aggre-
gates the above mentioned contract objects (see also
Figure 1) and comprises (meta)information concerning
the contract itself, for example:

– Unique Contract Identifier : A mandatory at-
tribute that contains a unique identifier for a spe-
cific contract, e.g. a URI [4]. If desired this at-
tribute can be used to implement a duplication
prevention mechanism and/or revocation lists for
digital contracts.

– Digital signature: A mandatory contract at-
tribute. Each contract party has to sign a con-
tract in order to conclude a contract. Thus, a
digital contract contains at least one signature
for each contract party (note that the beneficiary
of a contract is not necessarily identical to the
party signing the contract). For example, corre-
sponding functions for XML-based contracts can
be provided straightforwardly by applying stan-
dards like XML signature [3].

– Person Signature-certificate: A mandatory at-
tribute containing the signature certificate of a
contract party, or a link to the respective certifi-
cate. Such a certificate allows to verify the digital
signature of the corresponding signatories.

– Expiration date: An optional attribute which de-
termines the validity period of a contract through
of an expiration date. If omitted the contract is
assumed to be valid indefinitely, resp. until re-
voked or canceled by a dissolution contract.

3. CONTRACT PROCESSING
Figure 2 shows an activity diagram for the contract pro-

cessing procedure. It esp. focuses on the extraction of access

Build Contract
Runtime Model

[ok]

Issue
access request

[ok]

[ok]

[failed]

[failed]

[failed]

[failed]

Authenticate
Beneficiary

Loop: Check
Access Requests

Beneficiary

Contract Engine

Access Control
Service [transactions completed]

Check Contract

Contract Checker

REL Interpreter

Contract Lookup

Parse Contract

Initialize Access
Control Service

Check Contract
Status

Check Contract
Signatures

Mediator

[ok]

[failed]

Issue
"Contract Invalid"

Message

[failed] Issue
"Contract not Found"

Message

Figure 2: Basic activities in contract processing for access control

control information from digital contracts. Three different
actors are involved in this process:

• The beneficiary (resp. a corresponding client program)
who requests a service and presents a digital contract
(see below).

• The contract engine which performs several checks on
the contract and interprets the contract content (see
e.g. [14]).

• The access control service which decides if the benefi-
ciary may perform the requested operations according
to the permissions granted through the presented con-
tract.

The contract processing procedure is triggered by an
access request. An access request expresses the demand
to perform a specific operation/action on a particular ob-
ject/resource. In our approach, each access request consists
of a four valued vector 〈subject, operation, object, contract−
id〉. Here, the contract-id is represented by an URI resp. an
URL (see [4]). We bound the contract engine to an HTTP
server which forwards corresponding requests to the contract
engine (see Section 4); another possibility is, for example,
to integrate a SOAP interface with the contract engine to
allow for a direct processing of the above mentioned access
requests. After an access request is received, the contract
engine uses the respective contract-id to perform a contract
lookup procedure to acquire the contract which is relevant
for the current access request. The respective contract may
either be already loaded, and is thus available from a local

contract repository, or it is fetched from the URL indicated
by the contract-id. After the contract is loaded into the con-
tract engine the contract checker sub-component performs
the following activities (cf. Figure 2):

• Check Contract Signatures: this activity verifies the
digital signatures of the corresponding contract to en-
sure its integrity and authenticity.

• Check Contract Status: this activity inspects specific
revocation lists in order to identify legally revoked (i.e.
invalid) contracts and to prevent duplication, respec-
tively “double spending” (see e.g. [23]), of digital con-
tracts and the herein granted permissions. For ex-
ample, the “double spending” prevention procedure is
necessary if a contract defines a maximum number of
uses for a certain digital good/service.

• Authenticate Beneficiary : since access control in-
evitably demands for a prior authentication of sub-
jects, the contract engine performs an authentication
procedure for the subject who issued a particular ac-
cess request. Our approach does not demand for a
particular authentication mechanism and can be ap-
plied with arbitrary authentication services, e.g. a
Kerberos-based service, or an authentication infras-
tructure based on X.509-certificates.

If a digital contract successfully passed all checks, we con-
sider the corresponding contract as valid. Note that Fig-
ure 2 shows the three sub-activities of “Check Contract”
in light grey. We chose this coloration to indicate that

these sub-activities and/or their succession are not neces-
sarily the same for each contract engine. For example, the
“Check Contract” activity could also include additional sub-
activities (e.g. to check if the original grantor/rightsholder
was actually allowed to assign the respective rights to the
grantee/beneficiary), or one of the three sub-activities men-
tioned above could be performed by an other (external) soft-
ware service. However, from our experiences the sequence
shown in Figure 2 is a sensible set of activities that can
and should be performed through a contract engine. If one
of these basic activities fails, the contract engine issues a
“Contract Invalid” message (see Figure 2) and all access
requests relating to this particular contract are automati-
cally denied without a need for further contract interpreta-
tion or additional access control measures. If, however, the
check contract activity is completed successfully, the con-
tract checker component forwards the contract to the REL
Interpreter (rights expression language interpreter).

The REL interpreter parses the contract, extracts all (ac-
cess control) relevant information, and builds a runtime con-
tract object model. This object model may then be used
to query the different contract objects and their respective
attributes, e.g. unique ID of the beneficiary, his/her roles,
the respective resources, the granted permissions to that
resources, the constraints that apply to the granted permis-
sions, etc. (the Sections 4.2 and 5 give a detailed description
of the REL interpreter’s functionality).

In the next step, a so-called Mediator component extracts
the access control relevant contract information from the
runtime model of the contract to initialize the correspond-
ing access control service (see Figure 2). Finally, the access
request of the beneficiary is forwarded to the access control
service. The access control service performs the Check Ac-
cess Request activity to evaluate the access request. In our
implementation, we used the xoRBAC access control service
which is briefly described in Section 4.1.

4. HIGH-LEVEL ARCHITECTURE AND
SOFTWARE COMPONENTS

The high-level architecture depicted in Figure 3 shows the
software components we used to implement our system: a
web server, a contract engine (containing a contract check-
ing module and a contract interpretation module), an access
control component, and a mediator component. Note that,
for the purposes of this paper, we assume that all software
(and hardware) components used in our system are tamper
resistant. Moreover, we assume that the different compo-
nents authenticate each other and communicate via crypto-
graphically secured channels. However, building real-world
tamper resistant systems is of course a complex task - esp.
in open, distributed environments (see also [2, 21])

The contract engine is intended to be a (web) server ex-
tension that enables the processing of XML-based digital
contracts. Among other functionality the contract engine
supports contract checking (cf. Section 3) and contract in-
terpretation. The contract interpreter component basically
uses a rights expression language (REL) interpreter to ex-
tract relevant information from digital contracts. In our
system we utilize xoRBAC [24, 25] as access control service
(see Section 4.1 and the xoRELInterpreter component as
REL interpreter (see Section 4.2. The Mediator component
interoperates with the contract engine, the web-server and

the access control component (cf. Figure 3). It thus serves
as a connector to glue the contract engine and external com-
ponents (here xoRBAC) together. A concrete example of a
mediator can be found in Section 6.

Contract Engine

Web Server

Contract
Interpretation

(xoRELInterpreter)

Mediator

Contract
Checking

Access Control
(xoRBAC)

Figure 3: Abstract architecture of our system

The following sections describe the structure and func-
tionality of xoRBAC and xoRELInterpreter in more detail.
For the purposes of this paper, we esp. focus on the inter-
action between the contract interpreter component and the
access control service. Therefore, we do not provide a de-
tailed description of the contract checking component.

4.1 The xoRBAC Access Control Service
xoRBAC [24, 25] provides an RBAC service that can be

used on Unix and Windows systems in applications provid-
ing C or Tcl linkage. xoRBAC is well suited to be used
within a component framework. The xoRBAC component
is implemented with XOTcl [26] which offers a dynamic pro-
gramming environment for rapid application development.
XOTcl itself is a Tcl [28] compliant component written in
C. While originally developed as an RBAC service, xoRBAC

was extended to provide a multi-policy access control sys-
tem which can enforce RBAC, as well as DAC or MAC
based policies including conditional permissions. Among
other things xoRBAC provides the following features:

Rights Management

RolesPermissions

Role Hierarchy Management

Subjects

Subject
Management

Static Constraint Management

Assignment Unit

Perm./Role Assignment User/Role Assignment

Perm./Role Activation

Metadata Service Authentication Component

Dynamic Constraint
Management

Constraint Evaluation

Environment Mapping

Decision Component

 xo
R

B
A

C

Figure 4: xoRBAC: conceptual structure

• Many-to-many role-to-subject, permission-to-role, and
permission-to-subject assignment (and revocation).

• Definition of conditional permissions via context con-
straints.

• Arbitrary (DAG) role-hierarchies (permission-
inheritance interpretation / inheritance hierarchies)

• Static separation of duties (SSD) constraints for both
roles and permissions.

• Maximum and minimum cardinalities for both roles
and permissions.

• Extensive review functions (introspection), e.g.
subject-role review, permission-role review, subject-
permission review.

Figure 4 depicts the conceptual structure of the xoRBAC

component. With respect to this paper, the dynamic con-
straint management sub-system is of central significance. It
comprises the environment mapping which captures context
information via sensors, and the constraint evaluation which
checks if the collected values match the context constraints
associated with a certain conditional permission. Thereby
it allows for the definition and enforcement of context con-
straints.

In essence, the environment mapping component com-
prises the sensor library of the xoRBAC access control ser-
vice. It manages all sensors connected to xoRBAC. There-
fore, every sensor must be registered in the sensor library
before it can be used within xoRBAC. Each sensor provides
one or more context functions. Thus, each context attribute
that can be provided by a respective context function can
be used to define xoRBAC context conditions. In this paper,
we describe how xoRBAC can be used to enforce access con-
trol policies extracted from ODRL based digital contracts.
A context constraint is defined through the terms context
attribute, context function, and context condition:

evaluate

isSatisfied

true

checkAccess

next

isSatisfied

true

constraint1 constraint2

next

. . .

next

true

true

true
true

true

checkAccess

permission1

evaluate
condition
script

condition2

condition1

evaluate
condition
script

Figure 5: xoRBAC access control decisions with con-

text constraints

• A context attribute represents a certain property of the
environment whose actual value might change dynam-
ically (like time, date, or session-data for example), or
which varies for different instances of the same abstract
entity (e.g. location, ownership, birthday, or national-
ity). Thus, context attributes are a means to make

(exogenous) context information explicit. On the pro-
gramming level each context attribute CA represents
a variable that is associated with a domainCA which
determines the type and range of values this attribute
may take (e.g. date, real, integer, string).

• A context function is a mechanism to obtain the cur-
rent value of a specific context attribute (i.e. to ex-
plicitly capture context information). For example, a
function date() could be defined to return the current
date. Of course a context function can also receive
one or more input parameters. For example, a func-
tion age(subject) may take the subject name out of the
〈subject, operation, object〉 triple to acquire the age of
the subject which initiated the current access request,
e.g. the age can be read from some database.

• A context condition is a predicate (a Boolean func-
tion) that compares the current value of a context at-
tribute either with a predefined constant, or another
context attribute of the same domain. The corre-
sponding comparison operator must be an operator
that is defined for the respective domain. All vari-
ables must be ground before evaluation. Therefore,
each context attribute is replaced with a constant
value by using the according context function prior
to the evaluation of the respective condition. Exam-
ples for context conditions can be cond1 : date() ≤
”2003/01/01”, cond2 : date() == birthday(subject),
or cond3 : age(subject) > 21.

• A context constraint is a clause containing one or more
context conditions. It is satisfied iff all its context
conditions hold. Otherwise it returns false.

With respect to the terms defined above, a conditional
permission is a permission that is associated with one or
more context constraints and grants access if and only if
each corresponding context constraints evaluates to “true”.
Figure 5 shows a message sequence chart for access control
decisions in xoRBAC including conditional permissions. For
a detailed description of xoRBAC see [24, 25].

4.2 Rights Expression Language (REL) Inter-
preter

Rights Expression Languages (RELs) aim to provide a vo-
cabulary and (partial) semantics for the expression of terms
and conditions over (digital) assets. RELs aim to enable a
machine-based processing of digital contracts (see e.g. [16]).
In this paper, we describe how ODRL-based digital con-
tracts can be used for the exchange of certain types of ac-
cess control information in distributed systems. As already
mentioned, the automated processing of contracts requires
a REL interpretation service. In Section (4.2.1), we de-
scribe the Generalized Contract Schema (CoSa), before we
introduce our implementation of an ORDL-based REL in-
terpreter in Section (4.2.2).

4.2.1 Generalized Contract Schema (CoSa)
Digital contracts are often formulated using a rights ex-

pression languages that are specified via a corresponding
XML Schema [10] (e.g. ODRL [16], XrML [8], or MPEG21-
REL [9]). The document object model (DOM) [1] can be
used to process XML documents. All elements of a static

XML (or HTML) document can be represented as an object
tree, called DOM-tree (cf. Figure 7). For example, this tree
contains objects like Element, Entity, or Text. For an XML-
based digital contract the DOM-tree therefore contains all
elements (represented by individual objects) that are writ-
ten in a contract instance. The DOM-tree can be queried
or modified via the DOM application programming inter-
face (API) [1], or via XML-specific query language such as
XPath [7] for example.

Contract Schema (CoSa)

ODRL, MPEG 21 REL, etc.

XML Schema
Document Object Model

(DOM)

eXtensible Markup Language (XML)

Figure 6: Layers of XML-based contract interpreta-

tion

To access and query digital contracts we introduce the
Generalized Contract Schema (CoSa) that builds on top
of the DOM- and the rights expression language layer (see
Figure 6). It provides access to digital contracts (written
in XML) via a generic runtime model that was built from
the DOM-tree of the digital contract. The resulting run-
time model of the Contract Schema is generic. This means
that an actual CoSa model always relies on the same el-
ements independent which rights expression language was
used as input format. Thus, CoSa is an approach to build
a generic representation of contract information on top of
various rights expression languages. Therefore, ODRL or
other rights languages can be used to define a linearized
language-specific instance of CoSa.

XML
Document
Interpreter

Document (DOM)

Element

EntityElement

TextContract
Interpreter

Contract (CoSa)

Contract

Person

XML-based
Contract

Container

PermissionRoyalty

Resource
Constraint

Figure 7: Building CoSa runtime models of digital

contracts using DOM

CoSa represents all contract information as objects in a
flat contract tree. A runtime contract tree is build by the
means of dynamic object aggregation, which is a feature
supported by XOTcl. The root objects (Contract or Offer)
aggregate all related objects, such as Party (resp. Subject),
Resource, Permission, Constraint, Royalty, and Container
(cf. Figure 7). Relations between contract objects are rep-
resented by keys resp. IDs.

CoSa objects may have different kinds of attributes: con-
tract attributes, intrinsic attributes and application specific
attributes.

• Contract attributes store information from an XML
contract instance. For example, name, unique iden-
tifier, address are typical contract attributes for the

Party object, while title, creator, unique identifier,
format, size, etc. are typical contract attributes for
the Resource object. As the CoSa is independent
from rights expression languages, attributes from a
concrete REL-document instance have to be mapped
to generalized CoSa attributes. For example, the
ODRL vocabulary offers a constraint called count and
XrML provides a term called exerciseLimit to nar-
row rights, e.g. if a right play may be executed only
five times. Thus, a REL interpreter has to map
language-specific attributes/elements to generic CoSa
attributes/elements, e.g. to map ODRL count and
XrML exerciseLimit attributes to the CoSa limit at-
tribute. The catalog of CoSa contract attributes can
be extended by additional vocabulary sets.

• Intrinsic attributes express relations between contract
objects that result from the contract data model. In
particular, the current CoSa implementation uses five
different intrinsic attributes: permissions, constraints,
royalties, belongsto, and set. For example, all permis-
sions and royalties that have been assigned to a Party
object can be found in the attribute permissions resp.
royalties as a list of Permission resp. Royalty objects.
Likewise, a Permission stores the identifiers of linked
Constraint objects via a constraints attribute. The set
attribute is used express a relation between multiple
Permission or Constraint objects.

• Application specific attributes. Information that can
not be represented via the first two attribute categories
require an application specific extension of CoSa. Cur-
rently no additional application specific attributes are
provided.

We describe an example of a CoSa runtime model in Sec-
tion 5. The contract tree can be accessed via the CoSa API
to query any information provided by a digital contract.
The CoSa API offers a number of methods to retrieve any
desired information for the processing software service (e.g.
getPermissions, getName, getUniqueID). Example queries
using methods offered by the CoSa API are given in Section
6.

When linearizing, parsing, and interpreting a certain con-
tract, we must consider the language requirements of the
respective rights language. For example, which mandatory
elements exist in the respective language or what are the se-
mantics of a certain element constellation. ODRL, for exam-
ple, does not explicitly define mandatory elements. More-
over, depending on the rights to be expressed, ODRL pro-
vides multiple ways to phrase the same rights expression.
Thus, an ODRL interpreter has to be aware of the different
variants.

Extracted contract information may be queried and fur-
ther processed in other software services. In the case study
presented in this paper we extract information for further
processing in the xoRBAC access control service (see Sec-
tion 4.1). For the time being the CoSa API simply allows to
query but not to modify contracts. The modification of con-
tracts is a sensitive issue and brings up new challenges for
the corresponding software components, e.g. with respect to
access and modification rights to a digital contract itself or
concerning the validity of the digital contract.

contract::Contract contract:: Permission contract::Party contract::Resource

contract:: Object

...

relInterpreter:: RELContract

relInterpreter:: MPEGContractrelInterpreter:: ODRLContract

Figure 8: Packages and classes of the REL Interpreter

4.2.2 REL Interpreter Implementation
The xoRELInterpreter is intended to be a general pur-

pose contract interpreter and provides the transformation
of XML-based digital contracts into instances of the gen-
eralized contract schema (CoSa). Like xoRBAC, the xoRE-
LInterpreter is implemented with XOTcl and can be used on
Unix and Windows systems within applications providing C
or Tcl linkage.

To interpret XML documents the xoRELInterpreter
makes use of tDOM [18] library which provides a so-
phisticated implementation of the document object model
(DOM), XPath, and other W3C standards. The xoRELIn-
terpreter consists of two packages the relInterpreter-, and
the contract package (see Figure 8). The abstract class
RELContract (part of the relInterpreter package) provides
the external CoSa API. Thus, every subclass of RELCon-
tract (e.g. the class ODRLContract) has to implement the
abstract CoSa interface defined in RELContract. We im-
plemented the ODRLContract class to provide an ODRL
Interpreter conforming to [16]. The contract package pro-
vides class definitions for contract objects (Party (resp.
Subject),Resource, Permission, etc., see Section 2) defined
by the generalized contract schema. We chose ODRL for
our implementation because ODRL relies on an open and
freely available specification. Furthermore, ODRL offers a
straightforward approach for the expression of rights and is
well-known in the research community. Moreover, ODRL
is the favored rights expression language in the educational
domain.

5. GENERALIZED CONTRACT SCHEMA
OF REL-BASED DIGITAL CONTRACTS

This section illustrates the interpretation of digital con-
tracts defined through a rights expression language (REL)
and their transformation into the generalized contract
schema (CoSa). To demonstrate the functionality of CoSa
we first give an example of an ODRL-based contract and
its transformation into CoSa software objects. Afterwards,
we briefly show a sample XrML representation of the same
CoSa software objects.

5.1 Generalized Contract Schema of an
ODRL-based Digital Contract

Figure 9 depicts an example of an ODRL contract. ODRL
is defined via two XML schemas (see also[16]) - the expres-
sion language schema (prefix: o-ex), and the data dictionary
schema (prefix:o-dd).

Our ODRL contract contains a license sometimes also
called digital ticket (see e.g. [12, 13, 35]). The license de-
picted in Figure 9 grants the rights to display and print

the asset rossi-12345 to the party Mary Smith with the (lo-
cally) unique id msmith. The license also carries some con-
text information: the physical location, the license id and
a remark. The display and print rights are narrowed by
the following constraints: the permission print may only be

executed two times and the right display may only be per-
formed on a specific CPU - Intel-12345. Moreover, in order
to actually obtain both rights the consumer first has to pay
the amount of AUD 20.00 and a 10 % GST tax.

The contract above results in a structure consisting of sev-
eral CoSa contract objects (cf. Figure 10), aggregated to an
instance of the Contract type that carries the context in-
formation of the license. The Party, Resource, Constraint,
and the Permission objects are aggregated within the root
object Contract. The relations among the different runtime
contract objects are expressed via keys/IDs, stored via in-
trinsic attributes (cf. Section 4.2.1). For example, the party
person-001 “owns” the Permission objects p-001 and p-002
(see Figure 10). The Permission object p-001 is narrowed
by the constraints c-001, c-003, and c-004, whereas the Per-
mission object p-002 is narrowed by the constraints c-002,
c-003, and c-004. The Condition object c-002 “belongs to”
the Permission object p-002, and the Condition object c-003
is related to the Permission objects p-001 and p-002.

<?xml version="1.0" encoding="UTF-8"?>
<o-ex:rights xmlns:o-dd="http://odrl.net/1.1/ODRL-DD"
 xmlns:o-ex="http://odrl.net/1.1/ODRL-EX"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://odrl.net/1.1/ODRL-DD
 H:\Daten\odrl\ODRL-DD-11.xsd">
 <o-ex:agreement>
 <o-ex:context>
 <o-dd:uid> license-12345 </o-dd:uid>
 <o-dd:pLocation> Sydney, Australia </o-dd:pLocation>
 <o-dd:remark> Transacted by Example.Com </o-dd:remark>
 </o-ex:context>
 <o-ex:asset>
 <o-ex:context>
 <o-dd:uid> rossi-12345 </o-dd:uid>
 </o-ex:context>
 </o-ex:asset>
 <o-ex:permission>

 <o-dd:display>
 <o-ex:constraint>

 <o-dd:cpu>
 <o-ex:context>

 <o-dd:uid> Intel-12345 </o-dd:uid>
</o-ex:context>

 </o-dd:cpu>
 </o-ex:constraint>
 </o-dd:display>
 <o-dd:print>

 <o-ex:constraint>
 <o-dd:count> 2 </o-dd:count>
 </o-ex:constraint>
</o-dd:print>

 <o-ex:requirement>
 <o-dd:prepay>
 <o-dd:payment>
 <o-dd:amount o-dd:currency="AUD"> 20.00</o-dd:amount>

<o-dd:taxpercent o-dd:code="GST"> 10.00</o-dd:taxpercent>
 </o-dd:payment>

 </o-dd:prepay>
 </o-ex:requirement>
 </o-ex:permission>
 <o-ex:party>
 <o-ex:context>
 <o-dd:uid> msmith </o-dd:uid>
 <o-dd:name> Mary Smith </o-dd:name>

</o-ex:context>
 </o-ex:party>
 </o-ex:agreement>
</o-ex:rights>

Figure 9: Example of an ODRL License

For the interpretation of ODRL instances, each permis-
sion tag is assigned a set id. Aggregated permission ele-
ments, such as play or display, thus get the same set id (cf.
Figure 9. Through the set id we can distinguish if a con-

uid = license-12345
pLocation = Sydney, Australia
remark = Transacted by Example.com

contract-001 : Contract

uid = license-12345
location = Sydney, Australia
comment = Transacted by Example.com

contract-001 : Contract

identifier = rossi-12345

resource-001 : Resource
UID = msmith
FN = Mary Smith
ROLE = consumer
permissions = {p-001, p-002}

person-001 : Party

operation = display
constraints = {c-001, c-003, c-004}
object = rossi-12345
set = perm-01

p-001 : Permission

operation = print
constraints = {c-002, c-003, c-004}
object = rossi-12345
set = perm-01

p-002 : Permission

name = cpu_uid
type = constraint
value = Intel-12345
attribute
belongsto = {p-001}

c-001 : Constraint name = limit
type = constraint
value = 2
attribute
belongsto = {p-002}

c-002 : Constraint

name = prepayment_amount
type = requirement
value = 20
attribute = currency_AUD
belongsto = {p-001, p-002}

c-003 : Constraint
name = prepayment_tax
type = requirement
value = 10
attribute = code_GST
belongsto = {p-001,p-002}

c-004 : Constraint

Figure 10: Contract Objects: Properties of a RELContract

straint applies to a single permission element or to a set of
permission elements. For example, the advance payment of
AUD 20 and 10 percent tax applies only once to the permis-
sion set perm-01 (see Figure 10). Note that ODRL-specific
attributes have been mapped to the generic CoSa attributes.
For example, the ODRL attribute “permission” is mapped
to the generic CoSa attribute “operation”. In turn, in CoSa
a permission is the combination of on operation and an ob-
ject.

<?xml version="1.0" encoding="UTF-8"?>
<license xmlns="http://www.xrml.org/schema/2001/11/xrml2core"
 xmlns:sx="http://www.xrml.org/schema/2001/11/xrml2sx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cx="http://www.xrml.org/schema/2001/11/xrml2cx"
 xmlns:ex="http://www.xy.org/ex-schema/2003/xrml-ex"
 xsi:schemaLocation="http://www.xrml.org/schema/2001/11/xrml2cx
 ..\schemas\xrml2cx.xsd">

 <title> This license is transacted by Exampple.Com </title>
 <ex:uniqueID type="Ariadne"> license-12345 </ex:uniqueID>
 <ex:physicalLocation> Sydney, Australia </ex:physicalLocation>

 <inventory>
 <ex:consumer licensePartId = "msmith">
 <ex:uniqueID type="Uni-ID"> msmith </ex:uniqueID>
 <ex:name> Mary Smith </ex:name>
 </ex:consumer>
 <ex:electronicBook licensePartId = "rossi-12345">
 <ex:uniqueID type="Res-ID"> rossi-12345 </ex:uniqueID>
 </ex:electronicBook>
 </inventory>

 <grant>
 <grantGroup>

 <ex:consumer licensePartIdRef="msmith"/>

 <grant>
 <ex:electronicBook licensePartIdRef="rossi-12345"/>

 <cx:print/>
 <ex:device>
 <ex:uniqueID type="cpu"> Intel-12345 </ex:uniqueID>
 </ex:device>
 </grant>

 <grant>
 <ex:electronicBook licensePartIdRef="rossi-12345"/>

<ex:display/>
 <ex:limit> 2 </ex:limit>
 </grant>
 </grantGroup>

 <sx:fee>
 <sx:cash currency=AUD> 20.00 </sx:cash>
 <ex:tax code=GST> 10.00 </ex:tax>
 </sx:fee>

 </grant>
</license>

Figure 11: XrML linearization of CoSa objects

Moreover, ODRL distinguishes three different “con-
structs” to narrow Permissions: requirements, constraints,
and conditions (cf. [16]). These constructs, however, are not

supported by other rights expression languages, e.g. XrML
[8]. Therefore, in CoSA, ODRL requirements, ODRL con-
straints, and ODRL conditions are mapped to a generic Con-
straint type.

To interpret the ODRL contract shown in Figure 9, and
to build a corresponding CoSa instance we use the following
simple command line (when instantiating the ODRLCon-
tract object the digital contract, or its location is given as a
parameter): ODRLContract c1 ../Ebook2.xml

Subsequently, the CoSa API can be used to query the ob-
ject c1, e.g. to extract contract parties and their permission.
An example using the CoSa API is given in the next section.

5.2 Example for a Linearization of a Contract
Schema into XrML

The interpretation of an ODRL document results in a set
of generic CoSa objects. In other words, a contract written
in a different rights expression language (e.g. XrML) con-
taining the same contract information would result in the
same CoSa contract objects and attributes. For example,
Figure 11 shows an XrML document containing the same
contract information as the ODRL document presented in
the previous section.

Therefore, CoSa is, on the one hand, an approach to build
a generic representation of contract information. On the
other hand, it can be applied to convert contract information
from one rights expression language to another. However,
note that the current version of the CoSa implementation
does not (yet) support the “reverse mapping” of CoSa ob-
jects to ODRL or XrML contracts.

6. ACCESS CONTROL DECISIONS BASED
ON ODRL CONTRACTS

We distinguish two basic forms how digital contracts may
be applied for access control purposes. For the purposes of
this paper we esp. investigated the first alternative. How-
ever, we also discuss some issues related to the second vari-
ant:

1. The access control service permanently imports all ac-
cess control information from the digital contract - “it
instantiates the contract”. For example, this is sensi-
ble in a system where users frequently request access

operations and where relatively small time intervals
elapse between two requests of the same user.

2. The access control service uses digital contracts as an
additional external control set and queries the contract
on demand each time a contract-dependent access is
requested. This is sensible, for instance, in systems
where the same user seldom issues access requests, like
in a video on demand system for example.

Figure 12 indicates how information from ODRL-based
digital contracts is mapped to xoRBAC objects. The map-
pings of party to Subject, and asset to Object are straight-
forward, while a ODRL permission is equivalent to an
Operation in xoRBAC. However, in this paper we use
the term Permission, as widely accepted, to indicate an
〈operation, object〉 pair (see e.g. [11]). As mentioned in Sec-
tion 5, ODRL requirements and constraints are mapped
to CoSa Constraint objects. In xoRBAC each of these three
types (requirement, condition, constraint) is mapped to con-
text constraints (cf. Section 4.1). In ODRL, roles are most
often not explicitly defined but result from the interpreta-
tion of the contract. For example, a party, that has no
rightsholder element, is (automatically) assigned to the lo-
cal contract role “beneficiary”. Therefore, Figure shows no
direct mapping of an ODRL element to an xoRBAC Role
object.

requestAccess (subject, operation, object, contract-id) {
 #contract lookup
 set contractInstance [contractLookup(contract-id)]
 #check contract
 set contractOK [checkContract(contract-id]
 #interpret contract and initialize xoRBAC instance "rm"
 ODRLContract c1 $contractInstance
 RightsManager rm
 if {$contractOK == true} {
 set contracts [c1 getContracts]
 foreach c $contracts {
 set assets [c1 getAssets $c]
 set consumers [c1 getConsumers $c]
 foreach asset $assets {
 set assetId [c1 getUniqueID $asset]
 foreach con $consumers {
 set conID [c1 getUniqueID $con]
 rm createSubject $conID
 set perms [c1 getPermission $con]
 foreach p $perms {
 set perm [c1 getName $p]
 rm createPermission $perm
 rm subjectPermAssign $conID $perm
 }
 }
 }
 }
 } else {
 #contract checks not successfull, access denied.
 return false
 }
 #checkAccess - performed by access control service
 set success [rm checkAccess $subject $operation $object]
 if {$success} {
 return true #access granted
 } else {
 return false #access denied
 }
}

Figure 13: Excerpt of a mediator source code

To actually perform the mapping procedure explained
above, xoRBAC and the xoRELInterpreter must be linked
together on a technical level. Figure 13 shows a simple code
example of a special purpose mediator (written in the XOTcl
programming language [26]) which maps ODRL contract in-
formation to an instance of the xoRBAC service (represented

by the RightsManager instance rm - see Figure 13). In this
example the following CoSa API methodes are used:

• getContracts(): Returns a list of all Contract objects
registered for the current ODRL instance (an ODRL
interpreter instance can contain more than one con-
tract).

• getAssets(contract): Returns a list of all Asset ob-
jects included in a special contract.

• getConsumers(contract): Return a list of all Con-
sumer objects included in a special contract.

• getUniqueID(object): Return the value of the id at-
tribute of the respective CoSa object. The object

could be of any valid CoSa type (e.g. Party, Resource,
or Permission).

• getPermission(consumer): Returns a list of all Per-
mission objects, assigned to the respective consumer.

• getName(object): Returns the value of the name at-
tribute of the respective CoSa object.

The simplified example mediator shown in Figure 13 con-
trols the processing of a complete access request, including
contract lookup, contract checking, contract interpretation,
and processing of the actual access request via xoRBAC -
as mentioned above a mediator is used to glue together to
other components (see Section 4). In particular, the CoSa
API provides methods to obtain the relevant access control
information from a CoSa runtime model, e.g. of an ODRL-
based digital contract (see Section 4.2), and the media-
tor initializes the corresponding xoRBAC instance accord-
ingly (method calls: createSubject, createPermission,
subjectPermAssign in Figure 13). However, for the sake of
simplicity the example above omits the source code for the
creation and assignment of Context Constraints (see [25]).

check access(subj, op, obj)

access request
(subj, op, obj, contract-id)

{true | false}

Contract
Engine

permission
lookup

if {permission found}:
 check associated
 context constraints

contract
lookup

build CoSa
runtime model

Access Control
Service

initialize access control service
(create roles, permissions, context constraints, etc.)

{true | false}

Figure 14: Access control decisions based on digital

contracts - simplified message sequence chart

Subsequent to the set-up phase, xoRBAC is ready to de-
cide about access requests via the checkAccess method.
Figure 14 depicts the corresponding flow of events as a
message sequence chart. An xoRBAC access request con-
sists of a 〈subject, operation, object〉 triple. First, xoRBAC

checks if the corresponding subject owns a permission, which
grants the respective access request. If so, it checks the con-
text constraints associated with this particular permission.
The evaluation of xoRBAC context constraints is performed
by the constraint evaluation sub-component which, in turn,

*
*

*

*

*

<rights>
 <agreement>
 ...
 <asset>
 <context> <uid> rossi-12345 </uid> </context>
 </asset>
 <permission>
 <display>
 <constraint> ...
 <uid>Intel-12345</uid>...
 </constraint>
 </display>
 <print>
 <constraint>
 <count> 2 </count
 </constraint>
 </print>
 <requirement> ...
 <amount currency=AUD>20.00</amount>
 <taxpercent code=GST>10.00</taxpercent>
 </requirement>
 </permission>
 <party>
 <context>
 <uid>msmith</uid> ...
 </context>
 </party>
 </agreement>
</rights>

ODRL-based digital contract xoRBAC objects (simplified)

Context
Constraint

*
*

Subject

Role

*1..

Permission

Operation

Object

Figure 12: Mapping of ODRL contract information to xoRBAC objects

uses the environment mapping sub-component to capture
context data, as time, date, or IP-address for example (see
Section 4.1). If all context-constraints linked to a permis-
sion evaluate to true all prerequisites are fulfilled and the
decision component returns true to indicate that the corre-
sponding access request is allowed (see Figure 5).

In other words: it is not sufficient for a subject to own a
specific permission in order to grant a corresponding access
request. Additionally, the contract from which the permis-
sion was extracted must be valid and all context constraints
associated with the granting permission must evaluate to
true. Therefore, contract-dependent access control has at
least two specific characteristics:

• A dynamic and per access status/validation check of
the digital contract a specific permission originates
from. Here, the contract can be used as a means to as-
sign (or revoke) rights to (from) users, to disseminate
access control information in a distributed computer
network.

• A dynamic and per access environment mapping - be-
cause context constraints are based on context param-
eters whose actual values change relatively often, or
which vary for different individuals or for different in-
stances of the same abstract entity (see also Section
4.1).

7. RELATED WORK
The eXtensible rights markup language (XrML) [8] is a

rights expression language developed by ContentGuard 1

which, in turn, is a joint venture of Xerox and Microsoft.
XrML Version 2.0 was selected by the moving pictures ex-
pert group (MPEG) as the basis for development of the
MPEG 21 Part 5 2 standard. ContentGuard has released

1http://www.contentguard.com
2The ISO/IEC working group in charge of the development
of standards for coded representation of digital audio and
video, http://www.chiariglione.org/mpeg/)

a XrML Software Development Kit (SDK) that includes an
example license interpreter and an example condition val-
idator.

• The “license interpreter” basically provides a sin-
gle method: validateGoal(PrincipalList, RightsList,
ResourceList). This method is fetches all condi-
tions from an XrML document that are linked to
the triple 〈principal, resource, right〉. For example,
if the respective XrML license contains the triple
〈Mary, hit.mp3, play〉 the method fetches all condi-
tions associated with this triple (e.g. a restriction to
play the music file for five times only). All conditions
extracted via the validateGoal method are further pro-
cessed by the “condition validator”.

• The “condition validator” checks if the corresponding
conditions are met, for the example mentioned above,
it decides whether Mary may play the hit.mp3 or not.
For the time being, the XrML condition validator is
capable of checking two constraints: time interval and
exercise limit.

The XrML “license interpreter” and the “condition val-
idator” are closely coupled and are not designed to operate
separately. The interpreter does not provide additional func-
tions to make contract information available to other appli-
cations, like access control services for example. Thus, the
current version of the XrML SDK is a proof-of-concept im-
plementation that is focused on one particular application of
the rights expression language XrML. In contrast to that, we
developed a general approach for the interpretation of rights
expression languages. In particular, the generalized contract
schema CoSa can be applied to extend arbitrary applications
(providing C or Tcl linkage) with contract processing abili-
ties - in specific different components/applications are glued
together via a customized mediator component (see Section
4). Thereby, the CoSa itself is independent from certain
rights expression languages and from the applications that
use/process contract data.

Shand and Bacon [37] present a contract framework that
includes an abstract contract protocol for contract exchange
and an accounting language (based on the Python script-
ing language) for the specification of accounting policies.
Contracts define the resources that are exchanged between
contracting parties, e.g. CPU time, network bandwidth, or
money. Contracts must be signed by all contract parties
to be valid. A peculiarity of their approach is that trust
is treated as a special type of resource which influences the
conclusion of a contract. The trustworthiness of a certain
party is continuously adapted according to her/his contrac-
tual fidelity.

Park and Sandhu propose a high-level model for the defi-
nition of usage control policies [30]. Usage control (UCON)
works on the principle that digital objects are encapsulated
in a secure “digital container”. Information within such
a digital container can only be accessed through specific
(tamper-resistant) soft- and/or hardware devices by feed-
ing in a set of access rights approved by the originator of
the corresponding container. The set of access rights can be
seen as a license or a contract between the originator and
the recipient/consumer. Their model is, however, defined on
a high level of abstraction and must be refined before it may
serve as a basis for the definition of actual UCON policies.
In [29], Park and Sandhu describe an approach to combine
usage control and originator control. Originator control was
already mentioned in [20] and is a concept which requires
that recipients obtain the originator’s approval prior to the
re-dissemination of digital objects. In their approach, “li-
censes” are digitally signed certificates defining the usage
rights for digital objects. Users can access digital objects
only according to their license. Tickets are used to transfer
“re-dissemination” rights for digital objects.

In the work of Keller et al. [19] a management archi-
tecture for specifying, deploying, monitoring, and enforc-
ing service contracts is proposed to provide a basis for ser-
vice level agreements. Contracts are concluded between ser-
vice providers and a service integrator, and contracts con-
tain agreements about quality of service (QoS) attributes.
Keller at al. define object classes that represent the contract
model. Their contract model is tailored to the needs of ser-
vice level agreements, and thus contains different contract
objects as the contract model discussed in this paper (see
Section 4.2.1). However, their model also contains basic
contract objects that can be found in CoSa, such as provider,
customer, and service, as well as objects that represent the
guaranteed service parameters (rights). Keller et al. do not
envision the exchange of contract information between the
involved components in a standardized format, such as a
rights expression language.

In [5], Beugnard et al. introduce a general model of soft-
ware contracts that aims at increasing trust and reliability
between software components. To conclude contracts be-
tween components, every component publishes a feature set
to describes its services in a common language (e.g. CORBA
IDL). Contracts are established between a client and server
component in a negotiation phase where the contract par-
ties agree on certain services. The work provides a basic
interface description for the negotiation phase. Beugnard et
al. suggest an “XML-formatted description of the contracts”
that is applied for negotiation purposes. This is similar to
the approach presented in this paper, and a rights expression
language in combination with a REL interpreter could also

be used to express the service level agreement information
and subsequently process it in the negotiation and execution
process.

Sandhu and Park introduce so called smart certificates
for attribute services on the Web [31]. They use the ex-
tension field of X.509v3 certificates to bind attributes to a
subject (party). In an other contribution Sandhu and Park
[32] present an implementation where the extension field of
a X.509v3 certificate is used to assign role information to a
subject. Based on the subject’s role information, web servers
use roles instead of a user’s identity for access control pur-
poses. In [33] Park and Sandhu introduce secure cookies.
They use cryptographic techniques to enrich cookies (resp.
information stored via cookies) with integrity, authentica-
tion, and confidentiality. Web servers can use secure cookies
to store sensitive data on a client computer and reuse the
corresponding information in future interactions with the
same client.

XACML [36] describes a policy language and an access
control decision request/response language (both written in
XML). The policy language aims at defining authorization
policies, i.e. rules defining what operations a specific sub-
ject is allowed to perform on a certain set of objects. Thus,
XACML aims to support the definition of policies that can
be used (interpreted) by different access control mechanisms,
e.g. mechanism providing role-based access control. The
main focus of rights expression languages is different from
XACML in that digital contracts often include supplemen-
tal information like “notes” on certain terms and conditions
that are intended to be interpreted by human users. How-
ever, it is likely that most information expressed through a
rights expression language can be mapped to XACML.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented our experiences with the en-

forcement of access rights which are extracted from ODRL-
based digital contracts. We presented the generalized con-
tract schema CoSa which provides a means for the generic
representation of digital contracts formulated in arbitrary
rights expression languages. Moreover, we introduced the
xoRELInterpreter software component which (in its cur-
rent version) is able to interpret digital contracts based on
ODRL and to build a runtime CoSa object model from arbi-
trary ODRL documents. We use so called mediator compo-
nents to query a runtime CoSa model and to interact with
other software components. A mediator therefore glues our
contract engine and external components together to form
contract-aware applications. Among other things, we de-
scribed our experiences in the design and implementation of
a mediator between the xoRBAC access control component
and the xoRELInterpreter component. In specific, we have
shown how these components are used to extract access con-
trol information from ODRL documents and to actually en-
force the corresponding policies. Our approach uses ODRL-
based contracts as a means to disseminate access control
information in distributed systems.

We currently extend the xoRELInterpreter component to
support XrML and MPEG REL based digital contracts.
Furthermore, we further investigate the need for standard-
ized vocabulary in the area of rights expression languages
and continue to improve the generalized contract schema
(CoSa) in order to provide a generic framework for the de-
scription and interpretation of digital contracts.

An other problem area we plan to address in our future
work is the need for rights control licenses. A rights control
license certifies the control permissions of a particular sub-
ject. A control permission is an administrative permission
which enables its owner to grant a certain access right to
other subjects. This means that a contract party X must
only grant a specific access permission to an other contract
party Y if X is in possession of the corresponding control
permission. As long as contracts are only used within a
closed system where the resp. system authority accepts “self-
signed” contracts only, there is no urgent need for the use
of rights control licenses. However, in a distributed system
with several different local authorities, rights control licenses
are needed in order to guarantee that each contract party
does only assign (or revoke) rights to (from) an other con-
tract party if he is authorized to do so (i.e. only if the cor-
responding authority owns a respective control permission).
Nevertheless a number of problems may arise in case rights
control licenses are used, e.g. concerning the delegation and
or (re)selling of contract rights.

Moreover, similar to contracts in the paper-world, digi-
tal contracts can become invalid for some reason. Thus, a
means (and infrastructure) for distributed contract and/or
rights revocation is needed. This, again, is similar to certifi-
cate infrastructures for public-key cryptography, where so
called revocation-lists are used to publish revoked or invalid
certificates (see e.g. [15]). Eelated problems arise from the
fact that a digital contract must be digitally signed in order
to assure its integrity and authenticity. Nevertheless, public-
key certificates may expire or become invalid for various rea-
sons. Therefore, it is not trivial to define what happens to
digital contracts that were signed with a certain public-key
if the corresponding certificate becomes invalid. An other
problem is contract duplication, respectively double spend-
ing of the rights granted through a specific contract, which
is quite similar to the double-spending problem of electronic
money (see e.g. [6, 34]).

9. REFERENCES
[1] A. Le Hors, et al. Document Object Model (DOM)

Level 2 Core Specification.
http://www.w3.org/DOM/, November 2000.

[2] R. Anderson and M. Kuhn. Tamper Resistance - a
Cautionary Note. In Proc. of the 2nd USENIX
Workshop on Electronic Commerce, November 1996.

[3] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and
E. Simon. XML-Signature Syntax and Processing.
http://www.w3.org/TR/xmldsig-core/, February
2002. W3 Consortium Recommendation.

[4] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifiers (URI): Generic Syntax. IETF
RFC 2396, Standards Track,
http://www.ietf.org/rfc/rfc2396.txt, August 1998.

[5] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and
D. Watkins. Making Components Contract Aware.
IEEE Computer Magazine, 32(7), July 1999.

[6] J. Camenisch, J.M. Piveteau, and M. Stadler. An
Efficient Fair Payment System . In Proc. of ACM
Conference on Computer and Communications
Security, 1996.

[7] J. Clark and S. DeRose. XML Path Language
(XPath). http://www.w3.org/TR/xpath, November
1999. W3 Consortium Recommendation.

[8] ContentGuard Inc. eXtensible rights Markup
Language (XrML), Version 2.0.
http://www.xrml.org/, November 2001.

[9] T. DeMartini, X. Wang, and B. Wragg. MPEG-21
Working Documents - Part 5 & Part 6, MPEG-21
Rights Expression Language.
http://www.chiariglione.org/mpeg/
working documents.htm, March 2003.

[10] D. C. Fallside. eXtenisble Markup Language (XML)
Schema Specification 1.0.
http://www.w3.org/TR/XML/Schema/, May 2001.
W3 Consortium Candidate Recommendation.

[11] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and
R. Chandramouli. Proposed NIST Standard for
Role-Based Access Control. ACM Transactions on
Information and System Security, 4(3), August 2001.

[12] K. Fujimura and Y. Nakajima. General-Purpose
Digital Ticket Framework. In Proc. of the 3rd USENIX
Workshop on Electronic Commerce, September 1998.

[13] S. Guth, G. Neumann, and M. Strembeck. Toward a
Conceptual Framework for Digital Contract
Composition and Fulfillment. In Proc. of the
International Workshop for Technology, Economy,
Social and Legal Aspects of Virtual Goods, May 2003.

[14] S. Guth, B. Simon, and U. Zdun. A Contract and
Rights Management Framework Design for Interacting
Brokers. In Proc. of the 36th Hawaii International
Conference on System Sciences, January 2003.

[15] R. Housley and T. Polk. Planning for PKI: Best
Practices Guide for Deploying Public Key
Infrastructure. John Wiley & Sons, 2001.

[16] R. Iannella. Open Digital Rights Language (ODRL),
Version 1.1. http://odrl.net, August 2002.

[17] ITU-T. ITU-T Recommendation X.500: Information
Technology-Open Systems Interconnection-The
Directory: Overview of Concepts, Models and
Services, 1993.

[18] J. Loewer and R. Ade. tDOM (DOM Implementation).
available at: http://www.tdom.org/, 2003.

[19] A. Keller, G. Kar, H. Ludwig, A. Dan, and J.-L.
Hellerstein. Managing Dynamic Services: A Contract
Based Approach to a Conceptual Architecture. In
Proc. of the 8th IEEE/IFIP Network Operations and
Management Symposium (NOMS), April 2002.

[20] C.E. Landwehr. Formal Models for Computer
Security. ACM Computing Surveys, 13(3), September
1981.

[21] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz. Architectural
Support for Copy and Tamper Resistant Software. In
Proc. of the 6th International Conference on
Architectural Support for Programming Languages and
Operating Systems, November 2000.

[22] Machine Readable Cataloging (MARC) Standards
Office. MARC Code List for Relators, Sources,
Description Conventions.
http://www.loc.gov/marc/relators/, January 2003.

[23] G. Medvinsky and C. Neuman. NetCash: A Design for
Practical Electronic Currency on the Internet.
November 1993.

[24] G. Neumann and M. Strembeck. Design and

Implementation of a Flexible RBAC-Service in an
Object-Oriented Scripting Language. In Proc. of the
8th ACM Conference on Computer and
Communications Security (CCS), November 2001.

[25] G. Neumann and M. Strembeck. An Approach to
Engineer and Enforce Context Constraints in an
RBAC Environment. In Proc. of the 8th ACM
Symposium on Access Control Models and
Technologies (SACMAT), June 2003.

[26] G. Neumann and U. Zdun. XOTcl, an
Object-Oriented Scripting Language. In Proc. of
Tcl2k: 7th USENIX Tcl/Tk Conference, February
2000.

[27] National Information Standards Organization (NISO).
Syntax for the Digital Object Identifier.
http://www.niso.org/standards/, December 2000.

[28] J.K. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley, 1994.

[29] J. Park and R. Sandhu. Originator Control in Usage
Control. In Proc. of the 3rd International Workshop
on Policies for Distributed Systems and Networks,
June 2002.

[30] J. Park and R. Sandhu. Towards Usage Control
Models: Beyond Traditional Access Control. In Proc.
of the 7th ACM Symposium on Access Control Models
and Technologies (SACMAT), June 2002.

[31] J.S. Park and R.Sandhu. Smart Certificates:
Extending X.509 for Secure Attribute Services on the
Web. In Proc. of 22nd National Information Systems
Security Conference (NISSC), October 1999.

[32] J.S. Park and R. Sandhu. RBAC on the Web by
Smart Certificates. In Proc. of the ACM Workshop on
Role-Based Access Control, October 1999.

[33] J.S. Park and R. Sandhu. Secure Cookies on the Web.
IEEE Internet Computing, 4(4), July/August 2000.

[34] B. Pfitzmann and M. Waidner. Strong Loss Tolerance
of Electronic Coin Systems. ACM Transactions on
Computer Systems, 15(2), May 1997.

[35] L.R. Rivest. Electronic Lottery Tickets as
Micropayments. In R. Hirschfeld, editor, Financial
Cryptography. Springer Verlag, November 1997.

[36] S.Godik and T.Moses (eds.). eXtensible Access
Control Markup Language (XACML) Version 1.0.
OASIS Standard, February 2003.

[37] B. Shand and J. Bacon. Policies in Accountable
Contracts. In Proc. of the 3rd International Workshop
on Policies for Distributed Systems and Networks,
June 2002.

[38] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos:
An Authentication Service for Open Network Systems.
In Proc. of the USENIX Winter Conference, February
1988.

